Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 44(6): 1049-1061, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33491129

RESUMO

Technical failures lead to deviations in process parameters that can exceed studied process boundaries. The impact on cell and target protein is often unknown. However, investigations on common technical failures might yield interesting insights into process and protein robustness. Recently, we published a study on the impact of technical failures on an inclusion body process that showed high robustness due to the inherent stability of IBs. In this follow-up study, we investigated the influence of technical failures during production of two soluble, cytosolic proteins in E. coli BL21(DE3). Cell physiology, productivity and protein quality were analyzed, after technical failures in aeration, substrate supply, temperature and pH control had been triggered. In most cases, cell physiology and productivity recovered during a subsequent regeneration phase. However, our results highlight that some technical failures lead to persistent deviations and affect the quality of purified protein.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Solubilidade
2.
Bioprocess Biosyst Eng ; 42(10): 1611-1624, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31267174

RESUMO

In biotechnological processes, technical failures in the upstream process often lead to batch loss. It is of great interest to investigate the empirical impact of technical failures to understand and mitigate their impact accurately and reduce economic damage. We investigated the impact in the upstream and downstream of a recombinant antibody fragment inclusion body production process chain to provide integrated empirical data and knowledge. First, we provided a reproducible process chain that yielded high inclusion body content, high specific product titer, and a refolding yield of 30%. The inclusion body downstream proved to be of high reproducibility. Through the intended introduction of technical failures, we were not only able to shed more light on the empirical responses in the upstream and downstream, but also on process-boosting parameters that would have been neglected. Herein, a short increase in temperature during the cultivation clearly increased the refolding yield.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Escherichia coli/química , Corpos de Inclusão/química , Redobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
3.
Prep Biochem Biotechnol ; 49(1): 74-81, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30664394

RESUMO

Escherichia coli is one of the most commonly used host organisms for the production of recombinant biopharmaceuticals. E. coli is usually characterized by fast growth on cheap media and high productivity, but one drawback is its intracellular product formation. Product recovery from E. coli bioprocesses requires tedious downstream processing (DSP). A typical E. coli DSP for an intracellular product starts with a cell disruption step to access the product. Different methods exist, but a scalable process is usually achieved by high pressure homogenization (HPH). The protocols for HPH are often applied universally without adapting them to the recombinant product, even though HPH can affect product quantity and quality. Based on our previous study on cell disruption efficiency, we aimed at screening operational conditions to maximize not only product quantity, but also product quality of a soluble therapeutic protein expressed in E. coli. We screened for critical process parameters (CPPs) using a multivariate approach (design of experiments; DoE) during HPH to maximize product titer and achieve sufficient product quality, based on predefined critical quality attributes (CQAs). In this case study, we were able to gain valuable knowledge on the efficiency of HPH on E. coli cell disruption, product release and its impact on CQAs. Our results show that HPH is a key unit operation that has to be optimized for each product.


Assuntos
Escherichia coli/genética , Análise Multivariada , Pressão , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapêutico
4.
Microb Cell Fact ; 17(1): 183, 2018 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-30474550

RESUMO

BACKGROUND: The methylotrophic yeast Pichia pastoris is a common host for the production of recombinant proteins. However, hypermannosylation hinders the use of recombinant proteins from yeast in most biopharmaceutical applications. Glyco-engineered yeast strains produce more homogeneously glycosylated proteins, but can be physiologically impaired and show tendencies for cellular agglomeration, hence are hard to cultivate. Further, comprehensive data regarding growth, physiology and recombinant protein production in the controlled environment of a bioreactor are scarce. RESULTS: A Man5GlcNAc2 glycosylating and a Man8-10GlcNAc2 glycosylating strain showed similar morphological traits during methanol induced shake-flask cultivations to produce the recombinant model protein HRP C1A. Both glyco-engineered strains displayed larger single and budding cells than a wild type strain as well as strong cellular agglomeration. The cores of these agglomerates appeared to be less viable. Despite agglomeration, the Man5GlcNAc2 glycosylating strain showed superior growth, physiology and HRP C1A productivity compared to the Man8-10GlcNAc2 glycosylating strain in shake-flasks and in the bioreactor. Conducting dynamic methanol pulsing revealed that HRP C1A productivity of the Man5GlcNAc2 glycosylating strain is best at a temperature of 30 °C. CONCLUSION: This study provides the first comprehensive evaluation of growth, physiology and recombinant protein production of a Man5GlcNAc2 glycosylating strain in the controlled environment of a bioreactor. Furthermore, it is evident that cellular agglomeration is likely triggered by a reduced glycan length of cell surface glycans, but does not necessarily lead to lower metabolic activity and recombinant protein production. Man5GlcNAc2 glycosylated HRP C1A production is feasible, yields active protein similar to the wild type strain, but thermal stability of HRP C1A is negatively affected by reduced glycosylation.


Assuntos
Engenharia Metabólica/métodos , Peroxidase/biossíntese , Pichia/citologia , Pichia/metabolismo , Proteínas Recombinantes/biossíntese , Reatores Biológicos , Estabilidade Enzimática , Citometria de Fluxo , Glicosilação , Pichia/fisiologia
5.
Methods Mol Biol ; 2513: 243-254, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35781209

RESUMO

The knowledge of certain strain-specific parameters of recombinant Pichia pastoris strains is required to be able to set up a feeding regime for fed-batch cultivations. These parameters are commonly determined either by time-consuming and labor-intensive continuous cultivations or by several, consecutive fed-batch cultivations. Here, we describe a fast method based on batch experiments with substrate pulses to extract certain strain characteristic parameters, which are required to set up a dynamic feeding strategy for P. pastoris strains based on the specific substrate uptake rate. We further describe in detail the course of actions, which have to be taken to obtain the desired dynamics during feeding.


Assuntos
Pichia , Saccharomycetales , Pichia/genética , Proteínas Recombinantes/genética
6.
Front Bioeng Biotechnol ; 8: 573183, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195134

RESUMO

The magnetization of non-magnetic cells has great potential to aid various processes in medicine, but also in bioprocess engineering. Current approaches to magnetize cells with magnetic nanoparticles (MNPs) require cellular uptake or adsorption through in vitro manipulation of cells. A relatively new field of research is "magnetogenetics" which focuses on in vivo production and accumulation of magnetic material. Natural intrinsically magnetic cells (IMCs) produce intracellular, MNPs, and are called magnetotactic bacteria (MTB). In recent years, researchers have unraveled function and structure of numerous proteins from MTB. Furthermore, protein engineering studies on such MTB proteins and other potentially magnetic proteins, like ferritins, highlight that in vivo magnetization of non-magnetic hosts is a thriving field of research. This review summarizes current knowledge on recombinant IMC generation and highlights future steps that can be taken to succeed in transforming non-magnetic cells to IMCs.

7.
Bioengineering (Basel) ; 7(4)2020 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-33322107

RESUMO

The REACH regulation stands for "Registration, Evaluation, Authorization and Restriction of Chemicals" and defines certain substances as harmful to human health and the environment. This urges manufacturers to adapt production processes. Boric acid and cobalt dichloride represent such harmful ingredients, but are commonly used in yeast cultivation media. The yeast Komagataella phaffii (Pichia pastoris) is an important host for heterologous protein production and compliance with the REACH regulation is desirable. Boric acid and cobalt dichloride are used as boron and cobalt sources, respectively. Boron and cobalt support growth and productivity and a number of cobalt-containing enzymes exist. Therefore, depletion of boric acid and cobalt dichloride could have various negative effects, but knowledge is currently scarce. Herein, we provide an insight into the impact of boric acid and cobalt depletion on recombinant protein production with K. phaffii and additionally show how different vessel materials affect cultivation media compositions through leaking elements. We found that boric acid could be substituted through boron leakiness from borosilicate glassware. Furthermore, depletion of boric acid and cobalt dichloride neither affected high cell density cultivation nor cell morphology and viability on methanol. However, final protein quality of three different industrially relevant enzymes was affected in various ways.

8.
J Biotechnol ; 312: 23-34, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32114153

RESUMO

E. coli is an attractive host organism for strong recombinant protein expression. It expresses products either as soluble protein or as inclusion bodies (IB). IBs are insoluble, mostly inactive aggregates. However, recent progress enabled the efficient refolding back into their bioactive structure. Targeted IB production processes have been designed based on their characteristic features such as high yields along with purity and their simple separation. More profound process knowledge is needed to reveal interacting parameters required for quality by design grounded process development. This enables strategies for simplifying and accelerating upstream as well as downstream procedures. We present a workflow for gathering deeper process knowledge by a design of experiment approach for improved IGF1 IB formation in relation to impurity concentration. An IB expression maximum of 19.8 mgIGF1·gDCW-1 was found at pH 6.5, 37 °C and an IPTG induction of >45 µmol gDCW-1 for 12 h. Subsequently, three refolding buffers were tested together with a nonwoven anion exchange adsorber filter module. Knowledge-based buffer selection enabled high impurity log reduction values (LRVEndotoxin = 4.9; LRVDNA = 4.8, LRVHCP = 0.1-1) as well as chromatography column guarding potential by using those adsorptive matrices. Furthermore, adsorptive filtration followed by tangential flow filtration proved to be a promising alternative for product concentration.


Assuntos
Escherichia coli/metabolismo , Corpos de Inclusão/metabolismo , Fator de Crescimento Insulin-Like I/biossíntese , Fator de Crescimento Insulin-Like I/isolamento & purificação , Proteínas Recombinantes/metabolismo , Adsorção , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Fenômenos Químicos , Cromatografia , Endotoxinas/análise , Escherichia coli/genética , Filtração/métodos , Regulação Bacteriana da Expressão Gênica , Concentração de Íons de Hidrogênio , Fator de Crescimento Insulin-Like I/genética , Tamanho da Partícula , Dobramento de Proteína , Proteínas Recombinantes/genética , Solubilidade , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA