Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Biochem Soc Trans ; 42(2): 518-22, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24646271

RESUMO

Skin aging is the result of intrinsic chronological aging and photoaging, due to UV exposure, that both share important histological modifications and molecular features, including alterations of proteins. One of the main damage is glycation that occurs when reducing sugars react non-enzymatically with proteins. This reaction also happens when the dicarbonyl compounds GO (glyoxal) and MG (methylglyoxal), which are glucose derivatives, react with proteins. These compounds can be detoxified by the glyoxalase system composed of two enzymes, Glo1 (glyoxalase I) and Glo2 (glyoxalase II). The aims of the present mini-review are to briefly summarize our current knowledge of the biological roles of these enzymes in aging and then discuss the relevance of studying the role of glycation and of detoxifying systems in human skin aging.


Assuntos
Lactoilglutationa Liase/metabolismo , Envelhecimento da Pele/fisiologia , Animais , Glicosilação , Humanos , Aldeído Pirúvico/metabolismo
2.
Biochimie ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608749

RESUMO

Alzheimer's disease (AD) and related dementias constitute an important global health challenge. Detailed understanding of the multiple molecular mechanisms underlying their pathogenesis constitutes a clue for the management of the disease. Kallikrein-related peptidases (KLKs), a lead family of serine proteases, have emerged as potential biomarkers and therapeutic targets in the context of AD and associated cognitive decline. Hence, KLKs were proposed to display multifaceted impacts influencing various aspects of neurodegeneration, including amyloid-beta aggregation, tau pathology, neuroinflammation, and synaptic dysfunction. We propose here a comprehensive survey to summarize recent findings, providing an overview of the main kallikreins implicated in AD pathophysiology namely KLK8, KLK6 and KLK7. We explore the interplay between KLKs and key AD molecular pathways, shedding light on their significance as potential biomarkers for early disease detection. We also discuss their pertinence as therapeutic targets for disease-modifying interventions to develop innovative therapeutic strategies aimed at halting or ameliorating the progression of AD and associated dementias.

3.
Environ Pollut ; 323: 121341, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36828353

RESUMO

We recently showed that chronic exposure of adult male mice to environmental doses of DEHP alone or in a phthalate mixture altered blood brain barrier integrity and induced an inflammatory profile in the hippocampus. Here, we investigate whether such exposure alters hippocampus-dependent behavior and underlying cellular mechanisms. Adult C57BL/6 J male mice were continuously exposed orally to the vehicle or DEHP alone (5 or 50 µg/kg/d) or to DEHP (5 µg/kg/d) in a phthalate mixture. In the Morris water maze, males showed reduced latencies across days to find the platform in the cue and spatial reference memory tasks, regardless of their treatment group. In the probe test, DEHP-50 exposed males displayed a higher latency to find the platform quadrant. In the temporal order memory test, males exposed to DEHP alone or in a phthalate mixture were unable to discriminate between the most recently and previously seen objects. They also displayed reduced ability to show a preference for the new object in the novel object recognition test. These behavioral alterations were associated with a lowered dendritic spine density and protein levels of glutamate receptors and postsynaptic markers, and increased protein levels of the presynaptic synaptophysin in the hippocampus. Metabolomic analysis of the hippocampus indicated changes in amino acid levels including reduced tryptophan and L-kynurenine and elevated NAD + levels, respectively, a precursor, intermediate and endproduct of the kynurenine pathway of tryptophan metabolism. Interestingly, the protein amounts of the xenobiotic aryl hydrocarbon receptor, a target of this metabolic pathway, were elevated in the CA1 area. These data indicate that chronic exposure of adult male mice to environmental doses of DEHP alone or in a phthalate mixture impacted hippocampal function and structure, associated with modifications in amino acid metabolites with a potential involvement of the kynurenine pathway of tryptophan metabolism.


Assuntos
Dietilexilftalato , Disruptores Endócrinos , Ácidos Ftálicos , Camundongos , Animais , Masculino , Dietilexilftalato/toxicidade , Cinurenina/farmacologia , Triptofano , Camundongos Endogâmicos C57BL , Ácidos Ftálicos/farmacologia , Hipocampo , Cognição , Disruptores Endócrinos/farmacologia
4.
Environ Health Perspect ; 131(7): 77008, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37458746

RESUMO

BACKGROUND: We have previously shown that chronic exposure of adult male mice to low doses of di(2-ethylhexyl) phthalate (DEHP) altered male sexual behavior and induced down-regulation of the androgen receptor (AR) in the neural circuitry controlling this behavior. OBJECTIVES: The cellular mechanisms induced by chronic exposure of adult male mice to low doses of DEHP alone or in an environmental phthalate mixture were studied. METHODS: Two-month-old C57BL/6J males were exposed orally for 8 wk to DEHP alone (0, 5, or 50µg/kg/d) or to DEHP (50µg/kg/d) in a phthalate mixture. Behavior, dendritic density per 50-µm length, pre-/postsynaptic markers, synapse ultrastructure, and bioenergetic activity were analyzed. RESULTS: Mice exposed to DEHP either alone or in a phthalate mixture differed in mating, emission of ultrasonic vocalizations, and the ability to attract receptive females in urinary preference tests from control mice. Analyses in the medial preoptic area, the key hypothalamic region involved in male sexual behavior, showed lower dendritic spine density and protein levels of glutamate receptors and differences in other postsynaptic components and presynaptic markers between the treated groups. Ultrastructural observation of dendritic synapses by electron microscopy showed comparable morphology between the treated groups. Metabolic analyses highlighted differences in hypothalamic metabolites of males exposed to DEHP alone or in a phthalate mixture compared to control mice. These differences included lower tryptophan and higher NAD+ levels, respectively, a precursor and end product of the kynurenine pathway of tryptophan metabolism. The protein amounts of the xenobiotic aryl hydrocarbon receptor, one of the targets of this metabolic pathway and known negative regulator of the AR, were higher in the medial preoptic area of exposed male mice. DISCUSSION: Differences in behavior of male mice exposed to environmental doses of phthalates were associated with differences in neural structure and metabolism, with possibly a key role of the kynurenine pathway of tryptophan metabolism in the effects mediated by these substances. https://doi.org/10.1289/EHP11514.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Feminino , Camundongos , Animais , Masculino , Dietilexilftalato/toxicidade , Triptofano , Cinurenina , Camundongos Endogâmicos C57BL
5.
J Neurochem ; 122(5): 1032-46, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22708926

RESUMO

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication of mice is a standard model of Parkinson's disease (PD). However, it does not reproduce functionally PD. Given the occurrence of PD during aging, symptoms might only be detected in MPTP-intoxicated mice after aging. To address this, mice injected with MPTP at 2.5 months were followed up to a maximum age of 21 months. There was no loss of dopamine cells with aging in control mice; moreover, the initial post-MPTP intoxication decrease in dopamine cell was no longer significant at 21 months. With aging, striatal dopamine level remained constant, but concentrations of the dopamine metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were markedly reduced in both groups. There was also a late impairment of fine motor skills. After MPTP intoxication, hyperactivity was immediately detected and it became greater than in control mice from 14 months of age; fine motor skills were also more impaired; both these symptoms were correlated with striatal dopamine, DOPAC and HVA concentrations. In bothgroups, neither motor symptoms nor dopamine changes worsened with age. These findings do not support the notion that PD develops with age in mice after MPTP intoxication and that the motor deficits seen are because of an aging process.


Assuntos
Envelhecimento , Comportamento Animal/fisiologia , Encéfalo/patologia , Dopamina/metabolismo , Intoxicação por MPTP , Atividade Motora/fisiologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Fatores Etários , Envelhecimento/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Homovanílico/metabolismo , Intoxicação por MPTP/induzido quimicamente , Intoxicação por MPTP/patologia , Intoxicação por MPTP/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Neurotoxinas/farmacologia , Teste de Desempenho do Rota-Rod , Estatística como Assunto , Tirosina 3-Mono-Oxigenase/metabolismo
6.
J Invest Dermatol ; 142(8): 2068-2078.e7, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34971698

RESUMO

Senescence is a well-characterized cellular state associated with specific markers such as permanent cell proliferation arrest and the secretion of messenger molecules by cells expressing the senescence-associated secretory phenotype. The senescence-associated secretory phenotype composition depends on many factors such as the cell type or the nature of the stress that induces senescence. Because the skin constitutes a barrier with the external environment, it is particularly subjected to different types of stresses and consequently prone to premature cellular aging. The dicarbonyl compounds glyoxal (GO) and methylglyoxal are precursors of advanced glycation end products, whose presence marks normal and pathological aging. In this study, we show that GO treatment provokes oxidative stress by increasing ROS and advanced glycation end-products levels and induces senescence in human keratinocytes. Furthermore, GO-induced senescence bears a unique molecular progression profile: an early-stage senescence when protein kinase B‒FOXO3a-p27KIP1 pathway mediates cell cycle arrest and a late-stage senescence maintained by the p16INK4/pRb pathway. Moreover, we characterized the resulting secretory phenotype during early-stage senescence by mass spectrometry. Our study provides evidence that GO can affect keratinocyte functions and act as a driver of human skin aging. Hence, senotherapeutics aimed at modulating GO-associated senescence phenotype hold promising potential.


Assuntos
Glioxal , Proteínas Proto-Oncogênicas c-akt , Senescência Celular/fisiologia , Humanos , Queratinócitos , Estresse Oxidativo
8.
J Biol Chem ; 284(44): 30076-86, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19690165

RESUMO

Solar ultraviolet (UV) A radiation is a well known trigger of signaling responses in human skin fibroblasts. One important consequence of this stress response is the increased expression of matrix metalloproteinase-1 (MMP-1), which causes extracellular protein degradation and thereby contributes to photoaging of human skin. In the present study we identify the proteasome as an integral part of the UVA-induced, intracellular signaling cascade in human dermal fibroblasts. UVA-induced singlet oxygen formation was accompanied by protein oxidation, the cross-linking of oxidized proteins, and an inhibition of the proteasomal system. This proteasomal inhibition subsequently led to an accumulation of c-Jun and phosphorylated c-Jun and activation of activator protein-1, i.e. transcription factors known to control MMP-1 expression. Increased transcription factor activation was also observed if the proteasome was inhibited by cross-linked proteins or lactacystin, indicating a general mechanism. Most importantly, inhibition of the proteasome was of functional relevance for UVA-induced MMP-1 expression, because overexpression of the proteasome or the protein repair enzyme methionine sulfoxide reductase prevented the UVA-induced induction of MMP-1. These studies show that an environmentally relevant stimulus can trigger a signaling pathway, which links intracellular and extracellular protein degradation. They also identify the proteasome as an integral part of the UVA stress response.


Assuntos
Regulação da Expressão Gênica/efeitos da radiação , Complexo de Endopeptidases do Proteassoma/genética , Raios Ultravioleta , Células Cultivadas , Fibroblastos/efeitos da radiação , Humanos , Metaloproteinase 1 da Matriz/genética , Transdução de Sinais , Pele/citologia , Pele/efeitos da radiação , Estresse Fisiológico , Luz Solar
9.
Exp Gerontol ; 43(5): 483-7, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18054192

RESUMO

Aging has been associated with zinc deficiency, leading to chronic inflammation and subsequent oxidative stress, especially in the immune system. The increased oxidative stress provokes the accumulation of oxidized proteins, raising the problem of the efficacy of intracellular protein maintenance systems responsible for the elimination of oxidatively modified proteins. Our objective was to analyse the effect of zinc supplementation in the elderly on protein maintenance in peripheral blood lymphocytes. The status of the proteasome, which is in charge of oxidized protein degradation and the repair enzymes peptide methionine sulfoxide reductases, which can reverse methionine oxidation in proteins, were analysed on peripheral blood lymphocytes collected from 20 elderly subjects (age range between 59 and 85 years old) before and after zinc supplementation (10mg of zinc per day for 48+/-2 days). A decrease of oxidized protein content in zinc supplemented subjects was observed and was associated with an increase of expression levels and/or activities of proteasome and methionine sulfoxide reductases. Our results indicate that zinc treatment could enhance the anti-oxidative defences of peripheral blood lymphocytes by increasing the activities of protein maintenance systems responsible for the elimination of oxidatively modified proteins.


Assuntos
Suplementos Nutricionais , Leucócitos Mononucleares/efeitos dos fármacos , Oligoelementos/farmacologia , Zinco/farmacologia , Idoso , Idoso de 80 Anos ou mais , Humanos , Leucócitos Mononucleares/metabolismo , Metionina Sulfóxido Redutases , Pessoa de Meia-Idade , Oxirredutases/metabolismo , Peptídeo Hidrolases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Oligoelementos/administração & dosagem , Zinco/administração & dosagem
10.
Antioxidants (Basel) ; 7(12)2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30545068

RESUMO

Cysteine and methionine residues are the amino acids most sensitive to oxidation by reactive oxygen species. However, in contrast to other amino acids, certain cysteine and methionine oxidation products can be reduced within proteins by dedicated enzymatic repair systems. Oxidation of cysteine first results in either the formation of a disulfide bridge or a sulfenic acid. Sulfenic acid can be converted to disulfide or sulfenamide or further oxidized to sulfinic acid. Disulfide can be easily reversed by different enzymatic systems such as the thioredoxin/thioredoxin reductase and the glutaredoxin/glutathione/glutathione reductase systems. Methionine side chains can also be oxidized by reactive oxygen species. Methionine oxidation, by the addition of an extra oxygen atom, leads to the generation of methionine sulfoxide. Enzymatically catalyzed reduction of methionine sulfoxide is achieved by either methionine sulfoxide reductase A or methionine sulfoxide reductase B, also referred as to the methionine sulfoxide reductases system. This oxidized protein repair system is further described in this review article in terms of its discovery and biologically relevant characteristics, and its important physiological roles in protecting against oxidative stress, in ageing and in regulating protein function.

11.
Exp Gerontol ; 42(9): 859-63, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17418992

RESUMO

During chronic UV irradiation, which is part of the skin aging process, proteins are damaged by reactive oxygen species resulting in the accumulation of oxidatively modified protein. UV irradiation generates irreversible oxidation of the side chains of certain amino acids resulting in the formation of carbonyl groups on proteins. Nevertheless, certain amino acid oxidation products such as methionine sulfoxide can be reversed back to their reduced form within proteins by specific repair enzymes, the methionine sulfoxide reductases A and B. Using quantitative confocal microscopy, the amount of methionine sulfoxide reductase A was found significantly lower in sun-exposed skin as compared to sun-protected skin. Due to the importance of the methionine sulfoxide reductase system in the maintenance of protein structure and function during aging and conditions of oxidative stress, the fate of this system was investigated after UVA irradiation of human normal keratinocytes. When keratinocytes are exposed to 15 J/cm(2) UVA, methionine sulfoxide reductase activity and content are decreased, indicating that the methionine sulfoxide reductase system is a sensitive target for UV-induced inactivation.


Assuntos
Oxirredutases/análise , Envelhecimento da Pele/efeitos da radiação , Pele/enzimologia , Raios Ultravioleta/efeitos adversos , Ativação Enzimática/efeitos da radiação , Humanos , Metionina Sulfóxido Redutases , Microscopia Confocal , Estresse Oxidativo , Carbonilação Proteica , Espécies Reativas de Oxigênio/metabolismo
12.
Biochim Biophys Acta ; 1703(2): 261-6, 2005 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-15680234

RESUMO

Cellular aging is characterized by the build-up of oxidatively modified protein that results, at least in part, from impaired redox homeostasis associated with the aging process. Protein degradation and repair are critical for eliminating oxidized proteins from the cell. Oxidized protein degradation is mainly achieved by the proteasomal system and it is now well established that proteasomal function is generally impaired with age. Specific enzymatic systems have been identified which catalyze the regeneration of cysteine and methionine following oxidation within proteins. Protein-bound methionine sulfoxide diastereoisomers S and R are repaired by the combined action of the enzymes MsrA and MsrB that are subsequently regenerated by thioredoxin/thioredoxin reductase. Importantly, the peptide methionine sulfoxide reductase system has been implicated in increased longevity and resistance to oxidative stress in different cell types and model organisms. In a previous study, we reported that peptide methionine sulfoxide reductase activity as well as gene and protein expression of MsrA are decreased in various organs as a function of age. More recently, we have shown that gene expression of both MsrA and MsrB2 (Cbs-1) is decreased during replicative senescence of WI-38 fibroblasts, and this decline is associated with an alteration in catalytic activity and the accumulation of oxidized protein. In this review, we will address the importance of protein maintenance in the aging process as well as in replicative senescence, with a special focus on regulation of the peptide methionine sulfoxide reductase systems.


Assuntos
Envelhecimento/fisiologia , Divisão Celular/fisiologia , Senescência Celular/fisiologia , Oxirredutases/fisiologia , Metionina Sulfóxido Redutases
13.
Exp Gerontol ; 41(7): 663-7, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16677789

RESUMO

During cardiac ischemia/reperfusion, proteins are targets of reactive oxygen species produced by the mitochondrial respiratory chain resulting in the accumulation of oxidatively modified protein. Sulfur-containing amino acids are among the most sensitive to oxidation. Certain cysteine and methionine oxidation products can be reversed back to their reduced form within proteins by specific repair enzymes. Oxidation of methionine in protein produces methionine-S-sulfoxide and methionine-R-sulfoxide that can be catalytically reduced by two stereospecific enzymes, methionine sulfoxide reductases A and B, respectively. Due to the importance of the methionine sulfoxide reductase system in the maintenance of protein structure and function during conditions of oxidative stress, the fate of this system during ischemia/reperfusion was investigated. Mitochondrial and cytosolic methionine sulfoxide reductase activities are decreased during ischemia and at early times of reperfusion, respectively. Partial recovery of enzyme activity was observed upon extended periods of reperfusion. Evidence indicates that loss in activity is not due to a decrease in the level of MsrA but may involve structural modification of the enzyme.


Assuntos
Citosol/enzimologia , Mitocôndrias/enzimologia , Isquemia Miocárdica/enzimologia , Reperfusão Miocárdica , Oxirredutases/metabolismo , Animais , Humanos , Metionina Sulfóxido Redutases
14.
Ann N Y Acad Sci ; 1067: 37-44, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16803968

RESUMO

Proteins are subject to modification by reactive oxygen species (ROS), and oxidation of specific amino acid residues can impair their biological function, leading to an alteration in cellular homeostasis. Methionine is among the amino acids the most susceptible to oxidation by almost all forms of ROS, resulting in both S and R diasteroisomeric forms of methionine sulfoxide. These modifications can be repaired specifically by the peptide methionine sulfoxide reductase A and B enzymes (MsrA and MsrB), respectively. MsrA has been detected in several organisms going from prokaryotes to eukaryotes. MsrA is tightly implicated in protection against oxidative stress and in protein maintenance, which is critical in the aging process. Several studies have shown that overexpression of MsrA led to an increased resistance against oxidative stress, while MsrA null mutants are more sensitive toward oxidative stress. Since oxidative damage is a key factor in aging, overexpression of MsrA in some organisms led to an increased life span whereas deletion of the gene led to the opposite. MsrA could also be involved, by regulating the function and/or expression of target proteins, in ROS-mediated signal transduction. In fact, changes in gene expression, including certain oxidative stress-response genes, have been observed when MsrA is overexpressed. This review elaborates on the current knowledge in the implication of the Msr system in protection against oxidative stress and aging.


Assuntos
Envelhecimento/metabolismo , Envelhecimento/fisiologia , Estresse Oxidativo , Oxirredutases/fisiologia , Envelhecimento/patologia , Animais , Senescência Celular/fisiologia , Humanos , Metionina Sulfóxido Redutases
15.
Free Radic Res ; 40(12): 1269-76, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17090416

RESUMO

According to the free radical theory of aging proposed by Denham Harman (Journal of Gerontology 1956, 11, pp. 298-300), the continuous oxidative damage to cellular components over an organism's life span is a causal factor of the aging process. The age-related build-up of oxidized protein is therefore resulting from increased protein oxidative damage and/or decreased elimination of oxidized proteins. In this mini-review, we will address the fate, during aging, of the protein maintenance systems that are involved in the degradation of irreversibly oxidized proteins and in the repair of reversible protein oxidative damage with a special focus on the methionine sulfoxide reductases system. Since these protein degradation and repair systems have been found to be impaired with age, it is proposed that not only failure of redox homeostasis but, as importantly, failure of protein maintenance are critical factors in the aging process.


Assuntos
Envelhecimento/fisiologia , Proteínas/metabolismo , Animais , Homeostase/efeitos dos fármacos , Humanos , Metionina Sulfóxido Redutases , Oxirredução , Oxirredutases/metabolismo , Protease La/fisiologia , Complexo de Endopeptidases do Proteassoma/fisiologia
16.
Free Radic Biol Med ; 94: 195-207, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26944190

RESUMO

The circadian system orchestrates the timing of physiological processes of an organism living in daily environmental changes. Disruption of circadian rhythmicity has been shown to result in increased oxidative stress and accelerated aging. The circadian regulation of antioxidant defenses suggests that other redox homeostasis elements such as oxidized protein degradation by the proteasome, could also be modulated by the circadian clock. Hence, we have investigated whether proteasome activities and oxidized protein levels would exhibit circadian rhythmicity in synchronized cultured mammalian cells and addressed the mechanisms underlying this process. Using synchronized human embryonic kidney HEK 293 cells and primary dermal fibroblasts, we have shown that the levels of carbonylated protein and proteasome activity vary rhythmically following a 24h period. Such a modulation of proteasome activity is explained, at least in part, by the circadian expression of both Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and the proteasome activator PA28αß. HEK 293 cells showed an increased susceptibility to oxidative stress coincident with the circadian-dependent lower activity of the proteasome. Finally, in contrast to young fibroblasts, no circadian modulation of the proteasome activity and carbonylated protein levels was evidenced in senescent fibroblasts. This paper reports a novel role of the circadian system for regulating proteasome function. In addition, the observation that proteasome activity is modulated by the circadian clock opens new avenues for both the cancer and the aging fields, as exemplified by the rhythmic resistance of immortalized cells to oxidative stress and loss of rhythmicity of proteasome activity in senescent fibroblasts.


Assuntos
Ritmo Circadiano/genética , Proteínas Musculares/genética , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/genética , Complexo de Endopeptidases do Proteassoma/genética , Envelhecimento/genética , Envelhecimento/patologia , Antioxidantes/metabolismo , Senescência Celular/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Carbonilação Proteica/genética
17.
Free Radic Biol Med ; 39(10): 1332-41, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16257642

RESUMO

Proteins are modified by reactive oxygen species, and oxidation of specific amino acid residues can impair their biological functions, leading to an alteration in cellular homeostasis. Oxidized proteins can be eliminated through either degradation or repair. Repair is limited to the reversion of a few modifications such as the reduction of methionine oxidation by the methionine sulfoxide reductase (Msr) system. However, accumulation of oxidized proteins occurs during aging, replicative senescence, or neurological disorders or after an oxidative stress, while Msr activity is impaired. In order to more precisely analyze the relationship between oxidative stress, protein oxidative damage, and MsrA, we stably overexpressed MsrA full-length cDNA in SV40 T antigen-immortalized WI-38 human fibroblasts. We report here that MsrA-overexpressing cells are more resistant than control cells to hydrogen peroxide-induced oxidative stress, but not to ultraviolet A irradiation. This MsrA-mediated resistance is accompanied by a decrease in intracellular reactive oxygen species and is partially abolished when cells are cultivated at suboptimal concentration of methionine. These results indicate that MsrA may play an important role in cellular defenses against oxidative stress, by catalytic removal of oxidant through the reduction of methionine sulfoxide, and in protection against death by limiting, at least in part, the accumulation of oxidative damage to proteins.


Assuntos
Fibroblastos/citologia , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Oxirredutases/fisiologia , Envelhecimento , Antígenos Transformantes de Poliomavirus/metabolismo , Linhagem Celular , Sobrevivência Celular , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Fibroblastos/metabolismo , Radicais Livres , Humanos , Immunoblotting , Metionina/análogos & derivados , Metionina/química , Metionina Sulfóxido Redutases , Microscopia de Fluorescência , Oxirredutases/química , Oxigênio/química , Oxigênio/metabolismo , Proteínas/química , Espécies Reativas de Oxigênio , Transfecção
18.
Mech Ageing Dev ; 151: 71-84, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25846863

RESUMO

Changes in the abundance and post-translational modification of proteins and accumulation of some covalently modified proteins have been proposed to represent hallmarks of biological ageing. Within the frame of the Mark-Age project, the workpackage dedicated to "markers based on proteins and their modifications" has been firstly focused on enzymatic and non-enzymatic post-translational modifications of serum proteins by carbohydrates. The second focus of the workpackage has been directed towards protein maintenance systems that are involved either in protein quality control (ApoJ/Clusterin) or in the removal of oxidatively damaged proteins through degradation and repair (proteasome and methionine sulfoxide reductase systems). This review describes the most relevant features of these protein modifications and maintenance systems, their fate during ageing and/or their implication in ageing and longevity.


Assuntos
Longevidade/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Proteólise , Animais , Biomarcadores/metabolismo , Humanos , Oxirredução
19.
Int J Biochem Cell Biol ; 34(11): 1461-74, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12200039

RESUMO

Damage to macromolecules, and in particular protein, implicated in the cellular degeneration that occurs during the aging process, is corroborated by the accumulation of oxidative end-products over time. Oxidized protein build up is commonly seen as a hallmark of cellular aging. Protein turnover is essential to preserve cell function and the main proteolytic system in charge of cytosolic protein degradation is the proteasome. The proteasome is a multi-catalytic proteolytic complex, which recognizes and selectively degrades oxidatively damaged and ubiquitinated proteins. One of the hypothesis put forward to explain the accumulation of altered proteins is the decrease of proteasome activity with age. Indeed, accumulation of altered protein can be explained by increased protein alteration, decreased protein degradation or the combination of both. A short description of proteasome structure and of its role in cellular functions is first given. Then, accumulation of damaged protein is presented with emphasis on the pathways implicated in the formation of altered proteins. Finally, evidence for an age-related impairment of proteasome structure and function that has been reported by different groups is provided in the light of proteasomal dysfunction induced upon oxidative stress. It is now clear that proteasome activity is declining with age and that the loss in proteasome activity during aging is dependent of at least three different mechanisms: decreased proteasome expression; alterations and/or replacement of proteasome subunits and formation of inhibitory cross-linked proteins. However, it is also clear that events leading to the age- and disease-related loss of proteasome function have not yet been fully characterized.


Assuntos
Envelhecimento/fisiologia , Cisteína Endopeptidases , Complexos Multienzimáticos , Animais , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Humanos , Modelos Biológicos , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Oxidantes/metabolismo , Oxirredução , Peptídeo Hidrolases/metabolismo , Complexo de Endopeptidases do Proteassoma , Subunidades Proteicas
20.
FEBS Lett ; 558(1-3): 74-8, 2004 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-14759519

RESUMO

In contrast to other oxidative modifications of amino acids, methionine sulfoxide can be enzymatically reduced back to methionine in proteins by the peptide methionine sulfoxide reductase system, composed of MsrA and MsrB. The expression of MsrA and one member of the MsrB family, hCBS-1, was analyzed during replicative senescence of WI-38 human fibroblasts. Gene expression decreased for both enzymes in senescent cells compared to young cells, and this decline was associated with an alteration in catalytic activity and the accumulation of oxidized proteins during senescence. These results suggest that downregulation of MsrA and hCBS-1 can alter the ability of senescent cells to cope with oxidative stress, hence contributing to the age-related accumulation of oxidative damage.


Assuntos
Senescência Celular , Regulação para Baixo , Fibroblastos/enzimologia , Fatores de Transcrição/metabolismo , Linhagem Celular , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação Enzimológica da Expressão Gênica , Humanos , Peróxido de Hidrogênio/farmacologia , Metionina Sulfóxido Redutases , Proteínas dos Microfilamentos , Oxidantes/farmacologia , Estresse Oxidativo , Oxirredutases/genética , Oxirredutases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA