Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
2.
Mol Cell Proteomics ; 19(6): 960-970, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32265293

RESUMO

Glioblastoma (GBM) is one of the most aggressive human cancers with a median survival of less than two years. A distinguishing pathological feature of GBM is a high degree of inter- and intratumoral heterogeneity. Intertumoral heterogeneity of GBM has been extensively investigated on genomic, methylomic, transcriptomic, proteomic and metabolomics levels, however only a few studies describe intratumoral heterogeneity because of the lack of methods allowing to analyze GBM samples with high spatial resolution. Here, we applied TOF-SIMS (Time-of-flight secondary ion mass spectrometry) for the analysis of single cells and clinical samples such as paraffin and frozen tumor sections obtained from 57 patients. We developed a technique that allows us to simultaneously detect the distribution of proteins and metabolites in glioma tissue with 800 nm spatial resolution. Our results demonstrate that according to TOF-SIMS data glioma samples can be subdivided into clinically relevant groups and distinguished from the normal brain tissue. In addition, TOF-SIMS was able to elucidate differences between morphologically distinct regions of GBM within the same tumor. By staining GBM sections with gold-conjugated antibodies against Caveolin-1 we could visualize border between zones of necrotic and cellular tumor and subdivide glioma samples into groups characterized by different survival of the patients. Finally, we demonstrated that GBM contains cells that are characterized by high levels of Caveolin-1 protein and cholesterol. This population may partly represent a glioma stem cells. Collectively, our results show that the technique described here allows to analyze glioma tissues with a spatial resolution beyond reach of most of other omics approaches and the obtained data may be used to predict clinical behavior of the tumor.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Análise de Célula Única/métodos , Espectrometria de Massa de Íon Secundário/métodos , Animais , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Caveolina 1/metabolismo , Colesterol/metabolismo , Feminino , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Nus , Recidiva Local de Neoplasia , Prognóstico , Análise Espacial , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293545

RESUMO

TRAIL (TNF-related apoptosis-inducing ligand) and its derivatives are potentials for anticancer therapy due to the selective induction of apoptosis in tumor cells upon binding to death receptors DR4 or DR5. Previously, we generated a DR5-selective TRAIL mutant variant DR5-B overcoming receptor-dependent resistance of tumor cells to TRAIL. In the current study, we improved the antitumor activity of DR5-B by fusion with a tumor-homing iRGD peptide, which is known to enhance the drug penetration into tumor tissues. The obtained bispecific fusion protein DR5-B-iRGD exhibited dual affinity for DR5 and integrin αvß3 receptors. DR5-B-iRGD penetrated into U-87 tumor spheroids faster than DR5-B and demonstrated an enhanced antitumor effect in human glioblastoma cell lines T98G and U-87, as well as in primary patient-derived glioblastoma neurospheres in vitro. Additionally, DR5-B-iRGD was highly effective in a xenograft mouse model of the U-87 human glioblastoma cell line in vivo. We suggest that DR5-B-iRGD may become a promising candidate for targeted therapy for glioblastoma.


Assuntos
Glioblastoma , Ligante Indutor de Apoptose Relacionado a TNF , Humanos , Camundongos , Animais , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Integrina alfaVbeta3/genética , Linhagem Celular Tumoral , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Apoptose
4.
Int J Mol Sci ; 21(23)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271925

RESUMO

In 2020 the world faced the pandemic of COVID-19 severe acute respiratory syndrome caused by a new type of coronavirus named SARS-CoV-2. To stop the spread of the disease, it is crucial to create molecular tools allowing the investigation, diagnoses and treatment of COVID-19. One of such tools are monoclonal antibodies (mAbs). In this study we describe the development of hybridoma cells that can produce mouse mAbs against receptor binding domain of SARS-CoV-2 spike (S) protein. These mAbs are able to specifically detect native and denatured S proteins in all tested applications, including immunoblotting, enzyme-linked immunosorbent assay, immunofluorescence staining of cells and immunohistochemical staining of paraffin embedded patients' tissue samples. In addition, we showed that the obtained mAbs can efficiently block SARS-CoV-2 infection in in vitro experiments. Finally, we determined the amino acid sequence of light and heavy chains of the mAbs. This information will allow the use of corresponding peptides to establish genetically engineered therapeutic antibodies. To date multiple mAbs against SARS-CoV-2 proteins have been established, however, bigger sets of various antibodies will allow the detection and neutralization of SARS-CoV-2, even if the virus acquires novel mutations.


Assuntos
Anticorpos Monoclonais/metabolismo , Antígenos Virais/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Reações Antígeno-Anticorpo , Antígenos Virais/imunologia , COVID-19/patologia , COVID-19/virologia , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Humanos , Hibridomas/citologia , Hibridomas/metabolismo , Imuno-Histoquímica , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Domínios Proteicos/imunologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
5.
Int J Mol Sci ; 21(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114182

RESUMO

The malignant tumor is a complex heterogeneous set of cells functioning in a no less heterogeneous microenvironment. Like any dynamic system, cancerous tumors evolve and undergo changes in response to external influences, including therapy. Initially, most tumors are susceptible to treatment. However, remaining cancer cells may rapidly reestablish the tumor after a temporary remission. These new populations of malignant cells usually have increased resistance not only to the first-line agent, but also to the second- and third-line drugs, leading to a significant decrease in patient survival. Multiple studies describe the mechanism of acquired therapy resistance. In past decades, it became clear that, in addition to the simple selection of pre-existing resistant clones, therapy induces a highly complicated and tightly regulated molecular response that allows tumors to adapt to current and even subsequent therapeutic interventions. This review summarizes mechanisms of acquired resistance, such as secondary genetic alterations, impaired function of drug transporters, and autophagy. Moreover, we describe less obvious molecular aspects of therapy resistance in cancers, including epithelial-to-mesenchymal transition, cell cycle alterations, and the role of intercellular communication. Understanding these molecular mechanisms will be beneficial in finding novel therapeutic approaches for cancer therapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Redes Reguladoras de Genes , Neoplasias/genética , Autofagia , Ciclo Celular , Progressão da Doença , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos
6.
Mol Cell Proteomics ; 13(12): 3558-71, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25271300

RESUMO

Ovarian cancer ascites is a native medium for cancer cells that allows investigation of their secretome in a natural environment. This medium is of interest as a promising source of potential biomarkers, and also as a medium for cell-cell communication. The aim of this study was to elucidate specific features of the malignant ascites metabolome and proteome. In order to omit components of the systemic response to ascites formation, we compared malignant ascites with cirrhosis ascites. Metabolome analysis revealed 41 components that differed significantly between malignant and cirrhosis ascites. Most of the identified cancer-specific metabolites are known to be important signaling molecules. Proteomic analysis identified 2096 and 1855 proteins in the ovarian cancer and cirrhosis ascites, respectively; 424 proteins were specific for the malignant ascites. Functional analysis of the proteome demonstrated that the major differences between cirrhosis and malignant ascites were observed for the cluster of spliceosomal proteins. Additionally, we demonstrate that several splicing RNAs were exclusively detected in malignant ascites, where they probably existed within protein complexes. This result was confirmed in vitro using an ovarian cancer cell line. Identification of spliceosomal proteins and RNAs in an extracellular medium is of particular interest; the finding suggests that they might play a role in the communication between cancer cells. In addition, malignant ascites contains a high number of exosomes that are known to play an important role in signal transduction. Thus our study reveals the specific features of malignant ascites that are associated with its function as a medium of intercellular communication.


Assuntos
Ascite/genética , Regulação Neoplásica da Expressão Gênica , Metaboloma/genética , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/genética , Proteoma/genética , RNA Neoplásico/genética , Processamento Alternativo , Ascite/metabolismo , Ascite/patologia , Comunicação Celular , Linhagem Celular Tumoral , Exossomos/química , Exossomos/metabolismo , Feminino , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Humanos , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proteoma/metabolismo , RNA Neoplásico/metabolismo , Transdução de Sinais , Spliceossomos/química , Spliceossomos/metabolismo , Vesículas Transportadoras/química , Vesículas Transportadoras/metabolismo
7.
Biochimie ; 219: 74-83, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37619809

RESUMO

Glioblastoma (GBM) is the most aggressive and frequent type of primary brain cancer in adult patients. One of the key molecular features associated with GBM pathogenesis is the dysfunction of PTEN oncosuppressor. In addition to PTEN gene, humans and several primates possess processed PTEN pseudogene (PTENP1) that gives rise to long non-coding RNA lncPTENP1-S. Regulation and functions of PTEN and PTENP1 are highly interconnected, however, the exact molecular mechanism of how these two genes affect each other remains unclear. Here, we analyzed the methylation level of the CpG islands (CpGIs) in the promoter regions of PTEN and PTENP1 in patient-derived GBM neurospheres. We found that increased PTEN methylation corelates with decreased PTEN mRNA level. Unexpectedly, we showed the opposite trend for PTENP1. Using targeted methylation and demethylation of PTENP1 CpGI, we demonstrated that DNA methylation increases lncPTENP1-S expression in the presence of wild type PTEN protein but decreases lncPTENP1-S expression if PTEN protein is absent. Further experiments revealed that PTEN protein binds to PTENP1 promoter region and inhibits lncPTENP1-S expression if its CpGI is demethylated. Interestingly, we did not detect any effect of lncPTENP1-S on the level of PTEN mRNA, indicating that in GBM cells PTENP1 is a downstream target of PTEN rather than its upstream regulator. Finally, we studied the functions of lncPTENP1-S and demonstrated that it plays a pro-oncogenic role in GBM cells by upregulating the expression of cancer stem cell markers and decreasing cell adhesion.


Assuntos
Glioblastoma , MicroRNAs , Adulto , Animais , Humanos , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Pseudogenes , Metilação de DNA , Glioblastoma/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Cancers (Basel) ; 16(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38398225

RESUMO

Serine-threonine protein kinases of the DYRK and CLK families regulate a variety of vital cellular functions. In particular, these enzymes phosphorylate proteins involved in pre-mRNA splicing. Targeting splicing with pharmacological DYRK/CLK inhibitors emerged as a promising anticancer strategy. Investigation of the pyrido[3,4-g]quinazoline scaffold led to the discovery of DYRK/CLK binders with differential potency against individual enzyme isoforms. Exploring the structure-activity relationship within this chemotype, we demonstrated that two structurally close compounds, pyrido[3,4-g]quinazoline-2,10-diamine 1 and 10-nitro pyrido[3,4-g]quinazoline-2-amine 2, differentially inhibited DYRK1-4 and CLK1-3 protein kinases in vitro. Unlike compound 1, compound 2 efficiently inhibited DYRK3 and CLK4 isoenzymes at nanomolar concentrations. Quantum chemical calculations, docking and molecular dynamic simulations of complexes of 1 and 2 with DYRK3 and CLK4 identified a dramatic difference in electron donor-acceptor properties critical for preferential interaction of 2 with these targets. Subsequent transcriptome and proteome analyses of patient-derived glioblastoma (GBM) neurospheres treated with 2 revealed that this compound impaired CLK4 interactions with spliceosomal proteins, thereby altering RNA splicing. Importantly, 2 affected the genes that perform critical functions for cancer cells including DNA damage response, p53 signaling and transcription. Altogether, these results provide a mechanistic basis for the therapeutic efficacy of 2 previously demonstrated in in vivo GBM models.

9.
Nat Commun ; 15(1): 5237, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898005

RESUMO

Ovarian cancer often develops resistance to conventional therapies, hampering their effectiveness. Here, using ex vivo paired ovarian cancer ascites obtained before and after chemotherapy and in vitro therapy-induced secretomes, we show that molecules secreted by ovarian cancer cells upon therapy promote cisplatin resistance and enhance DNA damage repair in recipient cancer cells. Even a short-term incubation of chemonaive ovarian cancer cells with therapy-induced secretomes induces changes resembling those that are observed in chemoresistant patient-derived tumor cells after long-term therapy. Using integrative omics techniques, we find that both ex vivo and in vitro therapy-induced secretomes are enriched with spliceosomal components, which relocalize from the nucleus to the cytoplasm and subsequently into the extracellular vesicles upon treatment. We demonstrate that these molecules substantially contribute to the phenotypic effects of therapy-induced secretomes. Thus, SNU13 and SYNCRIP spliceosomal proteins promote therapy resistance, while the exogenous U12 and U6atac snRNAs stimulate tumor growth. These findings demonstrate the significance of spliceosomal network perturbation during therapy and further highlight that extracellular signaling might be a key factor contributing to the emergence of ovarian cancer therapy resistance.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas , Spliceossomos , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológico , Spliceossomos/metabolismo , Cisplatino/farmacologia , Linhagem Celular Tumoral , Animais , Camundongos , Vesículas Extracelulares/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , RNA Nuclear Pequeno/metabolismo , RNA Nuclear Pequeno/genética , Reparo do DNA
10.
J Biol Chem ; 286(26): 23296-307, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21536684

RESUMO

Survivin was initially described as an inhibitor of apoptosis and attracted growing attention as one of the most tumor-specific genes in the human genome and a promising target for cancer therapy. Lately, it has been shown that survivin is a multifunctional protein that takes part in several crucial cell processes. At first, it was supposed that survivin functions only as a homodimer, but now data indicate that many processes require monomeric survivin. Moreover, recent studies reveal a special mechanism regulating the balance between monomeric and dimeric forms of the protein. In this paper we studied the mutant form of survivin that was unable to dimerize and investigated its role in apoptosis. We showed that survivin monomer interacts with Smac/DIABLO and X-linked inhibitor of apoptosis protein (XIAP) both in vitro and in vivo. Due to this feature, it protects cells from caspase-dependent apoptosis even more efficiently than the wild-type survivin. We also identified that mutant monomeric survivin prevents apoptosis-inducing factor release from the mitochondrial intermembrane space, protecting human fibrosarcoma HT1080 cells from caspase-independent apoptosis. On the other hand, our results indicate that only wild-type survivin, but not the monomer mutant form, enhances tubulin stability in cells. These findings suggest that survivin partly performs its functions as a monomer and partly as a dimer. The mechanism of dimer-monomer balance regulation may also work as a "switcher" between survivin functions and thereby explain remarkable functional diversities of this protein.


Assuntos
Apoptose/fisiologia , Proteínas Inibidoras de Apoptose/metabolismo , Multimerização Proteica/fisiologia , Proteínas Reguladoras de Apoptose , Caspases/genética , Caspases/metabolismo , Linhagem Celular Tumoral , Humanos , Proteínas Inibidoras de Apoptose/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , Estabilidade Proteica , Survivina , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
11.
Biochem Biophys Res Commun ; 421(4): 773-9, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22548802

RESUMO

Transglutaminase 2 (TG2) is a ubiquitous Ca(2+)-dependent protein cross-linking enzyme that is implicated in a variety of biological disorders. In in vitro experiments when Ca(2+) concentration was increased TG2 changed its conformation and was able to cross-link other proteins via formation of an isopeptide bond. However the mechanisms that regulate TG2 transamidation activity in cells are still unknown. In this study we have developed FRET-based method for monitoring TG2 conformation changes and, probably, cross-linking activity in living cells. Using this approach we have showed that a significant amount of TG2 within the cell is accumulated in perinuclear endosomes and has a cross-linking inactive conformation, while TG2 that is located beneath the cell membrane has a transamidation active conformation. After the induction of apoptosis cytoplasmic TG2 changed its conformation and activates while, TG2 in endosomes retained transamidation inactive conformation even at late stages of apoptosis.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas de Ligação ao GTP/química , Transglutaminases/química , Apoptose , Linhagem Celular Tumoral , Membrana Celular/enzimologia , Citoplasma/enzimologia , Endocitose , Humanos , Lisossomos/enzimologia , Conformação Proteica , Proteína 2 Glutamina gama-Glutamiltransferase , Proteólise
12.
Biochimie ; 200: 131-139, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35654242

RESUMO

Glioblastoma (GBM) is the most frequent and aggressive primary brain cancer in adult patients. A variety of long non-coding RNAs play an important role in the pathogenesis of GBM, however the molecular functions of most of them still remain elusive. Here, we investigated linc-RoR (long intergenic non-protein coding RNA, regulator of reprogramming) using GBM neurospheres obtained from 12 different patients. We demonstrated that the highest level of this transcript is detected in cells with increased EGFR expression. According to our data, linc-RoR knockdown decreases cell proliferation, increases sensitivity to DNA damage, and downregulates the level of cancer stem cell (CSC) markers. On the other hand, linc-RoR overexpression promote cell growth and increases the proportion of CSCs. Analysis of RNA sequencing data revealed that linc-RoR affects expression of genes involved in the regulation of mitosis. In agreement with this observation, we have showen that the highest level of linc-RoR is detected in the G2/M phase of the cell cycle, when linc-RoR is localized on the chromosomes of dividing cells. Based on our results, we can propose that linc-RoR performs pro-oncogenic functions in human gliobalstoma cells, which may be associated with the regulation of mitotic progression and GBM stemness.


Assuntos
Glioblastoma , RNA Longo não Codificante , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células/genética , Glioblastoma/genética , Humanos , Células-Tronco Neoplásicas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
13.
Nat Cell Biol ; 24(10): 1541-1557, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36192632

RESUMO

Glioblastoma (GBM) is characterized by exceptionally high intratumoral heterogeneity. However, the molecular mechanisms underlying the origin of different GBM cell populations remain unclear. Here, we found that the compositions of ribosomes of GBM cells in the tumour core and edge differ due to alternative RNA splicing. The acidic pH in the core switches before messenger RNA splicing of the ribosomal gene RPL22L1 towards the RPL22L1b isoform. This allows cells to survive acidosis, increases stemness and correlates with worse patient outcome. Mechanistically, RPL22L1b promotes RNA splicing by interacting with lncMALAT1 in the nucleus and inducing its degradation. Contrarily, in the tumour edge region, RPL22L1a interacts with ribosomes in the cytoplasm and upregulates the translation of multiple messenger RNAs including TP53. We found that the RPL22L1 isoform switch is regulated by SRSF4 and identified a compound that inhibits this process and decreases tumour growth. These findings demonstrate how distinct GBM cell populations arise during tumour growth. Targeting this mechanism may decrease GBM heterogeneity and facilitate therapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Processamento Alternativo , Regulação Neoplásica da Expressão Gênica , Ribossomos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , Splicing de RNA/genética , Fenótipo , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral
14.
PLoS One ; 16(1): e0243093, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33481830

RESUMO

The processed pseudogene PTENP1 is involved in the regulation of the expression of the PTEN and acts as a tumor suppressor in many types of malignances. In our previous study we showed that PTENP1 methylation is present not only in tumor, but also in normal endometrium tissues of women over 45 years old. Here we used methylation-specific PCR to analyze methylation status of CpG island located near promoter region of PTENP1 in malignant and non-malignant endometrium tissues collected from 236 women of different age groups. To confirm our results, we also analyzed RNA sequencing and microarray data from 431 women with endometrial cancer from TCGA database. We demonstrated that methylation of PTENP1 is significantly increased in older patients. We also found an age-dependent increase in the level of PTENP1 expression in endometrial tissue. According to our data, PTENP1 methylation elevates the level of the pseudogene sense transcript. In turn, a high level of this transcript correlates with a more favorable prognosis in endometrial cancer. The data obtained suggested that PTENP1 methylation is associated with age-related changes in normal and hyperplastic endometrial tissues. We assumed that age-related increase in PTENP1 methylation and subsequent elevation of its expression may serve as a protective mechanism aimed to prevent malignant transformation of endometrial tissue in women during the perimenopause, menopause, and postmenopause periods.


Assuntos
Envelhecimento/genética , Metilação de DNA/genética , Endométrio/metabolismo , Epigênese Genética , Pseudogenes/genética , Adolescente , Adulto , Idoso , Biomarcadores/metabolismo , Linhagem Celular , Feminino , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Análise de Sobrevida , Adulto Jovem
15.
Cancers (Basel) ; 12(7)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650495

RESUMO

Gliomas are fast growing and highly invasive brain tumors, characterized by tumor microenvironment acidification that drives glioma cell growth and migration. Channels containing Acid-sensing Ion Channel 1a subunit (ASIC1a) mediate amiloride-sensitive cation influx in late stage glioma cells, but not in normal astrocytes. Thus, selective targeting of ASIC1a can be a perspective strategy for glioma treatment. Here, ASIC1a expression in U251 MG and A172 glioma cells, but not in normal astrocytes, was demonstrated. Recombinant analog of mambalgin-2 from black mamba Dendroaspis polylepis inhibited amiloride-sensitive currents at ASIC1a both in Xenopus laevis oocytes and in U251 MG cells, while its mutants with impaired activity towards this channel did not. Mambalgin-2 inhibited U251 MG and A172 glioma cells growth with EC50 in the nanomolar range without affecting the proliferation of normal astrocytes. Notably, mambalgin-2 mutants did not affect glioma cell proliferation, pointing on ASIC1a as the main molecular target of mambalgin-2 in U251 MG and A172 cells. Mambalgin-2 induced a cell cycle arrest, inhibited Cyclin D1 and cyclin-dependent kinases (CDK) phosphorylation and caused apoptosis in U251 MG and A172 cells. Moreover, mambalgin-2 inhibited the growth of low-passage primary cells from a patient with glioblastoma. Altogether, our data point to mambalgin-2 as a useful hit for the development of new drugs for glioma treatment.

16.
Nat Commun ; 11(1): 4660, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938908

RESUMO

Intratumor spatial heterogeneity facilitates therapeutic resistance in glioblastoma (GBM). Nonetheless, understanding of GBM heterogeneity is largely limited to the surgically resectable tumor core lesion while the seeds for recurrence reside in the unresectable tumor edge. In this study, stratification of GBM to core and edge demonstrates clinically relevant surgical sequelae. We establish regionally derived models of GBM edge and core that retain their spatial identity in a cell autonomous manner. Upon xenotransplantation, edge-derived cells show a higher capacity for infiltrative growth, while core cells demonstrate core lesions with greater therapy resistance. Investigation of intercellular signaling between these two tumor populations uncovers the paracrine crosstalk from tumor core that promotes malignancy and therapy resistance of edge cells. These phenotypic alterations are initiated by HDAC1 in GBM core cells which subsequently affect edge cells by secreting the soluble form of CD109 protein. Our data reveal the role of intracellular communication between regionally different populations of GBM cells in tumor recurrence.


Assuntos
Antígenos CD/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Histona Desacetilase 1/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Feminino , Proteínas Ligadas por GPI/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Humanos , Camundongos SCID , Fenilbutiratos/farmacologia , Transdução de Sinais , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cell Rep ; 27(13): 3760-3769.e4, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242410

RESUMO

In the eukaryotic cell, spliceosomes assemble onto pre-mRNA cotranscriptionally. Spliceosome assembly takes place in the context of the chromatin environment, suggesting that the state of the chromatin may affect splicing. The molecular details and mechanisms through which chromatin affects splicing, however, are still unclear. Here, we show a role for the histone methyltransferase Set2 and its histone modification, H3K36 methylation, in pre-mRNA splicing through high-throughput sequencing. Moreover, the effect of H3K36 methylation on pre-mRNA splicing is mediated through the chromodomain protein Eaf3. We find that Eaf3 is recruited to intron-containing genes and that Eaf3 interacts with the splicing factor Prp45. Eaf3 acts with Prp45 and Prp19 after formation of the precatalytic B complex around the time of splicing activation, thus revealing the step in splicing that is regulated by H3K36 methylation. These studies support a model whereby H3K36 facilitates recruitment of an "adapter protein" to support efficient, constitutive splicing.


Assuntos
Acetiltransferases/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo , Transcrição Gênica , Acetiltransferases/genética , Histonas/genética , Metilação , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Spliceossomos/genética
18.
Cell Rep ; 26(7): 1893-1905.e7, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759398

RESUMO

Unresectable glioblastoma (GBM) cells in the invading tumor edge can act as seeds for recurrence. The molecular and phenotypic properties of these cells remain elusive. Here, we report that the invading edge and tumor core have two distinct types of glioma stem-like cells (GSCs) that resemble proneural (PN) and mesenchymal (MES) subtypes, respectively. Upon exposure to ionizing radiation (IR), GSCs, initially enriched for a CD133+ PN signature, transition to a CD109+ MES subtype in a C/EBP-ß-dependent manner. Our gene expression analysis of paired cohorts of patients with primary and recurrent GBMs identified a CD133-to-CD109 shift in tumors with an MES recurrence. Patient-derived CD133-/CD109+ cells are highly enriched with clonogenic, tumor-initiating, and radiation-resistant properties, and silencing CD109 significantly inhibits these phenotypes. We also report a conserved regulation of YAP/TAZ pathways by CD109 that could be a therapeutic target in GBM.


Assuntos
Adaptação Fisiológica/genética , Glioma/radioterapia , Radiação Ionizante , Glioma/patologia , Humanos
19.
Genome Med ; 10(1): 49, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29950180

RESUMO

BACKGROUND: Abnormal pre-mRNA splicing regulation is common in cancer, but the effects of chemotherapy on this process remain unclear. METHODS: To evaluate the effect of chemotherapy on slicing regulation, we performed meta-analyses of previously published transcriptomic, proteomic, phosphoproteomic, and secretome datasets. Our findings were verified by LC-MS/MS, western blotting, immunofluorescence, and FACS analyses of multiple cancer cell lines treated with cisplatin and pladienolide B. RESULTS: Our results revealed that different types of chemotherapy lead to similar changes in alternative splicing by inducing intron retention in multiple genes. To determine the mechanism underlying this effect, we analyzed gene expression in 101 cell lines affected by ɣ-irradiation, hypoxia, and 10 various chemotherapeutic drugs. Strikingly, оnly genes involved in the cell cycle and pre-mRNA splicing regulation were changed in a similar manner in all 335 tested samples regardless of stress stimuli. We revealed significant downregulation of gene expression levels in these two pathways, which could be explained by the observed decrease in splicing efficiency and global intron retention. We showed that the levels of active spliceosomal proteins might be further post-translationally decreased by phosphorylation and export into the extracellular space. To further explore these bioinformatics findings, we performed proteomic analysis of cisplatin-treated ovarian cancer cells. Finally, we demonstrated that the splicing inhibitor pladienolide B impairs the cellular response to DNA damage and significantly increases the sensitivity of cancer cells to chemotherapy. CONCLUSIONS: Decreased splicing efficiency and global intron retention is a novel stress response mechanism that may promote survival of malignant cells following therapy. We found that this mechanism can be inhibited by pladienolide B, which significantly increases the sensitivity of cancer cells to cisplatin which makes it a good candidate drug for improving the efficiency of cancer therapy.


Assuntos
Regulação para Baixo/genética , Neoplasias/genética , Neoplasias/terapia , Precursores de RNA/genética , Splicing de RNA/genética , Estresse Fisiológico/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Análise por Conglomerados , Dano ao DNA/genética , Regulação para Baixo/efeitos dos fármacos , Compostos de Epóxi/farmacologia , Compostos de Epóxi/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Humanos , Íntrons/genética , Macrolídeos/farmacologia , Macrolídeos/uso terapêutico , Fosforilação , Proteômica , Precursores de RNA/metabolismo , Splicing de RNA/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cancer Cell ; 34(1): 119-135.e10, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29937354

RESUMO

Aggressive cancers such as glioblastoma (GBM) contain intermingled apoptotic cells adjacent to proliferating tumor cells. Nonetheless, intercellular signaling between apoptotic and surviving cancer cells remain elusive. In this study, we demonstrate that apoptotic GBM cells paradoxically promote proliferation and therapy resistance of surviving tumor cells by secreting apoptotic extracellular vesicles (apoEVs) enriched with various components of spliceosomes. apoEVs alter RNA splicing in recipient cells, thereby promoting their therapy resistance and aggressive migratory phenotype. Mechanistically, we identified RBM11 as a representative splicing factor that is upregulated in tumors after therapy and shed in extracellular vesicles upon induction of apoptosis. Once internalized in recipient cells, exogenous RBM11 switches splicing of MDM4 and Cyclin D1 toward the expression of more oncogenic isoforms.


Assuntos
Apoptose , Neoplasias Encefálicas/metabolismo , Vesículas Extracelulares/metabolismo , Glioblastoma/metabolismo , Proteínas de Ligação a RNA/metabolismo , Spliceossomos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Comunicação Celular , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Ciclina D1/genética , Ciclina D1/metabolismo , Resistencia a Medicamentos Antineoplásicos , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/genética , Vesículas Extracelulares/patologia , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Spliceossomos/efeitos dos fármacos , Spliceossomos/genética , Spliceossomos/patologia , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA