RESUMO
Primary open-angle glaucoma remains a global issue, lacking a definitive treatment. Increased intraocular pressure (IOP) is considered the primary risk factor of the disease and it can be caused by fibrotic-like changes in the trabecular meshwork (TM) such as increased tissue stiffness and outflow resistance. Previously, we demonstrated that the sigma-1 receptor (S1R) agonist fluvoxamine (FLU) has anti-fibrotic properties in the kidney and lung. In this study, the localization of the S1R in TM cells was determined, and the anti-fibrotic efficacy of FLU was examined in both mouse and human TM cells. Treatment with FLU reduced the F-actin rearrangement, inhibited cell proliferation and migration induced by the platelet-derived growth factor and decreased the levels of fibrotic proteins. The protective role of the S1R in fibrosis was confirmed by a more pronounced increase in alpha smooth muscle actin and F-actin bundle and clump formation in primary mouse S1R knockout TM cells. Furthermore, FLU demonstrated its protective effects by increasing the production of nitric oxide and facilitating the degradation of the extracellular matrix through the elevation of cathepsin K. These findings suggest that the S1R could be a novel target for the development of anti-fibrotic drugs and offer a new therapeutic approach for glaucoma.
Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Humanos , Camundongos , Animais , Malha Trabecular/metabolismo , Fluvoxamina/farmacologia , Glaucoma de Ângulo Aberto/metabolismo , Actinas/metabolismo , Glaucoma/metabolismo , Células Cultivadas , Fibrose , Pressão Intraocular , Receptor Sigma-1RESUMO
Tissue fibrosis is characterized by chronic fibroblast activation and consequently excessive accumulation of collagen-rich extracellular matrix. In vitro microplate-based assays are essential to investigate the underlying mechanism and the effect of antifibrotic drugs. In this study, in the absence of a gold-standard method, we optimized a simple, cost-effective, Sirius Red-based colorimetric measurement to determine the collagen production of fibroblasts grown on 96-well tissue culture plates. Based on our findings, the use of a serum-free medium is recommended to avoid aspecific signals, while ascorbate supplementation increases the collagen production of fibroblasts. The cell-associated collagens can be quantified by Sirius Red staining in acidic conditions followed by alkaline elution. Immature collagens can be precipitated from the culture medium by acidic Sirius Red solution, and after subsequent centrifugation and washing steps, their amount can be also measured. Increased attention has been paid to optimizing the assay procedure, including incubation time, temperature, and solution concentrations. The resulting assay shows high linearity and sensitivity and could serve as a useful tool in fibrosis-related basic research as well as in preclinical drug screening.
Assuntos
Colágeno , Corantes , Humanos , Corantes/farmacologia , Colágeno/farmacologia , Coloração e Rotulagem , Matriz Extracelular , Fibrose , FibroblastosRESUMO
Fibroblasts play a central role in diseases associated with excessive deposition of extracellular matrix (ECM), including idiopathic pulmonary fibrosis. Investigation of different properties of fibroblasts, such as migration, proliferation, and collagen-rich ECM production is unavoidable both in basic research and in the development of antifibrotic drugs. In the present study we developed a cost-effective, 96-well plate-based method to examine the migration of fibroblasts, as an alternative approach to the gold standard scratch assay, which has numerous limitations. This article presents a detailed description of our transient agarose spot (TAS) assay, with instructions for its routine application. Advantages of combined use of different functional assays for fibroblast activation in drug development are also discussed by examining the effect of nintedanib-an FDA approved drug against IPF-on lung fibroblasts.
Assuntos
Bioensaio/métodos , Movimento Celular/fisiologia , Sefarose/química , Células A549 , Animais , Células CACO-2 , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Matriz Extracelular/fisiologia , Fibroblastos/fisiologia , Células HT29 , Humanos , Fibrose Pulmonar Idiopática/fisiopatologia , Pulmão/fisiologia , Pulmão/fisiopatologia , RatosRESUMO
Lyophilization is a cost-effective method for biological specimen preservation but detailed tissue-specific reference protocols are still lacking. Moreover, data are limited on the long-term stability of proteins and nucleic acids in lyophilized samples.Here, we offer lyophilization protocols for various rat and mouse tissues (kidney, heart, liver, lung, aorta, and skin) coupled with technical hints for optimal sample preparation. We demonstrate that lyophilized samples stored at 4 °C for 20 months can yield protein and RNA of similar quantity and quality to -80 °C storage, while phosphorylated proteins are preserved as well. Freeze-dried and subsequently pulverized samples can provide more consistent, more reliable data especially when investigating focal injuries, such as fibrosis. We developed a protocol for the concentration of biological solutions and achieved 20-times concentration in human peritoneal dialysis effluent solution which enables the previously unattainable detection of proteins in these samples. We established a method for water removal as well as accurate water content measurement of fecal samples, which can be valuable for gut metabolome analysis.Taken together, lyophilization is a valuable tool for the preservation of biological samples with many advantages. We aim to draw attention to the wide range of possibilities offered by freeze drying in pre-clinical or basic research.
Assuntos
Biologia Molecular/métodos , Manejo de Espécimes , Animais , Liofilização , Humanos , Camundongos , RatosRESUMO
Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine playing crucial role in immunity. MIF exerts a unique tautomerase enzymatic activity that has relevance concerning its multiple functions and its small molecule inhibitors have been proven to block its pro-inflammatory effects. Here we demonstrate that some of the E-2-arylmethylene-1-tetralones and their heteroanalogues efficiently bind to MIF's active site and inhibit MIF tautomeric (enolase, ketolase activity) functions. A small set of the synthesised derivatives, namely compounds (4), (23), (24), (26) and (32), reduced inflammatory macrophage activation. Two of the selected compounds (24) and (26), however, markedly inhibited ROS and nitrite production, NF-κB activation, TNF-α, IL-6 and CCL-2 cytokine expression. Pre-treatment of mice with compound (24) exaggerated the hypothermic response to high dose of bacterial endotoxin. Our experiments suggest that tetralones and their derivatives inhibit MIF's tautomeric functions and regulate macrophage activation and thermal changes in severe forms of systemic inflammation.
Assuntos
Hipotermia Induzida , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Tetralonas/farmacologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Lipopolissacarídeos , Ativação de Macrófagos/efeitos dos fármacos , Fatores Inibidores da Migração de Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Estrutura Molecular , Células RAW 264.7 , Relação Estrutura-Atividade , Tetralonas/químicaRESUMO
Aurora kinases as regulators of cell division have become promising therapeutic targets recently. Here we report novel, low molecular weight benzothiophene-3-carboxamide derivatives designed and optimized for inhibiting Aurora kinases. The most effective compound 36 inhibits Aurora kinases in vitro in the nanomolar range and diminishes HCT 116 cell viability blocking cytokinesis and inducing apoptosis. According to western blot analysis, the lead molecule inhibits Aurora kinases equipotently to VX-680 (Tozasertib) and similarly synergizes with other targeted drugs.
Assuntos
Amidas/química , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase B/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Tiofenos/química , Células HCT116 , Humanos , Concentração Inibidora 50RESUMO
Cyclin-dependent kinases (CDKs) and Polo-like kinases (PLKs) play key role in the regulation of the cell cycle. The aim of our study was originally the further development of our recently discovered polo-like kinase 1 (PLK1) inhibitors. A series of new 2,4-disubstituted pyrimidine derivatives were synthesized around the original hit, but their PLK1 inhibitory activity was very poor. However the novel compounds showed nanomolar CDK9 inhibitory activity and very good antiproliferative effect on multiple myeloma cell lines (RPMI-8226).
Assuntos
Antineoplásicos/farmacologia , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Quinase 1 Polo-LikeRESUMO
Acute myeloid leukemia (AML) is the most common type of leukemia in adults. Sunitinib, a multikinase inhibitor, was the first Fms-like tyrosine kinase 3 (FLT3) inhibitor clinically used against AML. Off-target effects are a major concern for multikinase inhibitors. As targeted delivery may reduce such undesired side effects, our goal was to develop novel amino acid substituted derivatives of sunitinib which are potent candidates to be used conjugated with antibodies and peptides. In the current paper we present the synthesis, physicochemical and in vitro characterization of sixty two Fms-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) mutant kinase inhibitors, bearing amino acid moieties, fit to be conjugated with peptide-based delivery systems via their carboxyl group. We determined the solubility, pKa, CHI and LogP values of the compounds along with their inhibition potential against FLT3-ITD mutant kinase and on MV4-11 cell line. The ester derivatives of the compounds inhibit the growth of the MV4-11 leukemia cell line at submicromolar concentration.
Assuntos
Aminoácidos/farmacologia , Antineoplásicos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Sunitinibe/farmacologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Aminoácidos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Leucemia Mieloide Aguda/metabolismo , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Solubilidade , Relação Estrutura-Atividade , Sunitinibe/síntese química , Sunitinibe/química , Sequências de Repetição em Tandem/efeitos dos fármacos , Tirosina Quinase 3 Semelhante a fms/metabolismoRESUMO
Activation of various interacting stress kinases, particularly the c-Jun N-terminal kinases (JNK), and a concomitant phosphorylation of insulin receptor substrate 1 (IRS-1) at serine 307 play a central role both in insulin resistance and in ß-cell dysfunction. IRS-1 phosphorylation is stimulated by elevated free fatty acid levels through different pathways in obesity. A series of novel pyrido[2,3-d]pyrimidin-7-one derivatives were synthesized as potential antidiabetic agents, preventing IRS-1 phosphorylation at serine 307 in a cellular model of lipotoxicity and type 2 diabetes.
Assuntos
Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Fosforilação/efeitos dos fármacos , Pirimidinas/química , Pirimidinas/farmacologia , Serina/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Células HEK293 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismoRESUMO
OBJECTIVE: Pulmonary hypertension (PH) is a progressive disease arising from remodeling and narrowing of pulmonary arteries (PAs) resulting in high pulmonary blood pressure and ultimately right ventricular failure. Elevated production of reactive oxygen species by NADPH oxidase 4 (Nox4) is associated with increased pressure in PH. However, the cellular location of Nox4 and its contribution to aberrant vascular remodeling in PH remains poorly understood. Therefore, we sought to identify the vascular cells expressing Nox4 in PAs and determine the functional relevance of Nox4 in PH. APPROACH AND RESULTS: Elevated expression of Nox4 was detected in hypertensive PAs from 3 rat PH models and human PH using qualititative real-time reverse transcription polymerase chain reaction, Western blot, and immunofluorescence. In the vascular wall, Nox4 was detected in both endothelium and adventitia, and perivascular staining was prominently increased in hypertensive lung sections, colocalizing with cells expressing fibroblast and monocyte markers and matching the adventitial location of reactive oxygen species production. Small-molecule inhibitors of Nox4 reduced adventitial reactive oxygen species generation and vascular remodeling as well as ameliorating right ventricular hypertrophy and noninvasive indices of PA stiffness in monocrotaline-treated rats as determined by morphometric analysis and high-resolution digital ultrasound. Nox4 inhibitors improved PH in both prevention and reversal protocols and reduced the expression of fibroblast markers in isolated PAs. In fibroblasts, Nox4 overexpression stimulated migration and proliferation and was necessary for matrix gene expression. CONCLUSION: These findings indicate that Nox4 is prominently expressed in the adventitia and contributes to altered fibroblast behavior, hypertensive vascular remodeling, and development of PH.
Assuntos
Túnica Adventícia/enzimologia , Hipertensão Pulmonar/enzimologia , NADPH Oxidases/metabolismo , Artéria Pulmonar/enzimologia , Túnica Adventícia/efeitos dos fármacos , Túnica Adventícia/patologia , Animais , Anti-Hipertensivos/farmacologia , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Hipertensão Pulmonar Primária Familiar , Fibroblastos/enzimologia , Fibroblastos/patologia , Células HEK293 , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Hipertrofia Ventricular Direita/enzimologia , Hipertrofia Ventricular Direita/patologia , Hipertrofia Ventricular Direita/prevenção & controle , Hipóxia/complicações , Indóis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monocrotalina , NADPH Oxidase 4 , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Pirróis , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fatores de Tempo , Transfecção , Regulação para CimaRESUMO
The EGFR inhibitor erlotinib possesses high anti-tumor effect but despite the good clinical responses in most of the cases recrudescence occures. This can be attributed to a secondary, acquired mutation causing resistance to tyrosine kinase inhibitors. In our work we were looking for small-molecule inhibitors, which simultaneously affect on the proliferation of erlotinib-sensitive PC9 cells and PC9-ER erlotinib-resistant cells. A set of molecules were selected from Vichem Chemie Research Ltd.'s kinase inhibitor compound library (Nested Chemical Library™). According to the results of medium throughput screening (MTS) of this set of compounds, novel structures with pyrido[2,3-b]pyrazine core were designed. These compounds were proved to be effective inhibitors of resistant cells in phenotypic screening. Based on these results structure-activity relationships were set up. The pyrido[2,3-b]pyrazine core was synthesized by a condensation reaction, which resulting two asymmetric products. In the reaction two regioisomer intermediates formed, and one of the products is the intermediate of the effective compounds. This condensation reaction was optimized, the regioisomers were identified by NMR analysis and X-ray crystallography. As a result of optimization we found that lower reaction temperature and replacement of dimethylformamide solvent with trifluoroacetic acid provided the undesired isomer in less than 2 % ratio.
Assuntos
Antineoplásicos/farmacologia , Bioquímica/métodos , Linhagem Celular Tumoral/efeitos dos fármacos , Pirazinas/síntese química , Pirazinas/farmacologia , Piridinas/síntese química , Piridinas/farmacologia , Quinazolinas/farmacologia , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Cloridrato de Erlotinib , Humanos , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-AtividadeRESUMO
The Warburg effect occurs both in cancer cells and in inflammatory macrophages. The aim of our work was to demonstrate the role of PI3K-Akt-mTOR axis in the Warburg effect in HL-60 derived, rat peritoneal and human blood macrophages and to investigate the potential of selected inhibitors of this pathway to antagonize it. M1 polarization in HL-60-derived and human blood monocyte-derived macrophages was supported by the increased expression of NOS2 and inflammatory cytokines. All M1 polarized and inflammatory macrophages investigated expressed higher levels of HIF-1α and NOS2, which were reduced by selected kinase inhibitors, supporting the role of PI3K-Akt-mTOR axis. Using Seahorse XF plates, we found that in HL-60-derived and human blood-derived macrophages, glucose loading reduced oxygen consumption (OCR) and increased glycolysis (ECAR) in M1 polarization, which was antagonized by selected kinase inhibitors and by dichloroacetate. In rat peritoneal macrophages, the changes in oxidative and glycolytic metabolism were less marked and the NOS2 inhibitor decreased OCR and increased ECAR. Non-mitochondrial oxygen consumption and ROS production were likely due to NADPH oxidase, expressed in each macrophage type, independently of PI3K-Akt-mTOR axis. Our results suggest that inflammation changed the metabolism in each macrophage model, but a clear relationship between polarization and Warburg effect was confirmed only after glucose loading in HL-60 and human blood derived macrophages. The effect of kinase inhibitors on Warburg effect was variable in different cell types, whereas dichloroacetate caused a shift toward oxidative metabolism. Our findings suggest that these originally anti-cancer inhibitors may also be candidates for anti-inflammatory therapy.
Assuntos
Macrófagos , Fosfatidilinositol 3-Quinases , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Humanos , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Ratos , Fosfatidilinositol 3-Quinases/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Transdução de Sinais/efeitos dos fármacos , Células HL-60 , Masculino , Glicólise/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Células Cultivadas , Ratos Wistar , Óxido Nítrico Sintase Tipo II/metabolismo , Citocinas/metabolismo , Efeito Warburg em Oncologia/efeitos dos fármacos , Glucose/metabolismoRESUMO
A series of novel pyrido[2,3-b]pyrazines were synthesized as potential antitumor agents for erlotinib-resistant tumors. Known signal inhibitor compounds from our Nested Chemical Library were tested in phenotypic assays on erlotinib-sensitive PC9 and erlotinib-resistant PC9-ER cell lines to find a compound class to be active on erlotinib resistant cell lines. Based on the screening data, novel pyrido[2,3-b]pyrazines were designed and synthesized. The effect of the substituent position of the heteroaromatic moiety in position 7 and the importance of unsubstituted position 2 of the pyridopyrazine core were explored. Compound 7n had an IC50 value of 0.09 µM for the inhibition of PC9 and 0.15 µM for the inhibition of PC9-ER. We found that some lead compounds of these structures overcome erlotinib-resistance which might become promising drug candidates to fight against NSCLC with EGFR T790M mutation. The signaling network(s) involved in the mechanism(s) of action of these novel compounds in overcoming erlotinib resistance remain to be elucidated.
Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Pirazinas/síntese química , Pirazinas/farmacologia , Quinazolinas/farmacologia , Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Cloridrato de Erlotinib , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirazinas/química , Transdução de SinaisRESUMO
QSAR predictions have been proven very useful in a large number of studies for drug design, such as kinase inhibitor design as targets for cancer therapy, however the overall predictability often remains unsatisfactory. To improve predictability of ADMET features and kinase inhibitory data, we present a new method using Kohonen's Self-Organizing Feature Map (SOFM) to cluster molecules based on explanatory variables (X) and separate dissimilar ones. We calculated SOFM clusters for a large number of molecules with human ADMET and kinase inhibitory data, and we showed that chemically similar molecules were in the same SOFM cluster, and within such clusters the QSAR models had significantly better predictability. We used also target variables (Y, e.g. ADMET) jointly with X variables to create a novel type of clustering. With our method, cells of loosely coupled XY data could be identified and separated into different model building sets.
Assuntos
Inibidores de Proteínas Quinases/química , Relação Quantitativa Estrutura-Atividade , Algoritmos , Análise por Conglomerados , Simulação por Computador , Desenho de Fármacos , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologiaRESUMO
Fibroblast Growth Factor Receptor (FGFR) family is a sequentially highly related subgroup of membrane proteins consisting of four tyrosine kinase type enzyme: FGFR1, FGFR2, FGFR3 and FGFR4. These are kinases of great interest in a wide spectrum of physiological processes such as tissue repair via controlling cell proliferation. As initiatiors of cell proliferation, in some cases they have leading roles in several types of cancer, eg. breast cancer, pancreas cancer, gastric tumors and multiple myeloma via overexpression and/or mutation. This phenomenon makes them promising targets for drug development in order to develop signal transduction therapies based on small molecule FGFR inhibitors. We have developed two main groups of lead molecules: compounds with benzotiophene and oxindole cores utilizing numerous methods from in silico modelling via in vitro biochemichal assays and testing on relevant cell lines to cytotoxicity assays.
Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Indóis/farmacologia , Mutação/efeitos dos fármacos , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Oxindóis , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Tiofenos/farmacologia , Regulação para Cima/efeitos dos fármacosRESUMO
Tuberculosis is considered to be one of the major health problem not only in the less developed countries but in the economically developed countries as well. Roughly one third of the world's population are infected with Mycobacterium tuberculosis and a significant part of them are carriers of latent tuberculosis. From ten percent of these latent infections are developing the active TB disease and fifty percent of them die from the illness without appropriate treatment. The drug-resistant Mycobacterium tuberculosis (MDR-TB, XDR-TB) and TB-HIV co-infection attracted attention to the most serious infectious disease. Inhibition of alternative signaling pathways were an important part of the research strategies for cancer and inflammatory diseases in recent years. In case of Mycobacterium tuberculosis such pathways were also identified, for example, three serine-threonine kinases (PknA, PknB, PknG) which are necessary and essential for bacterial growth. In this paper we summarize our best anti-TB active compounds, their biological effects and structure-activity relationships using in silico modeling, biochemical measurements and tests on active bacteria.
Assuntos
Amida Sintases/antagonistas & inibidores , Antituberculosos/química , Antituberculosos/farmacologia , Simulação por Computador , Modelos Químicos , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Amidas/química , Amidas/farmacologia , Coinfecção/epidemiologia , Infecções por HIV/epidemiologia , Humanos , Concentração Inibidora 50 , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Relação Estrutura-Atividade , Tiofenos/química , Tiofenos/farmacologia , Tuberculose/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológicoRESUMO
The epidermal growth factor receptor (EGFR) family has been well-known for more than ten years as the target of non-small lung carcinoma (NSCLC) which is one of the leading cause of mortality among the cancer types. The receptor tyrosine kinase inhibitors (gefitinib, erlotinib, lapatinib) which have been applied in the therapy, are not able to inhibit the progression of this disease perfectly because of resistance. It has been demonstrated that the amplification of mesenchymal-epithelial transition factor (c-Met) or secondary mutation of EGFR kinase causes the resistance against EGFR inhibitors in 18-20 percent of the cases. Clinical candidates inhibiting both of EGFR and c-Met kinases are unknown in the literature. We have developed quinoline-based inhibitors in our research project, which inhibit both kinases in submicromolar range in enzymatic assays, moreover we have demonstrated by western blot analysis that these compounds inhibit the autophosphorylation in vivo. The binding of the effective compounds was examined by in silico and docking simulations.
Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Afatinib , Aminopiridinas/química , Aminopiridinas/farmacologia , Anilidas/química , Anilidas/farmacologia , Apoptose , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Linhagem Celular , Linhagem Celular Tumoral , Simulação por Computador , Crizotinibe , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Cloridrato de Erlotinib , Gefitinibe , Humanos , Imidazóis/química , Imidazóis/farmacologia , Lapatinib , Neoplasias Pulmonares/enzimologia , Estrutura Molecular , Proteínas Quinases/efeitos dos fármacos , Pirazinas/química , Pirazinas/farmacologia , Pirazóis/química , Pirazóis/farmacologia , Piridinas/química , Piridinas/farmacologia , Piridonas/química , Piridonas/farmacologia , Quinazolinas/química , Quinazolinas/farmacologia , Quinolinas/química , Quinolinas/farmacologiaRESUMO
The JAK/STAT (Janus Kinase/Signal Transducer and Activator of Transcription) pathway plays a pivotal role in macrophage polarization, but other signaling routes may also be involved. The aim of this study was to reveal the relationship of activation between rat peritoneal macrophages and their polarization, to detect the signaling routes involved, and find selective protein kinase inhibitors decreasing the production of inflammatory proteins in activated peritoneal macrophages. Rat macrophages were elicited with i.p. casein injection. CD80 and CD206 markers, NOS2 (Nitric oxide synthase 2), arginase, cytokines and phagocytosis were investigated by ELISA (Enzyme Linked Immunosorbent Assay), Western Blot, fluorescent microscopic and flow cytometry. Statistical methods were ANOVA (Analysis Of Variance) and Student t-tests. Resident and elicited cells expressed both CD80 and CD206 polarization markers. The involvement of MAPK (mitogen-activated protein kinases) and JAK/STAT pathways in the polarization was evidenced by a phosphorylation array, supported by Western blotting, by cytokine markers and by the inhibitory effects of kinase inhibitors. The expression of NOS2 and inflammatory cytokines was higher in elicited cells suggesting their M1 polarization. This effect was reduced by the inhibitors of MAPK and JAK/STAT pathways. Phagocytosis was also higher in elicited macrophages and decreased by these inhibitors. Nevertheless, they cannot change macrophage polarization unambiguously, as levels of CD80 and CD206 markers were not changed. For comparison, human blood macrophages were also studied. Similar effects and several differences were observed between the two types of macrophages, suggesting the role of the previous differentiation in defining their characteristics. Selected anti-cancer protein kinase inhibitors of p38, MAPK and JAK/STAT pathways are possible candidates for the therapy of inflammatory diseases.
Assuntos
Citocinas , Macrófagos Peritoneais , Óxido Nítrico Sintase Tipo II , Inibidores de Proteínas Quinases , Animais , Humanos , Ratos , Citocinas/metabolismo , Janus Quinases , Macrófagos Peritoneais/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fagocitose , Inibidores de Proteínas Quinases/farmacologiaRESUMO
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine with enzymatic activities. Anti-inflammatory effects of MIF enzyme inhibitors indicate a link between its cytokine- and catalytic activities. Herein the synthesis, docking, and bioactivity of substituted benzylidene-1-indanone and -1-tetralone derivatives as MIF-tautomerase inhibitors is reported. Many of these substituted benzylidene-1-tetralones and -indan-1-ones were potent MIF-tautomerase inhibitors (IC50 < 10 µmol/L), and the most potent inhibitors were the 1-indanone derivatives 16 and 20. Some of these compounds acted as selective enolase or ketonase inhibitors. In addition, compounds 16, 20, 26, 37 and 61 efficiently inhibited NO, TNFα and IL-6 production in lipopolysaccharide-induced macrophages. Compound 20, 37 and 61 also inhibited ROS generation, and compound 26 and 37 abolished activation of NF-κB. Compound 37 significantly augmented hypothermia induced by high dose of lipopolysaccharide in mice. The possible mechanisms of action were explored using molecular modelling and docking, as well as molecular dynamics simulations.
Assuntos
Fatores Inibidores da Migração de Macrófagos , Choque Séptico , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Choque Séptico/induzido quimicamente , Choque Séptico/tratamento farmacológico , Simulação de Dinâmica MolecularRESUMO
JAK/STAT pathway plays a well-known role in macrophage polarization, but other signaling routes may also be involved. The aim of this study was to identify new signaling pathways and repolarize macrophages by selected protein kinase inhibitors. HL-60 derived macrophages were chosen as model cells and human blood macrophages were used for comparison. M1 and M2 polarization of HL60 derived and human blood macrophages was promoted by LPS + IFNγ (LIF) and IL-4 treatments, respectively. In HL-60 derived macrophages, M1 polarization was mediated by Erk1/2 and p38 phosphorylation, while HSP27 phosphorylation was involved in M2 polarization. The inhibition of both MAPK and JAK/STAT pathways reduced the expression of NOS2, IP-10 and TNFα, IL-8 production was decreased by the inhibition of AMPK and PKD, the upstream kinase of HSP27. HSP27 phosphorylation was inhibited by NB 142, a PKD inhibitor. The expression of CD80 (M1 marker) was reduced by MAPK and JAK/STAT inhibitors, without increasing CD206 (M2 marker). On the other hand, CD206 was reduced by PKD and AMPK inhibitors, without increasing CD80 marker. Phagocytic capacity of HL-60 derived macrophages was higher in M1 macrophages and decreased by trametinib and a p38 inhibitor, while in human blood macrophages, where AT 9283, a JAK/STAT inhibitor also caused a significant decrease in M1 polarized macrophages, no difference was observed between M1 and M2 macrophages. Our results suggest that the repolarization of macrophages cannot be achieved by inhibiting their signaling pathways; nevertheless, the expression of certain polarization markers was decreased, therefore a "depolarization" could be observed both in M1 and M2 polarized cells. Selected protein kinase inhibitors of M1 polarization, decreasing NOS 2 and inflammatory cytokines may be potential candidates for therapeutical trials against inflammatory diseases.