RESUMO
Organophosphate flame retardants (OPFRs) are high-production volume chemicals widely present in environmental compartments. The presence of water-soluble OPFRs (tri-n-butyl phosphate (TnBP), tris(2-butoxyethyl) phosphate (TBEP), tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCPP), and triethyl phosphate (TEP)) in water compartments evidences the struggle of conventional wastewater treatment plants (WWTPs) to effectively eliminate these toxic compounds. This study reports for the first time the use of white-rot fungi as a promising alternative for the removal of these OPFRs. To accomplish this, a simple and cost-efficient quantification method for rapid monitoring of these contaminants' concentrations by GC-MS while accounting for matrix effects was developed. The method proved to be valid and reliable for all the tested parameters. Sample stability was examined under various storage conditions, showing the original samples to be stable after 60 days of freezing, while post-extraction storage techniques were also effective. Finally, a screening of fungal degraders while assessing the influence of the glucose regime on OPFR removal was performed. Longer chain organophosphate flame retardants, TBP and TBEP, could be easily and completely removed by the fungus Ganoderma lucidum after only 4 days. This fungus also stood out as the sole organism capable of partially degrading TCEP (35% removal). The other chlorinated compound, TCPP, was more easily degraded and 70% of its main isomer was removed by T. versicolor. However, chlorinated compounds were only partially degraded under nutrient-limiting conditions. TEP was either not degraded or poorly degraded, and it is likely that it is a transformation product from another OPFR's degradation. These results suggest that degradation of chlorinated compounds is dependent on the concentration of the main carbon source and that more polar OPFRs are less susceptible to degradation, given that they are less accessible to radical removal by fungi. Overall, the findings of the present study pave the way for further planned research and a potential application for the degradation of these contaminants in real wastewaters.
Assuntos
Retardadores de Chama , Compostos Organofosforados , Fosfinas , Compostos Organofosforados/análise , Retardadores de Chama/análise , Cromatografia Gasosa-Espectrometria de Massas , Organofosfatos/análise , Águas Residuárias , Água , FosfatosRESUMO
The formation of highly organized metal-DNA structures has significant implications in bioinorganic chemistry, molecular biology and material science due to their unique properties and potential applications. In this study, we report on the conversion of single-stranded polydeoxycytidine (dC15 ) into a Pd-DNA supramolecular structure using the [Pd(Aqa)] complex (Aqa=8-amino-4-hydroxyquinoline-2-carboxylic acid) through a self-assembly process. The resulting Pd-DNA assembly closely resembles a natural double helix, with continuous [Pd(Aqa)(C)] (C=cytosine) units serving as palladium-mediated base pairs, forming interbase hydrogen bonds and intrastrand stacking interactions. Notably, the design of the [Pd(Aqa)] complex favours the interaction with cytosine, distinguishing it from our previously reported [Pd(Cheld)] complex (Cheld=chelidamic acid). This finding opens possibilities for creating heteroleptic Pd-DNA hybrids where different complexes specifically bind to nucleobases. We confirmed the Pd-DNA supramolecular structural assembly and selective binding of the complexes using NMR spectroscopy, circular dichroism, mass spectrometry, isothermal titration calorimetry, and DFT calculations.
Assuntos
DNA , Paládio , Pareamento de Bases , Paládio/química , DNA/química , Citosina/químicaRESUMO
The mycobacterial histidine-rich GroEL1 protein differs significantly compared to the well-known methionine/glycine-rich GroEL chaperonin. It was predicted that mycobacterial GroEL1 can play a significant role in the metal homeostasis of Mycobacteria but not, as its analogue, in protein folding. In this paper, we present the properties of the GroEL1 His-rich C-terminus as a ligand for Cu(II) ions. We studied the stoichiometry, stability, and spectroscopic features of copper complexes of the eight model peptides: L1âAc-DHDHHHGHAH, L2âAc-DKPAKAEDHDHHHGHAH, and six mutants of L2 in the pH range of 2-11. We revealed the impact of adjacent residues to the His-rich fragment on the complex stability: the presence of Lys and Asp residues significantly increases the stability of the system. The impact of His mutations was also examined: surprisingly, the exchange of each single His to the Gln residue did not disrupt the ability of the ligand to provide three binding sites for Cu(II) ions. Despite the most possible preference of the Cu(II) ion for the His9-His13 residues (Ac-DKPAKAEDHDHHH-) of the model peptide, especially the His11 residue, the study shows that there is not only one possible binding mode for Cu(II). The significance of this phenomenon is very important for the GroEL1 functionâif the single mutation occurs naturally, the protein would be still able to interact with the metal ion.
Assuntos
Cobre , Histidina , Histidina/química , Cobre/química , Mutação Puntual , Ligantes , Peptídeos/química , ÍonsRESUMO
The design of artificial helicoidal molecules derived from metal ions with biological properties is one of the objectives within metallosupramolecular chemistry. Herein, we report three zinc helicates derived from a family of bisthiosemicarbazone ligands with different terminal groups, Zn2(LMe)2â2H2O 1, Zn2(LPh)2â2H2O 2 and Zn2(LPhNO2)23, obtained by an electrochemical methodology. These helicates have been fully characterized by different techniques, including X-ray diffraction. Biological studies of the zinc(II) helicates such as toxicity assays with erythrocytes and interaction studies with proteins and oligonucleotides were performed, demonstrating in all cases low toxicity and an absence of covalent interaction with the proteins and oligonucleotides. The in vitro cytotoxicity of the helicates was tested against MCF-7 (human breast carcinoma), A2780 (human ovarian carcinoma cells), NCI-H460 (human lung carcinoma cells) and MRC-5 (normal human lung fibroblasts), comparing the IC50 values with cisplatin. We will try to demonstrate if the terminal substituent of the ligand precursor exerts any effect in toxicity or in the antitumor activity of the zinc helicates.
Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Linhagem Celular Tumoral , Metais , Zinco/farmacologia , Zinco/química , Oligonucleotídeos , LigantesRESUMO
To investigate novel patterns and processes of protein evolution, we have focused in the metallothioneins (MTs), a singular group of metal-binding, cysteine-rich proteins that, due to their high degree of sequence diversity, still represents a "black hole" in Evolutionary Biology. We have identified and analyzed more than 160 new MTs in nonvertebrate chordates (especially in 37 species of ascidians, 4 thaliaceans, and 3 appendicularians) showing that prototypic tunicate MTs are mono-modular proteins with a pervasive preference for cadmium ions, whereas vertebrate and cephalochordate MTs are bimodular proteins with diverse metal preferences. These structural and functional differences imply a complex evolutionary history of chordate MTs-including de novo emergence of genes and domains, processes of convergent evolution, events of gene gains and losses, and recurrent amplifications of functional domains-that would stand for an unprecedented case in the field of protein evolution.
Assuntos
Cordados , Urocordados , Animais , Cordados/genética , Metalotioneína/genética , Urocordados/genética , Urocordados/metabolismoRESUMO
Metallothioneins (MTs) are proteins devoted to the control of metal homeostasis and detoxification, and therefore, MTs have been crucial for the adaptation of the living beings to variable situations of metal bioavailability. The evolution of MTs is, however, not yet fully understood, and to provide new insights into it, we have investigated the MTs in the diverse classes of Mollusks. We have shown that most molluskan MTs are bimodular proteins that combine six domains-α, ß1, ß2, ß3, γ, and δ-in a lineage-specific manner. We have functionally characterized the Neritimorpha ß3ß1 and the Patellogastropoda γß1 MTs, demonstrating the metal-binding capacity of the new γ domain. Our results have revealed a modular organization of mollusk MT, whose evolution has been impacted by duplication, loss, and de novo emergence of domains. MTs represent a paradigmatic example of modular evolution probably driven by the structural and functional requirements of metal binding.
Assuntos
Evolução Molecular , Gastrópodes/genética , Metalotioneína/genética , Animais , Filogenia , Domínios ProteicosRESUMO
The synthesis, full characterization, photochemical properties, and cytotoxic activity toward cisplatin-resistant cancer cell lines of new semisquaraine-type Pt(II) complexes are presented. The synthesis of eight semisquaraine-type ligands has been carried out by means of an innovative, straightforward methodology. A thorough structural NMR and X-ray diffraction analysis of the new ligands and complexes has been done. Density functional theory calculations have allowed to assign the trans configuration of the platinum center. Through the structural modification of the ligands, it has been possible to synthesize some complexes, which have turned out to be photoactive at wavelengths that allow their activation in cell cultures and, importantly, two of them show remarkable solubility in biological media. Photodegradation processes have been studied in depth, including the structural identification of photoproducts, thus justifying the changes observed after irradiation. From biological assessment, complexes C7 and C8 have been demonstrated to behave as promising photoactivatable compounds in the assayed cancer cell lines. Upon photoactivation, both complexes are capable of inducing a higher cytotoxic effect on the tested cells compared with nonphotoactivated compounds. Among the observed results, it is remarkable to note that C7 showed a PI > 50 in HeLa cells, and C8 showed a PI > 40 in A2780 cells, being also effective over cisplatin-resistant A2780cis cells (PI = 7 and PI = 4, respectively). The mechanism of action of these complexes has been studied, revealing that these photoactivated platinum complexes would actually present a combined mode of action, a therapeutically potential advantage.
Assuntos
Antineoplásicos , Neoplasias Ovarianas , Antineoplásicos/química , Linhagem Celular Tumoral , Cisplatino/farmacologia , Feminino , Células HeLa , Humanos , Ligantes , Platina/química , Platina/farmacologiaRESUMO
Protein domains are independent structural and functional modules that can rearrange to create new proteins. While the evolution of multidomain proteins through the shuffling of different preexisting domains has been well documented, the evolution of domain repeat proteins and the origin of new domains are less understood. Metallothioneins (MTs) provide a good case study considering that they consist of metal-binding domain repeats, some of them with a likely de novo origin. In mollusks, for instance, most MTs are bidomain proteins that arose by lineage-specific rearrangements between six putative domains: α, ß1, ß2, ß3, γ and δ. Some domains have been characterized in bivalves and gastropods, but nothing is known about the MTs and their domains of other Mollusca classes. To fill this gap, we investigated the metal-binding features of NpoMT1 of Nautilus pompilius (Cephalopoda class) and FcaMT1 of Falcidens caudatus (Caudofoveata class). Interestingly, whereas NpoMT1 consists of α and ß1 domains and has a prototypical Cd2+ preference, FcaMT1 has a singular preference for Zn2+ ions and a distinct domain composition, including a new Caudofoveata-specific δ domain. Overall, our results suggest that the modular architecture of MTs has contributed to MT evolution during mollusk diversification, and exemplify how modularity increases MT evolvability.
Assuntos
Gastrópodes , Metais , Animais , Metais/metabolismo , Metalotioneína/metabolismo , Domínios Proteicos , Gastrópodes/genética , Gastrópodes/metabolismo , Cádmio/metabolismoRESUMO
The synthesis and characterization of four platinum(II) complexes using azobenzenes conveniently functionalized as ligands has been carried out. The characteristic photochemical behavior of the complexes due to the presence of azobenzene-type ligands and the role of the ligands in the activation of the complexes has been studied. Their promising cytotoxicity observed in HeLa cells prompted us to study the mechanism of action of these complexes as cytostatic agents. The interaction of the compounds with DNA, studied by circular dichroism, revealed a differential activity of the Pt(II) complexes upon irradiation. The intercalation abilities of the complexes as well as their reactivity with common proteins present in the blood stream allows to confirm some of the compounds obtained as good anticancer candidates.
Assuntos
Compostos Azo/farmacologia , Compostos de Platina/farmacologia , Antineoplásicos , Compostos Azo/química , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Espectrometria de Massas , Compostos de Platina/síntese química , Compostos de Platina/químicaRESUMO
Three novel dinuclear Cu(II) complexes based on a N,N,O-chelating salphen-like ligand scaffold and bearing varying aromatic substituents (-H, -Cl, and -Br) have been synthesized and characterized. The experimental and computational data obtained suggest that all three complexes exist in the dimeric form in the solid state and adopt the same conformation. The mass spectrometry and electron paramagnetic resonance results indicate that the dimeric structure coexists with the monomeric form in solution upon solvent (dimethyl sulfoxide and water) coordination. The three synthesized Cu(II) complexes exhibit high potentiality as ROS generators, with the Cu(II)/Cu(I) redox potential inside the biological redox window, and thus being able to biologically undergo Cu(II)/Cu(I) redox cycling. The formation of ROS is one of the most promising reported cell death mechanisms for metal complexes to offer an inherent selectivity to cancer cells. In vitro cytotoxic studies in two different cancer cell lines (HeLa and MCF7) and in a normal fibroblast cell line show promising selective cytotoxicity for cancer cells (IC50 about 25 µM in HeLa cells, which is in the range of cisplatin and improved with respect to carboplatin), hence placing this N,N,O-chelating salphen-like metallic core as a promising scaffold to be explored in the design of future tailor-made Cu(II) cytotoxic compounds.
Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Bases de Schiff/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quelantes/síntese química , Quelantes/farmacologia , Quelantes/toxicidade , Complexos de Coordenação/síntese química , Complexos de Coordenação/toxicidade , Cobre/química , DNA/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Teoria da Densidade Funcional , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Camundongos , Modelos Químicos , Células NIH 3T3 , Espécies Reativas de Oxigênio/metabolismo , Bases de Schiff/síntese química , Bases de Schiff/toxicidadeRESUMO
Metallothioneins' (MTs) biological function has been a matter of debate since their discovery. The importance to categorize these cysteine-rich proteins with high coordinating capacity into a specific group led to numerous classification proposals. We proposed a classification based on their metal-binding abilities, gradually sorting them from those with high selectivity towards Zn/Cd to those that are Cu-specific. However, the study of the NpeMT1 and NpeMT2isoforms of Nerita peloronta, has put a new perspective on this classification. N. peloronta has been chosen as a representative mollusk to elucidate the metal-binding abilities of Neritimorpha MTs, an order without any MTs characterized recently. Both isoforms have been recombinantly synthesized in cultures supplemented with ZnII, CdII, or CuII, and the purified metal-MT complexes have been thoroughly characterized by spectroscopic and spectrometric methods, leading to results that confirmed that Neritimorpha share Cd-selective MTs with Caenogastropoda and Heterobranchia, solving a so far unresolved question. NpeMTs show high coordinating preferences towards divalent metal ions, although one of them (NpeMT1) shares features with the so-called genuine Zn-thioneins, while the other (NpeMT2) exhibits a higher preference for Cd. The dissimilarities between the two isoforms let a window open to a new proposal of chemical MT classification.
Assuntos
Cádmio/metabolismo , Gastrópodes/metabolismo , Metalotioneína/química , Metalotioneína/classificação , Zinco/metabolismo , Animais , Dicroísmo Circular , Cobre/metabolismo , Escherichia coli/genética , Gastrópodes/química , Metalotioneína/genética , Metalotioneína/metabolismo , Domínios Proteicos , Isoformas de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrofotometria UltravioletaRESUMO
Atomic-level control over the position and growth of a single and continuous metal chain is an ambitious goal that often requires complex and costly processes. Herein, we demonstrate that 1Pd-DNA molecules, comprising a continuous single chain of PdII ions, can be prepared by a simple self-assembly reaction between the complex [Pd(Cheld)(CH3 CN)] (1Pd_CH3 CN) (Cheld=chelidamic acid) and single-stranded DNA homopolymers (ss-DNA) containing adenine (A) or 7-deazaadenine (X) bases. The single PdII -base pairs [1Pd(N1-A)] and [1Pd(N1-X)] were synthesized and characterized in solution and solid-state (X-ray diffraction) revealing an arrangement similar to that of natural Watson-Crick base pairs. Subsequently, 1Pd-DNA hybrids were prepared, characterized, and their structures studied by small-angle X-ray scattering (SAXS) and ab-initio calculations. The results indicate that the 1Pd-DNA structures resemble that of double-stranded DNA, with one strand being replaced by a supramolecular stack of continuous PdII complexes.
RESUMO
Metallothioneins (MTs) are a diverse group of proteins responsible for the control of metal homeostasis and detoxification. To investigate the impact that environmental conditions might have had on the metal-binding abilities of these proteins, we have characterized the MTs from the apple snail Pomacea bridgesii, a gastropod species belonging to the class of Caenogastropoda with an amphibious lifestyle facing diverse situations of metal bioavailability. P. bridgesii has two structurally divergent MTs, named PbrMT1 and PbrMT2, that are longer than other gastropod MTs due to the presence of extra sequence motifs and metal-binding domains. We have characterized the Zn(II), Cd(II), and Cu(I) binding abilities of these two MTs after their heterologous expression in E. coli. Our results have revealed that despite their structural differences, both MTs share an unspecific metal-binding character, and a great ability to cope with elevated amounts of different metal ions. Our analyses have also revealed slight divergences in their metal-binding features: PbrMT1 shows a more pronounced Zn(II)-thionein character than PbrMT2, while the latter has a stronger Cu(I)-thionein character. The characterization of these two unconventional PbrMTs supports the loss of the metal-binding specificity during the evolution of the MTs of the Ampullariid family, and further suggests an evolutionary link of this loss with the adaptation of these gastropod lineages to metal-poor freshwater habitats.
Assuntos
Cádmio/química , Cobre/química , Metalotioneína , Caramujos , Zinco/química , Animais , Metalotioneína/química , Metalotioneína/genética , Caramujos/química , Caramujos/genéticaRESUMO
Metallothioneins (MTs) are cysteine-rich polypeptides that are naturally found coordinated to monovalent and/or divalent transition metal ions. Three metallothionein isoforms from the Roman snail Helix pomatia are known. They differ in their physiological metal load and in their specificity for transition metal ions such as Cd2+ (HpCdMT isoform) and Cu+ (HpCuMT isoform) or in the absence of a defined metal specificity (HpCd/CuMT isoform). We have determined the solution structure of the Cd-specific isoform (HpCdMT) by nuclear magnetic resonance spectroscopy using recombinant isotopically labeled protein loaded with Zn2+ or Cd2+. Both structures display two-domain architectures, where each domain comprises a characteristic three-metal cluster similar to that observed in the ß-domains of vertebrate MTs. The polypeptide backbone is well-structured over the entire sequence, including the interdomain linker. Interestingly, the two domains display mutual contacts, as observed before for the metallothionein of the snail Littorina littorea, to which both N- and C-terminal domains are highly similar. Increasing the length of the linker motionally decouples both domains and removes mutual contacts between them without having a strong effect on the stability of the individual domains. The structures of Cd6- and Zn6-HpCdMT are nearly identical. However, 15N relaxation, in particular 15N R2 rates, is accelerated for many residues of Zn6-HpCdMT but not for Cd6-HpCdMT, revealing the presence of conformational exchange effects. We suggest that this snail MT isoform is evolutionarily optimized for binding Cd rather than Zn.
Assuntos
Cádmio/metabolismo , Caracois Helix/metabolismo , Metalotioneína/metabolismo , Zinco/metabolismo , Animais , Sítios de Ligação , Caracois Helix/química , Metalotioneína/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação ProteicaRESUMO
A fast, simple, selective, and sensitive method for the analysis of 11 haloacetic acids (HAAs) in chlorine-treated water has been developed. The method is based on liquid chromatography-electrospray ionization-triple quadrupole tandem mass spectrometry (LC/ESI-QqQ-MS/MS) with direct injection of the aqueous sample. The main novelty of this method over the previously published procedures based on different techniques of mass spectrometry with direct injection is the combination of the simultaneous analysis of three types of HAAs (chlorinated, brominated, and iodinated) with its simplicity and low LODs (0.01-0.6 µg/L), avoiding the use of ion-pairing reagents for LC as well as the complexity and high cost of other techniques such as ion chromatography and capillary electrophoresis coupled to tandem mass spectrometry (IC-MS/MS and CE-MS/MS). The developed method was compared with another procedure carried out in our laboratory based on direct injection-liquid chromatography-electrospray ionization-high-resolution mass spectrometry with an Orbitrap analyzer (LC/ESI-Orbitrap-HRMS). The application of this technique to HAA analysis had not been previously described. LODs achieved by LC-HRMS (0.01-2 µg/L) were higher than the ones obtained by LC-MS/MS. Therefore, the LC/ESI-QqQ-MS/MS method was applied to the analysis of real samples. Quality parameters were calculated with satisfactory results and real samples related to three drinking water treatment plants (DWTPs), tap water, and the drinking water distribution system of Barcelona area (Catalonia, NE Spain) were analyzed. Furthermore, the evolution of HAA concentration along time in a DWTP-treated water sample was studied.
RESUMO
Two new squaramide-based platinum(II) complexes C1 and C2 have been synthesized and fully characterized. Their photoresponse has been assessed and is discussed. A remarkable enhancement in the DNA binding activity has been observed for both complexes, up on irradiation. For C2, the release of Pt(II) provoked by its irradiation has been studied. The response of C2 has been found to be regulated by the presence of oxygen. In vitro cytotoxicity tests show an enhancement in the activity of complex C2 after selective irradiation under hypoxic conditions. Resulting Pt(II) species have been isolated and characterized by various analytical methods establishing this type of squaramido-based complexes as a proof of concept for new Pt(II) photocages.
RESUMO
Although consumption of Tetraodontidae species is prohibited in the EU, intoxications are still reported. The evaluation of tetrodotoxins (TTXs) by mass spectrometry (LC-MS/MS and LC-HRMS) and a screening immunoassay (mELISA) in tetraodontid fishes caught along the Western Mediterranean Sea revealed high concentrations of TTXs in Lagocephalus sceleratus while no TTXs were identified in L. lagocephalus and Sphoeroides pachygaster individuals. The high TTXs content found in the L. sceleratus analysed herein demonstrate the occurrence of highly toxic puffer fish in the Western Mediterranean Sea. Being L. sceleratus a recent invasive species in the Mediterranean, surveillance, risk assessment and risk management measures are necessary. The strategy used within this research work could be a valuable tool for future food safety monitoring.
Assuntos
Tetraodontiformes/metabolismo , Tetrodotoxina/análise , Animais , Cromatografia Líquida , Ensaio de Imunoadsorção Enzimática , Feminino , Espécies Introduzidas , Masculino , Espectrometria de Massas , Mar Mediterrâneo , Espanha , Especificidade da Espécie , Espectrometria de Massas em Tandem , Distribuição TecidualRESUMO
After the resolution of the 3D structure of the Cd9-aggregate of the Littorina littorea metallothionein (MT), we report here a detailed analysis of the metal binding capabilities of the wild type MT, LlwtMT, and of two truncated mutants lacking either the N-terminal domain, Lltr2MT, or both the N-terminal domain, plus four extra flanking residues (SSVF), Lltr1MT. The recombinant synthesis and in vitro studies of these three proteins revealed that LlwtMT forms unique M9-LlwtMT complexes with Zn(II) and Cd(II), while yielding a complex mixture of heteronuclear Zn,Cu-LlwtMT species with Cu(I). As expected, the truncated mutants gave rise to unique M6-LltrMT complexes and Zn,Cu-LltrMT mixtures of lower stoichiometry with respect to LlwtMT, with the SSVF fragment having an influence on their metal binding performance. Our results also revealed a major specificity, and therefore a better metal-coordinating performance of the three proteins for Cd(II) than for Zn(II), although the analysis of the Zn(II)/Cd(II) displacement reaction clearly demonstrates a lack of any type of cooperativity in Cd(II) binding. Contrarily, the analysis of their Cu(I) binding abilities revealed that every LlMT domain is prone to build Cu4-aggregates, the whole MT working by modules analogously to, as previously described, certain fungal MTs, like those of C. neoformans and T. mesenterica. It is concluded that the Littorina littorea MT is a Cd-specific protein that (beyond its extended binding capacity through an additional Cd-binding domain) confers to Littorina littorea a particular adaptive advantage in its changeable marine habitat.
Assuntos
Cádmio/metabolismo , Metalotioneína/metabolismo , Animais , Sítios de Ligação , Gastrópodes/genética , Gastrópodes/metabolismo , Metalotioneína/química , Metalotioneína/genética , Mutação , Ligação Proteica , Especificidade por Substrato , Zinco/metabolismoRESUMO
The wild-type metallothionein (MT) of the freshwater snail Biomphalaria glabrata and a natural allelic mutant of it in which a lysine residue was replaced by an asparagine residue, were recombinantly expressed and analyzed for their metal-binding features with respect to Cd2+, Zn2+ and Cuâº, applying spectroscopic and mass-spectrometric methods. In addition, the upregulation of the Biomphalaria glabrataMT gene was assessed by quantitative real-time detection PCR. The two recombinant proteins revealed to be very similar in most of their metal binding features. They lacked a clear metal-binding preference for any of the three metal ions assayed-which, to this degree, is clearly unprecedented in the world of Gastropoda MTs. There were, however, slight differences in copper-binding abilities between the two allelic variants. Overall, the missing metal specificity of the two recombinant MTs goes hand in hand with lacking upregulation of the respective MT gene. This suggests that in vivo, the Biomphalaria glabrata MT may be more important for metal replacement reactions through a constitutively abundant form, rather than for metal sequestration by high binding specificity. There are indications that the MT of Biomphalaria glabrata may share its unspecific features with MTs from other freshwater snails of the Hygrophila family.
Assuntos
Biomphalaria/metabolismo , Metalotioneína/metabolismo , Metais Pesados/metabolismo , Animais , Sítios de Ligação , Biomphalaria/genética , Metalotioneína/química , Metalotioneína/genética , Mutação , Ligação Proteica , Especificidade por Substrato , Regulação para CimaRESUMO
In this study, we present an NMR structure of the metallothionein (MT) from the snail Littorina littorea (LlMT) in complex with Cd2+ . LlMT is capable of binding 9 Zn2+ or 9 Cd2+ ions. Sequence alignments with other snail MTs revealed that the protein is likely composed of three domains. The study revealed that the protein is divided into three individual domains, each of which folds into a single well-defined three-metal cluster. The central α2 and C-terminal ßâ domains are positioned with a unique relative orientation. Two variants with longer and shorter linkers were investigated, which revealed that specific interdomain contacts only occurred with the wild-type linker. Moreover, a domain-swap mutant in which the highly similar α1 and α2 domains were exchanged was structurally almost identical. It is suggested that the expression of a three-domain MT confers an evolutionary advantage on Littorina littorea in terms of coping with Cd2+ stress and adverse environmental conditions.