Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nature ; 608(7923): 586-592, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35859170

RESUMO

The ability to associate temporally segregated information and assign positive or negative valence to environmental cues is paramount for survival. Studies have shown that different projections from the basolateral amygdala (BLA) are potentiated following reward or punishment learning1-7. However, we do not yet understand how valence-specific information is routed to the BLA neurons with the appropriate downstream projections, nor do we understand how to reconcile the sub-second timescales of synaptic plasticity8-11 with the longer timescales separating the predictive cues from their outcomes. Here we demonstrate that neurotensin (NT)-expressing neurons in the paraventricular nucleus of the thalamus (PVT) projecting to the BLA (PVT-BLA:NT) mediate valence assignment by exerting NT concentration-dependent modulation in BLA during associative learning. We found that optogenetic activation of the PVT-BLA:NT projection promotes reward learning, whereas PVT-BLA projection-specific knockout of the NT gene (Nts) augments punishment learning. Using genetically encoded calcium and NT sensors, we further revealed that both calcium dynamics within the PVT-BLA:NT projection and NT concentrations in the BLA are enhanced after reward learning and reduced after punishment learning. Finally, we showed that CRISPR-mediated knockout of the Nts gene in the PVT-BLA pathway blunts BLA neural dynamics and attenuates the preference for active behavioural strategies to reward and punishment predictive cues. In sum, we have identified NT as a neuropeptide that signals valence in the BLA, and showed that NT is a critical neuromodulator that orchestrates positive and negative valence assignment in amygdala neurons by extending valence-specific plasticity to behaviourally relevant timescales.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Aprendizagem , Vias Neurais , Neurotensina , Punição , Recompensa , Complexo Nuclear Basolateral da Amígdala/citologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Cálcio/metabolismo , Sinais (Psicologia) , Plasticidade Neuronal , Neurotensina/metabolismo , Optogenética , Núcleos Talâmicos/citologia , Núcleos Talâmicos/fisiologia
2.
Plant Physiol ; 192(2): 1016-1027, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36905371

RESUMO

The Arabidopsis (Arabidopsis thaliana) BYPASS1 (BPS1) gene encodes a protein with no functionally characterized domains, and loss-of-function mutants (e.g. bps1-2 in Col-0) present a severe growth arrest phenotype that is evoked by a root-derived graft-transmissible small molecule that we call dalekin. The root-to-shoot nature of dalekin signaling suggests it could be an endogenous signaling molecule. Here, we report a natural variant screen that allowed us to identify enhancers and suppressors of the bps1-2 mutant phenotype (in Col-0). We identified a strong semi-dominant suppressor in the Apost-1 accession that largely restored shoot development in bps1 and yet continued to overproduce dalekin. Using bulked segregant analysis and allele-specific transgenic complementation, we showed that the suppressor is the Apost-1 allele of a BPS1 paralog, BYPASS2 (BPS2). BPS2 is one of four members of the BPS gene family in Arabidopsis, and phylogenetic analysis demonstrated that the BPS family is conserved in land plants and the four Arabidopsis paralogs are retained duplicates from whole genome duplications. The strong conservation of BPS1 and paralogous proteins throughout land plants, and the similar functions of paralogs in Arabidopsis, suggests that dalekin signaling might be retained across land plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Alelos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fenótipo , Filogenia , Raízes de Plantas/metabolismo
3.
Anal Chem ; 93(40): 13534-13538, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34582180

RESUMO

The proliferation of N-heterocyclic carbene (NHC) self-assembled monolayers (SAMs) on gold surfaces stems from their exceptional stability compared to conventional thiol-SAMs. The prospect of biological applications for NHC-SAMs on gold shows the need for biocompatible techniques (e.g., large biomolecule detection and high throughput) that assesses SAM molecular composition. Herein, we demonstrate that laser desorption ionization mass spectrometry (LDI-MS) is a powerful and facile probe of NHC surface chemistry. LDI-MS of prototypical imidazole-NHC- and benzimidazole-NHC-functionalized AuNPs yields exclusively [NHC2Au]+ ions and not larger gold clusters. Employing benzimidazole-NHC isotopologues, we explore how monolayers pack on a single AuNP and the lability of the NHCs once ligated. Quantitative analysis of the homoleptic and heteroleptic [NHC2Au]+ ions is performed by comparing to a binomial model representative of a randomized monolayer. Lastly, the reduction of nitro-NHC-AuNPs to amine-NHC-AuNPs is tracked via LDI-MS signals, illustrating the ability of LDI-MS to probe postsynthetic modifications of the anchored NHCs, which is critical for current and future applications of NHC surfaces.


Assuntos
Ouro , Nanopartículas Metálicas , Lasers , Espectrometria de Massas , Metano/análogos & derivados
4.
J Chem Phys ; 154(3): 034703, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33499640

RESUMO

We report a comprehensive experimental and theoretical study of the lower-wavenumber vibrational modes in the surface-enhanced hyper-Raman scattering (SEHRS) of Rhodamine 6G (R6G) and its isotopologue R6G-d4. Measurements acquired on-resonance with two different electronic states, S1 and S2, are compared to the time-dependent density functional theory computations of the resonance hyper-Raman spectra and electrodynamics-quantum mechanical computations of the SEHRS spectra on-resonance with S1 and S2. After accounting for surface orientation, we find excellent agreement between experiment and theory for both R6G and its isotopologue. We then present a detailed analysis of the complex vibronic coupling effects in R6G and the importance of surface orientation for characterizing the system. This combination of theory and experiment allows, for the first time, an unambiguous assignment of lower-wavenumber vibrational modes of R6G and its isotopologue R6G-d4.

5.
BMC Med Educ ; 21(1): 422, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34372837

RESUMO

BACKGROUND: The COVID-19 pandemic posed a unique challenge for summer research programs in 2020, particularly for programs aimed at hands-on experience for younger trainees. The Indiana University Melvin and Bren Simon Comprehensive Cancer Center supports two pipeline programs, which traditionally immerse high school juniors, seniors, and early undergraduate students from underrepresented populations in science in hands-on projects in cancer biology labs. However, due to social distancing policies during the pandemic and reduction of research operations, these students were not physically allowed on campus. Thus, the authors set out to strategically pivot to a wholly virtual curriculum and evaluate the Virtual Summer Research Experience in Cancer outcomes. METHODS: The virtual program included four components: 1. a core science and professional development curriculum led by high school teachers and senior undergraduates; 2. faculty-delivered didactic sessions on cancer science; 3. mentored, virtual research projects with research faculty; and 4. online networking events to encourage vertical mentoring. Outcomes data were measured using a locally created 11-item Research Preparation Scale, daily electronic feedback, and weekly structured evaluation and feedback via Zoom. RESULTS: Outcome data suggested high self-reported satisfaction with the virtual program. Outcome data also revealed the importance of coordination between multiple entities for seamless program implementation. This includes the active recruitment and participation of high school teachers and further investment in information technology capabilities of institutions. CONCLUSIONS: Findings reveal a path to educate and train high school and early undergraduate students in cancer research when hands-on, in-person training is not feasible. Virtual research experiences are not only useful to engage students during public health crises but can provide an avenue for cancer centers to expand their cancer education footprints to remotely located schools and universities with limited resources to provide such experiences to their students.


Assuntos
COVID-19 , Neoplasias , Currículo , Humanos , Neoplasias/epidemiologia , Pandemias , SARS-CoV-2 , Instituições Acadêmicas , Estudantes
6.
Am J Physiol Gastrointest Liver Physiol ; 315(3): G408-G419, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29848024

RESUMO

One significant drawback of current probiotic therapy for the prevention of necrotizing enterocolitis (NEC) is the need for at least daily administration because of poor probiotic persistence after enteral administration, increasing the risk of the probiotic bacteria causing bacteremia or sepsis if the intestines are already compromised. We previously showed that the effectiveness of Lactobacillus reuteri ( Lr) in preventing NEC is enhanced when Lr is grown as a biofilm on the surface of dextranomer microspheres (DM). Here we sought to test the efficacy of Lr administration by manipulating the Lr biofilm state with the addition of biofilm-promoting substances (sucrose and maltose) to DM or by mutating the Lr gtfW gene (encoding an enzyme central to biofilm production). Using an animal model of NEC, we determined that Lr adhered to sucrose- or maltose-loaded DM significantly reduced histologic injury, improved host survival, decreased intestinal permeability, reduced intestinal inflammation, and altered the gut microbiome compared with Lr adhered to unloaded DM. These effects were abolished when DM or GtfW were absent from the Lr inoculum. This demonstrates that a single dose of Lr in its biofilm state decreases NEC incidence. Importantly, preloading DM with sucrose or maltose further enhances Lr protection against NEC in a GtfW-dependent fashion, demonstrating the tunability of the approach and the potential to use other cargos to enhance future probiotic formulations. NEW & NOTEWORTHY Previous clinical trials of probiotics to prevent necrotizing enterocolitis have had variable results. In these studies, probiotics were delivered in their planktonic, free-living form. We have developed a novel probiotic delivery system in which Lactobacillus reuteri (Lr) is delivered in its biofilm state. In a model of experimental necrotizing enterocolitis, this formulation significantly reduces intestinal inflammation and permeability, improves survival, and preserves the natural gut microflora compared with the administration of Lr in its free-living form.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Enterocolite Necrosante , Inflamação , Intestinos , Limosilactobacillus reuteri/fisiologia , Probióticos/farmacologia , Animais , Animais Recém-Nascidos , Biofilmes/crescimento & desenvolvimento , Dextranos/farmacologia , Enterocolite Necrosante/microbiologia , Enterocolite Necrosante/prevenção & controle , Inflamação/tratamento farmacológico , Inflamação/microbiologia , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Intestinos/fisiopatologia , Microesferas , Ratos , Ratos Sprague-Dawley
7.
Pediatr Res ; 82(3): 490-500, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28422949

RESUMO

BackgroundNeonatal necrotizing enterocolitis (NEC) is associated with alterations of the enteric nervous system (ENS), with loss of neuronal nitric oxide synthase (nNOS)-expressing neurons in the intestine. The aim of this study was to investigate the roles of heparin-binding EGF-like growth factor (HB-EGF) in neural stem cell (NSC) differentiation, nNOS expression, and effects on ENS integrity during experimental NEC.MethodsThe effects of HB-EGF on NSC differentiation and nNOS production were determined using cultured enteric NSCs. Myenteric neuronal subpopulations were examined in HB-EGF knockout mice. Rat pups were exposed to experimental NEC, and the effects of HB-EGF treatment on nNOS production and intestinal neuronal apoptosis were determined.ResultsHB-EGF promotes NSC differentiation, with increased nNOS production in differentiated neurons and glial cells. Moreover, loss of nNOS-expressing neurons in the myenteric plexus and impaired neurite outgrowth were associated with absence of the HB-EGF gene. In addition, administration of HB-EGF preserves nNOS expression in the myenteric plexus and reduces enteric neuronal apoptosis during experimental NEC.ConclusionHB-EGF promotes the differentiation of enteric NSCs into neurons in a nitric oxide (NO)-dependent manner, and protects the ENS from NEC-induced injury, providing new insights into potential therapeutic strategies for the treatment of NEC in the future.


Assuntos
Sistema Nervoso Entérico/metabolismo , Enterocolite Necrosante/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/fisiologia , Óxido Nítrico Sintase Tipo I/metabolismo , Animais , Diferenciação Celular , Feminino , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Mucosa Intestinal/metabolismo , Camundongos , Neurônios/metabolismo , Óxido Nítrico/biossíntese , Gravidez , Ratos , Ratos Sprague-Dawley
8.
J Surg Res ; 214: 278-285, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28624056

RESUMO

BACKGROUND: Necrotizing enterocolitis (NEC) is a leading cause of morbidity and mortality in premature infants. Increased intestinal permeability is central to NEC development. We have shown that stem cells (SCs) can reduce the incidence and severity of NEC. Our current goal was to investigate the efficacy of four different types of SC in preservation of gut barrier function during NEC. MATERIALS AND METHODS: We compared (1) amniotic fluid-derived mesenchymal SC, (2) bone marrow-derived mesenchymal SC, (3) amniotic fluid-derived neural SC, and (4) enteric neural SC. Premature rat pups received an intraperitoneal injection of 2 × 106 SC or phosphate-buffered saline only and were then subjected to experimental NEC. Control pups were breastfed and not subjected to NEC. After 48 h, animals received a single enteral dose of fluorescein isothiocyanate -labeled dextran (FD70), were sacrificed 4 h later, and serum FD70 concentrations determined. RESULTS: Compared to breastfed, unstressed pups with intact gut barrier function and normal intestinal permeability (serum FD70 concentration 2.22 ± 0.271 µg/mL), untreated pups exposed to NEC had impaired barrier function with significantly increased permeability (18.6 ± 4.25 µg/mL, P = 0.047). Pups exposed to NEC but treated with SC had significantly reduced intestinal permeability: Amniotic fluid-derived mesenchymal SC (9.45 ± 1.36 µg/mL, P = 0.017), bone marrow-derived mesenchymal SC (6.73 ± 2.74 µg/mL, P = 0.049), amniotic fluid-derived neural SC (8.052 ± 1.31 µg/mL, P = 0.0496), and enteric neural SC (6.60 ± 1.46 µg/mL, P = 0.033). CONCLUSIONS: SCs improve gut barrier function in experimental NEC. Although all four types of SC reduce permeability equivalently, SC derived from amniotic fluid may be preferable due to availability at delivery and ease of culture, potentially enhancing clinical translation.


Assuntos
Enterocolite Necrosante/terapia , Mucosa Intestinal/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Neurais/transplante , Animais , Enterocolite Necrosante/metabolismo , Permeabilidade , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
9.
ACS Omega ; 8(19): 16896-16906, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37214678

RESUMO

The surface morphology characteristics of postenrichment deconversion products in the nuclear fuel cycle are important for producing nuclear fuel pellets. They also provide the first opportunity for a microstructural signature after conversion to gaseous uranium hexafluoride (UF6). This work synthesizes uranium oxides from uranyl fluoride (UO2F2) starting solutions by the wet ammonium diuranate route and a modification of the dry route. Products are reduced under a nitrogen/hydrogen atmosphere, with and without water vapor in the reducing environment. The crystal structures of the starting materials and resulting uranium oxides are characterized by powder X-ray diffraction. Scanning electron microscopy (SEM) and focused ion beam SEM with energy-dispersive X-ray spectroscopy (EDX) are used to investigate microstructural properties and quantify fluorine impurity concentrations. Heterogeneous distributions of fluorine with unique morphology characteristics were identified by backscatter electron imaging and EDX; these regions had elevated concentrations of fluorine impurities relating to the incomplete reduction of UO2F2 to UO2 and may provide a novel nuclear forensics morphology signature for nuclear fuel and U metal precursors.

10.
Psychopharmacology (Berl) ; 240(3): 477-499, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36522481

RESUMO

RATIONALE: The basolateral amygdala (BLA) and medial geniculate nucleus of the thalamus (MGN) have both been shown to be necessary for the formation of associative learning. While the role that the BLA plays in this process has long been emphasized, the MGN has been less well-studied and surrounded by debate regarding whether the relay of sensory information is active or passive. OBJECTIVES: We seek to understand the role the MGN has within the thalamoamgydala circuit in the formation of associative learning. METHODS: Here, we use optogenetics and in vivo electrophysiological recordings to dissect the MGN-BLA circuit and explore the specific subpopulations for evidence of learning and synthesis of information that could impact downstream BLA encoding. We employ various machine learning techniques to investigate function within neural subpopulations. We introduce a novel method to investigate tonic changes across trial-by-trial structure, which offers an alternative approach to traditional trial-averaging techniques. RESULTS: We find that the MGN appears to encode arousal but not valence, unlike the BLA which encodes for both. We find that the MGN and the BLA appear to react differently to expected and unexpected outcomes; the BLA biased responses toward reward prediction error and the MGN focused on anticipated punishment. We uncover evidence of tonic changes by visualizing changes across trials during inter-trial intervals (baseline epochs) for a subset of cells. CONCLUSION: We conclude that the MGN-BLA projector population acts as both filter and transferer of information by relaying information about the salience of cues to the amygdala, but these signals are not valence-specified.


Assuntos
Tonsila do Cerebelo , Complexo Nuclear Basolateral da Amígdala , Tonsila do Cerebelo/fisiologia , Tálamo , Complexo Nuclear Basolateral da Amígdala/fisiologia , Condicionamento Clássico/fisiologia , Nível de Alerta
11.
Cancer Res ; 83(8): 1345-1360, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37057595

RESUMO

Study of genomic aberrations leading to immortalization of epithelial cells has been technically challenging due to the lack of isogenic models. To address this, we used healthy primary breast luminal epithelial cells of different genetic ancestry and their hTERT-immortalized counterparts to identify transcriptomic changes associated with immortalization. Elevated expression of TONSL (Tonsoku-like, DNA repair protein) was identified as one of the earliest events during immortalization. TONSL, which is located on chromosome 8q24.3, was found to be amplified in approximately 20% of breast cancers. TONSL alone immortalized primary breast epithelial cells and increased telomerase activity, but overexpression was insufficient for neoplastic transformation. However, TONSL-immortalized primary cells overexpressing defined oncogenes generated estrogen receptor-positive adenocarcinomas in mice. Analysis of a breast tumor microarray with approximately 600 tumors revealed poor overall and progression-free survival of patients with TONSL-overexpressing tumors. TONSL increased chromatin accessibility to pro-oncogenic transcription factors, including NF-κB and limited access to the tumor-suppressor p53. TONSL overexpression resulted in significant changes in the expression of genes associated with DNA repair hubs, including upregulation of several genes in the homologous recombination (HR) and Fanconi anemia pathways. Consistent with these results, TONSL-overexpressing primary cells exhibited upregulated DNA repair via HR. Moreover, TONSL was essential for growth of TONSL-amplified breast cancer cell lines in vivo, and these cells were sensitive to TONSL-FACT complex inhibitor CBL0137. Together, these findings identify TONSL as a regulator of epithelial cell immortalization to facilitate cancer initiation and as a target for breast cancer therapy. SIGNIFICANCE: The chr.8q24.3 amplicon-resident gene TONSL is upregulated during the initial steps of tumorigenesis to support neoplastic transformation by increasing DNA repair and represents a potential therapeutic target for treating breast cancer.


Assuntos
NF-kappa B , Oncogenes , Animais , Camundongos , Carcinogênese/genética , Transformação Celular Neoplásica/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Oncogenes/genética , Fatores de Transcrição/genética
12.
J Biophotonics ; 15(1): e202100158, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34609064

RESUMO

Multiphoton microscopy using short-wave infrared (SWIR) radiation offers nondestructive and high-resolution imaging through tissue. Two-photon fluorescence (TPF), for example, is commonly employed to increase the penetration depth and spatial resolution of SWIR imaging, but the broad spectral peaks limit its multiplexing capabilities. Hyper-Raman scattering, the vibrational analog of TPF, yields spectral features on the order of 20 cm-1 and reporter-functionalized noble metal nanoparticles (NPs) provide a platform for both hyper-Raman signal enhancement and selective targeting in biological media. Herein we report the first tissue imaging study employing surface-enhanced resonance hyper-Raman scattering (SERHRS), the two-photon analog of surface-enhanced resonance Raman scattering. Specifically, we employ multicore gold-silica NPs (Au@SiO2 NPs) functionalized with a near infrared-resonant cyanine dye, 3,3'-diethylthiatricarbocyanine iodide as a SERHRS reporter. SWIR SERHRS spectra are efficiently acquired from mouse spleen tissue. SWIR SERHRS combines two-photon imaging advantages with narrow vibrational peak widths, presenting future applications of multitargeted bioimaging.


Assuntos
Nanopartículas Metálicas , Análise Espectral Raman , Animais , Ouro , Camundongos , Microscopia , Dióxido de Silício
13.
Am Surg ; 88(7): 1557-1560, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35442816

RESUMO

BACKGROUND: Silicone-covered endoluminal stents have been applied to various hollow visceral disorders in adult patients with varying success. Efficacy of retrievable endoluminal stenting in children is less well-established. PURPOSE: The purpose of this study was to evaluate our experience with evolving applications of endoluminal silicone-covered stenting in children. RESEARCH DESIGN: Eight children 19 years and younger having silicone-covered stent placement for various indications at a single institution (2014-2021) were reviewed retrospectively. RESULTS: Eight patients received a total of 26 silicone-covered stents. Four stent placements (15.4%) were associated with a direct adverse event. To resolve the endoluminal disorder, four patients received multiple stents or further intervention. When evaluating novel applications, clinical benefit was noted for one patient with vaginal atresia, and another after ileal pouch anal anastomosis disruption. CONCLUSION: This experience highlights the broad and innovative applications for endoluminal silicone-covered natural orifice stenting in children. Acute processes respond well and rapidly to stenting, although chronic, established fistula may require additional manipulations or surgery.


Assuntos
Silicones , Stents , Adulto , Criança , Feminino , Humanos , Estudos Retrospectivos , Stents/efeitos adversos , Resultado do Tratamento
14.
ACS Omega ; 7(7): 6419-6426, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35224403

RESUMO

The high sensitivity and functional group selectivity of surface-enhanced Raman scattering (SERS) make it an attractive method for enzyme sensing, but there is currently a severe lack of enzyme substrates that release SERS reporter molecules with favorable detection properties. We find that 2-mercaptopyridine-3-carbonitrile ( o-MPN) and 2-mercaptopyridine-5-carbonitrile ( p-MPN) are highly effective as SERS reporter molecules that can be captured by silver or gold nanoparticles to give intense SERS spectra, each with a distinctive nitrile peak at 2230 cm-1. p-MPN is a more sensitive reporter and can be detected at low nanomolar concentrations. An assay validation study synthesized two novel substrate molecules, Glc-o-MPN and Glc-p-MPN, and showed that they can be cleaved efficiently by ß-glucosidase (K m = 228 and 162 µM, respectively), an enzyme with broad industrial and biomedical utility. Moreover, SERS detection of the released reporters ( o-MPN or p-MPN) enabled sensing of ß-glucosidase activity and ß-glucosidase inhibition. Comparative experiments using a crude almond flour extract showed that the presence of ß-glucosidase activity could be confirmed by SERS detection in a much shorter time period (>10 time shorter) than by UV-vis absorption detection. It is likely that a wide range of enzyme assays and diagnostic tests can be developed using 2-mercaptopyridine-carbonitriles as SERS reporter molecules.

15.
Am Surg ; 88(11): 2710-2718, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35148619

RESUMO

BACKGROUND: The COVID-19 pandemic has presented significant safety concerns for healthcare providers, especially those performing aerosol-generating procedures. Several surgical societies issued early warnings that aerosols generated during minimally invasive surgery (MIS) could harbor infectious quantities of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This study tested the hypothesis that MIS-aerosols contain SARS-CoV-2. METHODS: To evaluate SARS-CoV-2 presence in aerosols emitted during intracavitary MIS, children <18 years who required emergent MIS and were discovered to be SARS-CoV-2-positive were enrolled. Swabs were obtained from the port in-line with a filtered smoke evacuation system, the tubing adjacent to this port, the fluid collection chamber and filter, and the distal endotracheal tube (ETT). All swabs were analyzed for SARS-CoV-2 using quantitative reverse-transcription polymerase chain reaction. To evaluate viral distribution in tissues, fluorescence in situ hybridization for SARS-CoV-2 was performed on resected specimens. Outcomes were recorded, and participating healthcare workers were tracked for SARS-CoV-2 conversion. RESULTS: From July 1, 2020, to June 30, 2021, 11 children requiring emergent MIS were discovered preoperatively to be SARS-CoV-2 positive (median age: 14 years [5-17]). SARS-CoV-2 was detected only in ETT swabs and not in surgical aerosols or specimens. Median operative time was 56.5 minutes (IQR: 46-66), and postoperative stay was 21.2 hours (IQR: 1.97-57.57). No complications or viral eruption were recorded, and none of 63 healthcare workers tested positive for SARS-CoV-2 within 6 weeks. DISCUSSION: SARS-CoV-2 was detected only in ETT secretions and not in surgical aerosols or specimens among a pediatric cohort of asymptomatic patients having emergent MIS.


Assuntos
COVID-19 , SARS-CoV-2 , Adolescente , COVID-19/diagnóstico , Teste para COVID-19 , Criança , Humanos , Hibridização in Situ Fluorescente , Procedimentos Cirúrgicos Minimamente Invasivos , Pandemias , Estudos Prospectivos , Aerossóis e Gotículas Respiratórios , Fumaça
16.
J Surg Res ; 171(2): 540-50, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20850767

RESUMO

BACKGROUND: We have accumulated multiple lines of evidence supporting the ability of HB-EGF to protect the intestines from injury and to augment the healing of partial-thickness scald burns of the skin. The aim of the current study was to investigate the role of heparin-binding EGF-like growth factor (HB-EGF) in intestinal anastomotic wound healing. MATERIALS AND METHODS: HB-EGF (-/-) knockout (KO) mice (n=42) and their HB-EGF (+/+) wild type (WT) counterparts (n=33), as well as HB-EGF transgenic (TG) mice (n=26) and their (WT) counterparts (n=27), underwent division and reanastomosis of the terminal ileum. In addition, WT mice (n=21) that received enteral HB-EGF (800 µg/kg) underwent the same operative procedure. Anastomotic bursting pressure was measured at 3 and 6 d postoperatively. Tissue sections were stained with hematoxylin and eosin to assess anastomotic healing, and Picrosirus red to assess collagen deposition. Immunohistochemistry using anti-von Willebrand factor antibodies was performed to assess angiogenesis. Complications and mortality were also recorded. RESULTS: HB-EGF KO mice had significantly lower bursting pressures, lower healing scores, higher mortality, and higher complication rates postoperatively compared with WT mice. Collagen deposition and angiogenesis were significantly decreased in KO mice compared with WT mice. Conversely, HB-EGF TG mice had increased anastomotic bursting pressure, higher healing scores, lower mortality, lower complication rates, increased collagen deposition, and increased angiogenesis postoperatively compared with WT mice. WT mice that received HB-EGF had increased bursting pressures compared with non-HB-EGF treated mice. CONCLUSION: Our results demonstrate that HB-EGF is an important factor involved in the healing of intestinal anastomoses.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Intestinos/fisiologia , Intestinos/cirurgia , Complicações Pós-Operatórias/fisiopatologia , Cicatrização/fisiologia , Anastomose Cirúrgica , Animais , Colágeno/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Intestinos/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia , Complicações Pós-Operatórias/mortalidade , Complicações Pós-Operatórias/prevenção & controle , Pressão , Cicatrização/efeitos dos fármacos
17.
Front Plant Sci ; 12: 714164, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34594350

RESUMO

The synthesis of small organic molecules, known as specialized or secondary metabolites, is one mechanism by which plants resist and tolerate biotic and abiotic stress. Many specialized metabolites are derived from the aromatic amino acids phenylalanine (Phe) and tyrosine (Tyr). In addition, the improved characterization of compounds derived from these amino acids could inform strategies for developing crops with greater resilience and improved traits for the biorefinery. Sorghum and other grasses possess phenylalanine ammonia-lyase (PAL) enzymes that generate cinnamic acid from Phe and bifunctional phenylalanine/tyrosine ammonia-lyase (PTAL) enzymes that generate cinnamic acid and p-coumaric acid from Phe and Tyr, respectively. Cinnamic acid can, in turn, be converted into p-coumaric acid by cinnamate 4-hydroxylase. Thus, Phe and Tyr are both precursors of common downstream products. Not all derivatives of Phe and Tyr are shared, however, and each can act as a precursor for unique metabolites. In this study, 13C isotopic-labeled precursors and the recently developed Precursor of Origin Determination in Untargeted Metabolomics (PODIUM) mass spectrometry (MS) analytical pipeline were used to identify over 600 MS features derived from Phe and Tyr in sorghum. These features comprised 20% of the MS signal collected by reverse-phase chromatography and detected through negative-ionization. Ninety percent of the labeled mass features were derived from both Phe and Tyr, although the proportional contribution of each precursor varied. In addition, the relative incorporation of Phe and Tyr varied between metabolites and tissues, suggesting the existence of multiple pools of p-coumaric acid that are fed by the two amino acids. Furthermore, Phe incorporation was greater for many known hydroxycinnamate esters and flavonoid glycosides. In contrast, mass features derived exclusively from Tyr were the most abundant in every tissue. The Phe- and Tyr-derived metabolite library was also utilized to retrospectively annotate soluble MS features in two brown midrib mutants (bmr6 and bmr12) identifying several MS features that change significantly in each mutant.

18.
Curr Biol ; 30(10): 1845-1854.e4, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32302586

RESUMO

Fluid navigation requires constant updating of planned movements to adapt to evolving obstacles and goals. For that reason, a neural substrate for navigation demands spatial and environmental information and the ability to effect actions through efferents. The secondary motor cortex (M2) is a prime candidate for this role given its interconnectivity with association cortices that encode spatial relationships and its projection to the primary motor cortex. Here, we report that M2 neurons robustly encode both planned and current left/right turning actions across multiple turn locations in a multi-route navigational task. Comparisons within a common statistical framework reveal that M2 neurons differentiate contextual factors, including environmental position, route, action sequence, orientation, and choice availability. Despite significant modulation by environmental factors, action planning, and execution are the dominant output signals of M2 neurons. These results identify the M2 as a structure integrating spatial information toward the updating of planned movements.


Assuntos
Córtex Motor/fisiologia , Orientação Espacial/fisiologia , Navegação Espacial/fisiologia , Animais , Comportamento Animal/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley
19.
Appl Spectrosc ; 74(11): 1374-1383, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32508116

RESUMO

The cucurbit[n]uril (CB[n]) family of macrocycles are known to bind a variety of small molecules with high affinity. These motifs thus have promise in an ever-growing list of trace detection methods. Surface-enhanced Raman scattering (SERS) detection schemes employing CB[n] motifs exhibit increased sensitivity due to selective concentration of the analyte at the nanoparticle surface, coupled with the ability of CB[n] to facilitate the formation of well-defined electromagnetic hot spots. Herein, we report a CB[7] SERS assay for quantification of phenylalanine (Phe) and further demonstrate its utility for detecting peptides with an N-terminal Phe. The CB[7]-guest interaction improves the sensitivity 5-25-fold over direct detection of Phe using citrate-capped silver nanoparticle aggregates, enabling use of a portable Raman system. We further illustrate detection of insulin via binding of CB[7] to the N-terminal Phe residue on its B-chain, suggesting a general strategy for detecting Phe-terminated peptides of clinically relevant biomolecules.


Assuntos
Peptídeos/análise , Fenilalanina/análise , Análise Espectral Raman/métodos , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/metabolismo , Humanos , Compostos Macrocíclicos/química , Nanopartículas Metálicas , Fenilcetonúrias/diagnóstico , Fenilcetonúrias/metabolismo , Prata/química
20.
Nanoscale ; 12(31): 16489-16500, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32790810

RESUMO

With arms radiating from a central core, gold nanostars represent a unique and fascinating class of nanomaterials from which extraordinary plasmonic properties are derived. Despite their relevance to sensing applications, methods for fabricating homogeneous populations of nanostars on large-area planar surfaces in truly periodic arrays is lacking. Herein, the fabrication of nanostar arrays is demonstrated through the formation of hexagonal patterns of near-hemispherical gold seeds and their subsequent exposure to a liquid-state chemical environment that is conducive to colloidal nanostar formation. Three different colloidal nanostar protocols were targeted where HEPES, DMF, and ascorbic acid represent a key reagent in their respective redox chemistries. Only the DMF-driven synthesis proved readily adaptable to the substrate-based platform but nanostar-like structures emerged from the other protocols when synthetic controls such as reaction kinetics, the addition of Ag+ ions, and pH adjustments were applied. Because the nanostars were derived from near-hemispherical seeds, they acquired a unique geometry that resembles a conventional nanostar that has been truncated near its midsection. Simulations of plasmonic properties of this geometry reveal that such structures can exhibit maximum near-field intensities that are as much as seven-times greater than the standard nanostar geometry, a finding that is corroborated by surface-enhanced Raman scattering (SERS) measurements showing large enhancement factors. The study adds nanostars to the library of nanostructure geometries that are amenable to large-area periodic arrays and provides a potential pathway for the nanofabrication of SERS substrates with even greater enhancements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA