Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Molecules ; 23(3)2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29498707

RESUMO

A promising means in the search of new small molecules for the treatment of schistosomiasis (amongst other parasitic ailments) is by targeting the parasitic epigenome. In the present study, a docking based virtual screening procedure using the crystal structure of histone deacetylase 8 from Schistosoma mansoni (smHDAC8) was designed. From the developed screening protocol, we were able to identify eight novel N-(2,5-dioxopyrrolidin-3-yl)-n-alkylhydroxamate derivatives as smHDAC8 inhibitors with IC50 values ranging from 4.4-20.3 µM against smHDAC8. These newly identified inhibitors were further tested against human histone deacetylases (hsHDAC1, 6 and 8), and were found also to be exerting interesting activity against them. In silico prediction of the docking pose of the compounds was confirmed by the resolved crystal structure of one of the identified hits. This confirmed these compounds were able to chelate the catalytic zinc ion in a bidentate fashion, whilst showing an inverted binding mode of the hydroxamate group when compared to the reported smHDAC8/hydroxamates crystal structures. Therefore, they can be considered as new potential scaffold for the development of new smHDAC8 inhibitors by further investigation of their structure-activity relationship.


Assuntos
Anti-Helmínticos/síntese química , Quelantes/síntese química , Proteínas de Helminto/antagonistas & inibidores , Inibidores de Histona Desacetilases/síntese química , Histona Desacetilases/química , Ácidos Hidroxâmicos/síntese química , Pirrolidinas/síntese química , Schistosoma mansoni/efeitos dos fármacos , Animais , Anti-Helmínticos/farmacologia , Apoptose/efeitos dos fármacos , Sítios de Ligação , Quelantes/farmacologia , Cristalografia por Raios X , Expressão Gênica , Proteínas de Helminto/química , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Simulação de Acoplamento Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Pirrolidinas/farmacologia , Schistosoma mansoni/enzimologia , Schistosoma mansoni/genética , Schistosoma mansoni/crescimento & desenvolvimento , Relação Estrutura-Atividade , Zinco/química , Zinco/metabolismo
2.
Arch Pharm (Weinheim) ; 350(8)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28639720

RESUMO

Schistosoma mansoni histone deacetylase 8 (SmHDAC8) has been recently identified as a new potential target for the treatment of schistosomiasis. A series of newly designed and synthesized alkoxyamide-based and hydrazide-based HDAC inhibitors were tested for inhibitory activity against SmHDAC8 and human HDACs 1, 6, and 8. The front runner compounds showed submicromolar activity against SmHDAC8 and modest preference for SmHDAC8 over its human orthologue hHDAC8. Docking studies provided insights into the putative binding mode in SmHDAC8 and allowed rationalization of the observed selectivity profile.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Ácidos Ftálicos/farmacologia , Proteínas Repressoras/antagonistas & inibidores , Esquistossomicidas/farmacologia , Animais , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Histona Desacetilases , Humanos , Simulação de Acoplamento Molecular , Ácidos Ftálicos/síntese química , Ácidos Ftálicos/química , Schistosoma mansoni/enzimologia , Esquistossomicidas/síntese química , Esquistossomicidas/química , Especificidade da Espécie
3.
PLoS Pathog ; 10(5): e1004116, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24809504

RESUMO

Treatment and control of schistosomiasis relies on the only available drug, praziquantel, and the search for alternative chemotherapeutic agents is therefore urgent. Egg production is required for the transmission and immunopathology of schistosomiasis and females of S. mansoni lay 300 eggs daily. A large fraction of the total mRNA in the mature female worm encodes one eggshell protein, Smp14. We report that the nuclear receptors SmRXR1 and SmNR1 regulate Smp14 transcription through the recruitment of two histone acetyltransferases (HATs), SmGCN5 and SmCBP1. The treatment of HEK293 cells with histone deacetylase (HDAC) inhibitors (NaB or TSA) produced an 8-fold activation of the SmRXR1/SmNR1-mediated Smp14 promoter activity. Incubation with synthetic HAT inhibitors, including PU139, significantly impaired the Smp14 promoter activity in these cells. Worm pairs cultivated in the presence of PU139 exhibited limited expression of Smp14 mRNA and protein. ChIP analysis demonstrated chromatin condensation at the Smp14 promoter site in worms treated with PU139. ChIP also revealed the presence of H3K27me3 and the absence of RNA Pol II at the Smp14 promoter region in the PU139-treated worms. Most significantly, the PU139-mediated inhibition of Smp14 expression resulted in a significant number of abnormal eggs as well as defective eggs within the ootype. In addition, scanning electron microscopy revealed structural defects and unformed eggshells, and vitelline cell leakage was apparent. The dsRNAi-targeting of SmGCN5 or SmCBP1 significantly decreased Smp14 transcription and protein synthesis, which compromised the reproductive system of mature female worms, egg-laying and egg morphology. Our data strongly suggest that the inhibition of Smp14 expression targeting SmGCN5 and/or SmCBP1 represents a novel and effective strategy to control S. mansoni egg development.


Assuntos
Anti-Helmínticos/uso terapêutico , Proteínas do Ovo/genética , Epigênese Genética/fisiologia , Oviparidade/genética , Schistosoma mansoni/fisiologia , Esquistossomose/prevenção & controle , Esquistossomose/transmissão , Animais , Proteínas do Ovo/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células HEK293 , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Masculino , Terapia de Alvo Molecular/métodos , Schistosoma mansoni/genética , Schistosoma mansoni/crescimento & desenvolvimento
4.
BMC Genomics ; 16: 980, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26584526

RESUMO

BACKGROUND: The trematode parasite, Schistosoma mansoni, has evolved to switch from oxidative phosphorylation to glycolysis in the presence of glucose immediately after invading the human host. This metabolic switch is dependent on extracellular glucose concentration. Four glucose transporters are encoded in the genome of S. mansoni, however, only two were shown to facilitate glucose diffusion. RESULTS: By modeling the phase of human host infection, we showed that transporter transcript expression profiles of recently transformed schistosomula have two opposing responses to increased glucose concentrations. Concurring with the transcription profiles, our phylogenetic analyses revealed that S. mansoni glucose transporters belong to two separate clusters, one associated with class I glucose transporters from vertebrates and insects, and the other specific to parasitic Platyhelminthes. To study the evolutionary paths of both groups and their functional implications, we determined evolutionary rates, relative divergence times, genomic organization and performed structural analyses with the protein sequences. We finally used the modelled structures of the S. mansoni glucose transporters to biophysically (i) analyze the dynamics of key residues during glucose binding, (ii) test glucose stability within the active site, and (iii) demonstrate glucose diffusion. The two S. mansoni Platyhelminthes-specific glucose transporters, which seem to be younger than the other two, exhibit slower rates of molecular evolution, are encoded by intron-poor genes, and transport glucose. Interestingly, our molecular dynamic analyses suggest that S. mansoni class I glucose transporters are not able to transport glucose. CONCLUSIONS: The glucose transporter family in S. mansoni exhibit different evolutionary histories. Our results suggested that S. mansoni class I glucose transporters lost their capacity to transport glucose and that this function evolved independently in the Platyhelminthes-specific glucose transporters. Finally, taking into account the differences in the dynamics of glucose transport of the Platyhelminthes-specific transporters of S. mansoni compared to that of humans, we conclude that S. mansoni glucose transporters may be targets for rationally designed drugs against schistosomiasis.


Assuntos
Evolução Molecular , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Schistosoma mansoni/genética , Schistosoma mansoni/metabolismo , Algoritmos , Sequência de Aminoácidos , Animais , Transporte Biológico , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/química , Proteínas Facilitadoras de Transporte de Glucose/genética , Interações Hospedeiro-Parasita , Humanos , Íntrons/genética , Larva/genética , Larva/metabolismo , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Schistosoma mansoni/fisiologia , Transcrição Gênica
5.
PLoS Pathog ; 9(9): e1003645, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086136

RESUMO

The treatment of schistosomiasis, a disease caused by blood flukes parasites of the Schistosoma genus, depends on the intensive use of a single drug, praziquantel, which increases the likelihood of the development of drug-resistant parasite strains and renders the search for new drugs a strategic priority. Currently, inhibitors of human epigenetic enzymes are actively investigated as novel anti-cancer drugs and have the potential to be used as new anti-parasitic agents. Here, we report that Schistosoma mansoni histone deacetylase 8 (smHDAC8), the most expressed class I HDAC isotype in this organism, is a functional acetyl-L-lysine deacetylase that plays an important role in parasite infectivity. The crystal structure of smHDAC8 shows that this enzyme adopts a canonical α/ß HDAC fold, with specific solvent exposed loops corresponding to insertions in the schistosome HDAC8 sequence. Importantly, structures of smHDAC8 in complex with generic HDAC inhibitors revealed specific structural changes in the smHDAC8 active site that cannot be accommodated by human HDACs. Using a structure-based approach, we identified several small-molecule inhibitors that build on these specificities. These molecules exhibit an inhibitory effect on smHDAC8 but show reduced affinity for human HDACs. Crucially, we show that a newly identified smHDAC8 inhibitor has the capacity to induce apoptosis and mortality in schistosomes. Taken together, our biological and structural findings define the framework for the rational design of small-molecule inhibitors specifically interfering with schistosome epigenetic mechanisms, and further support an anti-parasitic epigenome targeting strategy to treat neglected diseases caused by eukaryotic pathogens.


Assuntos
Epigênese Genética , Proteínas de Helminto/química , Histona Desacetilases/química , Dobramento de Proteína , Schistosoma mansoni/enzimologia , Animais , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Inibidores de Histona Desacetilases/química , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Estrutura Secundária de Proteína , Schistosoma mansoni/genética
6.
Nature ; 460(7253): 352-8, 2009 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-19606141

RESUMO

Schistosoma mansoni is responsible for the neglected tropical disease schistosomiasis that affects 210 million people in 76 countries. Here we present analysis of the 363 megabase nuclear genome of the blood fluke. It encodes at least 11,809 genes, with an unusual intron size distribution, and new families of micro-exon genes that undergo frequent alternative splicing. As the first sequenced flatworm, and a representative of the Lophotrochozoa, it offers insights into early events in the evolution of the animals, including the development of a body pattern with bilateral symmetry, and the development of tissues into organs. Our analysis has been informed by the need to find new drug targets. The deficits in lipid metabolism that make schistosomes dependent on the host are revealed, and the identification of membrane receptors, ion channels and more than 300 proteases provide new insights into the biology of the life cycle and new targets. Bioinformatics approaches have identified metabolic chokepoints, and a chemogenomic screen has pinpointed schistosome proteins for which existing drugs may be active. The information generated provides an invaluable resource for the research community to develop much needed new control tools for the treatment and eradication of this important and neglected disease.


Assuntos
Genoma Helmíntico/genética , Schistosoma mansoni/genética , Animais , Evolução Biológica , Éxons/genética , Genes de Helmintos/genética , Interações Hospedeiro-Parasita/genética , Íntrons/genética , Dados de Sequência Molecular , Mapeamento Físico do Cromossomo , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/embriologia , Schistosoma mansoni/fisiologia , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/parasitologia
7.
J Chem Inf Model ; 54(10): 3005-19, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25243797

RESUMO

Schistosomiasis, caused by S. mansoni, is a tropical disease that affects over 200 million people worldwide. A novel approach for targeting eukaryotic parasites is to tackle their dynamic epigenetic machinery that is necessary for the extensive phenotypic changes during their life cycle. We recently identified S. mansoni histone deacetylase 8 (smHDAC8) as a potential target for antiparasitic therapy. Here we present results from a virtual screening campaign on smHDAC8. Besides hydroxamates, several sulfonamide-thiazole derivatives were identified by a target-based virtual screening using a homology model of smHDAC8. In vitro testing of 75 compounds identified 8 hydroxamates as potent and lead-like inhibitors of the parasitic HDAC8. Solving of the crystal structure of smHDAC8 with two of the virtual screening hits confirmed the predicted binding mode.


Assuntos
Proteínas de Helminto/antagonistas & inibidores , Inibidores de Histona Desacetilases/química , Histona Desacetilases/química , Ácidos Hidroxâmicos/química , Schistosoma mansoni/química , Sulfonamidas/química , Tiazóis/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Descoberta de Drogas , Proteínas de Helminto/química , Ensaios de Triagem em Larga Escala , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Schistosoma mansoni/enzimologia , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Interface Usuário-Computador
8.
BMC Biol ; 11: 80, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23837822

RESUMO

BACKGROUND: It is clear that the coordinated and reciprocal actions of kinases and phosphatases are fundamental in the regulation of development and growth of the malaria parasite. Protein Phosphatase type 1 is a key enzyme playing diverse and essential roles in cell survival. Its dephosphorylation activity/specificity is governed by the interaction of its catalytic subunit (PP1c) with regulatory proteins. Among these, inhibitor-2 (I2) is one of the most evolutionarily ancient PP1 regulators. In vivo studies in various organisms revealed a defect in chromosome segregation and cell cycle progression when the function of I2 is blocked. RESULTS: In this report, we present evidence that Plasmodium falciparum, the causative agent of the most deadly form of malaria, expresses a structural homolog of mammalian I2, named PfI2. Biochemical, in vitro and in vivo studies revealed that PfI2 binds PP1 and inhibits its activity. We further showed that the motifs 12KTISW16 and 102HYNE105 are critical for PfI2 inhibitory activity. Functional studies using the Xenopus oocyte model revealed that PfI2 is able to overcome the G2/M cell cycle checkpoint by inducing germinal vesicle breakdown. Genetic manipulations in P. falciparum suggest an essential role of PfI2 as no viable mutants with a disrupted PfI2 gene were detectable. Additionally, peptides derived from PfI2 and competing with RVxF binding sites in PP1 exhibit anti-plasmodial activity against blood stage parasites in vitro. CONCLUSIONS: Taken together, our data suggest that the PfI2 protein could play a role in the regulation of the P. falciparum cell cycle through its PfPP1 phosphatase regulatory activity. Structure-activity studies of this regulator led to the identification of peptides with anti-plasmodial activity against blood stage parasites in vitro suggesting that PP1c-regulator interactions could be a novel means to control malaria.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/metabolismo , Proteína Fosfatase 1/antagonistas & inibidores , Proteínas/metabolismo , Proteínas de Protozoários/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Antimaláricos/uso terapêutico , Clonagem Molecular , Biologia Computacional , Fase G2/efeitos dos fármacos , Marcação de Genes , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Camundongos , Mitose/efeitos dos fármacos , Dados de Sequência Molecular , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Parasitos/efeitos dos fármacos , Parasitos/enzimologia , Parasitos/crescimento & desenvolvimento , Peptídeos/química , Peptídeos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Plasmodium falciparum/crescimento & desenvolvimento , Ligação Proteica/efeitos dos fármacos , Mapeamento de Interação de Proteínas , Proteína Fosfatase 1/química , Proteína Fosfatase 1/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas/química , Proteínas de Protozoários/química , Técnicas do Sistema de Duplo-Híbrido , Xenopus/metabolismo
9.
Front Microbiol ; 14: 1079855, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910171

RESUMO

Introduction: The human blood fluke parasite Schistosoma mansoni relies on diverse mechanisms to adapt to its diverse environments and hosts. Epigenetic mechanisms play a central role in gene expression regulation, culminating in such adaptations. Protein arginine methyltransferases (PRMTs) promote posttranslational modifications, modulating the function of histones and non-histone targets. The coactivator-associated arginine methyltransferase 1 (CARM1/PRMT4) is one of the S. mansoni proteins with the PRMT core domain. Methods: We carried out in silico analyses to verify the expression of SmPRMTs in public datasets from different infection stages, single-sex versus mixed-worms, and cell types. The SmCARM1 function was evaluated by RNA interference. Gene expression levels were assessed, and phenotypic alterations were analyzed in vitro, in vivo, and ex vivo. Results: The scRNAseq data showed that SmPRMTs expression is not enriched in any cell cluster in adult worms or schistosomula, except for Smcarm1 expression which is enriched in clusters of ambiguous cells and Smprmt1 in NDF+ neurons and stem/germinal cells from schistosomula. Smprmt1 is also enriched in S1 and late female germ cells from adult worms. After dsRNA exposure in vitro, we observed a Smcarm1 knockdown in schistosomula and adult worms, 83 and 69%, respectively. Smcarm1-knockdown resulted in reduced oviposition and no significant changes in the schistosomula or adult worm phenotypes. In vivo analysis after murine infection with Smcarm1 knocked-down schistosomula, showed no significant change in the number of worms recovered from mice, however, a significant reduction in the number of eggs recovered was detected. The ex vivo worms presented a significant decrease in the ovary area with a lower degree of cell differentiation, vitelline glands cell disorganization, and a decrease in the testicular lobe area. The worm tegument presented a lower number of tubercles, and the ventral sucker of the parasites presented a damaged tegument and points of detachment from the parasite body. Discussion: This work brings the first functional characterization of SmCARM1 shedding light on its roles in S. mansoni biology and its potential as a drug target. Additional studies are necessary to investigate whether the reported effects of Smcarm1 knockdown are a consequence of the SmCARM1-mediated methylation of histone tails involved in DNA packaging or other non-histone proteins.

11.
PLoS Pathog ; 6(9): e1001115, 2010 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-20886098

RESUMO

We have identified and characterized a Macrophage Migration Inhibitory Factor (MIF) family member in the Lophotrochozoan invertebrate, Biomphalaria glabrata, the snail intermediate host of the human blood fluke Schistosoma mansoni. In mammals, MIF is a widely expressed pleiotropic cytokine with potent pro-inflammatory properties that controls cell functions such as gene expression, proliferation or apoptosis. Here we show that the MIF protein from B. glabrata (BgMIF) is expressed in circulating immune defense cells (hemocytes) of the snail as well as in the B. glabrata embryonic (Bge) cell line that has hemocyte-like features. Recombinant BgMIF (rBgMIF) induced cell proliferation and inhibited NO-dependent p53-mediated apoptosis in Bge cells. Moreover, knock-down of BgMIF expression in Bge cells interfered with the in vitro encapsulation of S. mansoni sporocysts. Furthermore, the in vivo knock-down of BgMIF prevented the changes in circulating hemocyte populations that occur in response to an infection by S. mansoni miracidia and led to a significant increase in the parasite burden of the snails. These results provide the first functional evidence that a MIF ortholog is involved in an invertebrate immune response towards a parasitic infection and highlight the importance of cytokines in invertebrate-parasite interactions.


Assuntos
Biomphalaria/imunologia , Hemócitos/fisiologia , Interações Hospedeiro-Parasita , Fatores Inibidores da Migração de Macrófagos/metabolismo , Schistosoma mansoni/patogenicidade , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/parasitologia , Sequência de Aminoácidos , Animais , Apoptose , Biomphalaria/embriologia , Biomphalaria/parasitologia , Western Blotting , Proliferação de Células , Células Cultivadas , Cricetinae , Humanos , Fígado/parasitologia , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/genética , Dados de Sequência Molecular , Oocistos/metabolismo , Oocistos/patologia , RNA Mensageiro/genética , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
12.
Cell Microbiol ; 13(5): 752-63, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21323829

RESUMO

Our previous studies have shown that Plasmodium berghei infection induces distinct clinical, parasitological and immunological states in young susceptible rats versus adult resistant rats. This susceptibility was mainly found to be related to inadequate cellular responses. In this study we first identified the altered genes in young susceptible rats. Unexpectedly, transcriptome analysis did not reveal any alteration of effector cytokines or their receptors. At day 13 p.i., six transcripts corresponding to faim3, mesothelin, gas3 (PMP22), gas7, CD24 and P2Y6R were significantly decreased in young infected rats when compared with adult infected rats. Because CD24 and P2Y6R participate in cellular immune responses, we next evaluated their role in the course of infection. Adoptive transfer experiments showed a transient but robust participation of CD24+ cells in the control of parasitaemia. The role of P2Y6R was investigated via its specific ability to be activated by Uridine di-Phosphate (UDP). Young rats treated with UDP partially restored the expression of P2Y6R, controlled parasitaemia and survived thereafter. In conclusion, this study contributes to the discovery of novel biomarkers in young susceptible rats and suggests that the decrease in their expression could be among the reasons for the development of severe pathology in malaria.


Assuntos
Antígeno CD24/genética , Malária/imunologia , Plasmodium berghei/imunologia , Receptores Purinérgicos P2/genética , Fatores Etários , Animais , Antígenos de Superfície/genética , Antígeno CD24/imunologia , Suscetibilidade a Doenças/imunologia , Citometria de Fluxo , Perfilação da Expressão Gênica , Imunidade Celular , Malária/genética , Análise em Microsséries , Reação em Cadeia da Polimerase , Ratos , Receptores Purinérgicos P2/imunologia , Difosfato de Uridina/farmacologia
13.
Pharmaceuticals (Basel) ; 15(1)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35056137

RESUMO

Schistosomiasis is a major neglected parasitic disease that affects more than 240 million people worldwide and for which the control strategy consists of mass treatment with the only available drug, praziquantel. Schistosomes display morphologically distinct stages during their life cycle and the transformations between stages are controlled by epigenetic mechanisms. The targeting of epigenetic actors might therefore represent the parasites' Achilles' heel. Specifically, histone deacetylases have been recently characterized as drug targets for the treatment of schistosomiasis. This review focuses on the recent development of inhibitors for schistosome histone deacetylases. In particular, advances in the development of inhibitors of Schistosoma mansoni histone deacetylase 8 have indicated that targeting this enzyme is a promising approach for the treatment of this infection.

14.
PLoS Negl Trop Dis ; 15(11): e0009503, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34843489

RESUMO

BACKGROUND: Schistosoma mansoni histone deacetylase 8 (SmHDAC8) has elicited considerable interest as a target for drug discovery. Invalidation of its transcripts by RNAi leads to impaired survival of the worms in infected mice and its inhibition causes cell apoptosis and death. To determine why it is a promising therapeutic target the study of the currently unknown cellular signaling pathways involving this enzyme is essential. Protein partners of SmHDAC8 were previously identified by yeast two-hybrid (Y2H) cDNA library screening and by mass spectrometry (MS) analysis. Among these partners we characterized SmRho1, the schistosome orthologue of human RhoA GTPase, which is involved in the regulation of the cytoskeleton. In this work, we validated the interaction between SmHDAC8 and SmRho1 and explored the role of the lysine deacetylase in cytoskeletal regulation. METHODOLOGY/PRINCIPAL FINDINGS: We characterized two isoforms of SmRho1, SmRho1.1 and SmRho1.2. Co- immunoprecipitation (Co-IP)/Mass Spectrometry (MS) analysis identified SmRho1 partner proteins and we used two heterologous expression systems (Y2H assay and Xenopus laevis oocytes) to study interactions between SmHDAC8 and SmRho1 isoforms. To confirm SmHDAC8 and SmRho1 interaction in adult worms and schistosomula, we performed Co-IP experiments and additionally demonstrated SmRho1 acetylation using a Nano LC-MS/MS approach. A major impact of SmHDAC8 in cytoskeleton organization was documented by treating adult worms and schistosomula with a selective SmHDAC8 inhibitor or using RNAi followed by confocal microscopy. CONCLUSIONS/SIGNIFICANCE: Our results suggest that SmHDAC8 is involved in cytoskeleton organization via its interaction with the SmRho1.1 isoform. The SmRho1.2 isoform failed to interact with SmHDAC8, but did specifically interact with SmDia suggesting the existence of two distinct signaling pathways regulating S. mansoni cytoskeleton organization via the two SmRho1 isoforms. A specific interaction between SmHDAC8 and the C-terminal moiety of SmRho1.1 was demonstrated, and we showed that SmRho1 is acetylated on K136. SmHDAC8 inhibition or knockdown using RNAi caused extensive disruption of schistosomula actin cytoskeleton.


Assuntos
GTP Fosfo-Hidrolases/química , Histona Desacetilases/química , Schistosoma mansoni/metabolismo , Proteína rhoA de Ligação ao GTP/química , Acetilação , Animais , Feminino , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Oócitos , Interferência de RNA , Schistosoma mansoni/genética , Espectrometria de Massas em Tandem , Xenopus laevis , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
15.
Cell Rep ; 37(12): 110129, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34936867

RESUMO

Writing and erasing of posttranslational modifications are crucial to phenotypic plasticity and antigenic variation of eukaryotic pathogens. Targeting pathogens' modification machineries, thus, represents a valid approach to fighting parasitic diseases. However, identification of parasitic targets and the development of selective anti-parasitic drugs still represent major bottlenecks. Here, we show that the zinc-dependent histone deacetylases (HDACs) of the protozoan parasite Trypanosoma cruzi are key regulators that have significantly diverged from their human counterparts. Depletion of T. cruzi class I HDACs tcDAC1 and tcDAC2 compromises cell-cycle progression and division, leading to cell death. Notably, tcDAC2 displays a deacetylase activity essential to the parasite and shows major structural differences with human HDACs. Specifically, tcDAC2 harbors a modular active site with a unique subpocket targeted by inhibitors showing substantial anti-parasitic effects in cellulo and in vivo. Thus, the targeting of the many atypical HDACs in pathogens can enable anti-parasitic selective chemical impairment.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Animais , Domínio Catalítico , Ciclo Celular , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Chlorocebus aethiops , DNA de Protozoário , Feminino , Teste de Complementação Genética , Inibidores de Histona Desacetilases/química , Histona Desacetilases/química , Interações Hospedeiro-Parasita , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Filogenia , Conformação Proteica , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Deleção de Sequência , Trypanosoma cruzi/efeitos dos fármacos , Células Vero
16.
ChemMedChem ; 15(7): 571-584, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816172

RESUMO

Schistosomiasis is a neglected tropical disease caused by parasitic flatworms of the genus Schistosoma, which affects over 200 million people worldwide and leads to at least 300,000 deaths every year. In this study, initial screening revealed the triazole-based hydroxamate 2 b (N-hydroxy-1-phenyl-1H-1,2,3-triazole-4-carboxamide) exhibiting potent inhibitory activity toward the novel antiparasitic target Schistosoma mansoni histone deacetylase 8 (smHDAC8) and promising selectivity over the major human HDACs. Subsequent crystallographic studies of the 2 b/smHDAC8 complex revealed key interactions between the inhibitor and the enzyme's active site, thus explaining the unique selectivity profile of the inhibitor. Further chemical modifications of 2 b led to the discovery of 4-fluorophenoxy derivative 21 (1-[5-chloro-2-(4-fluorophenoxy)phenyl]-N-hydroxy-1H-1,2,3-triazole-4-carboxamide), a nanomolar smHDAC8 inhibitor (IC50 =0.5 µM), exceeding the smHDAC8 inhibitory activity of 2 b and SAHA (vorinostat), while exhibiting an improved selectivity profile over the investigated human HDACs. Collectively, this study reveals specific interactions between smHDAC8 and the synthesized triazole-based inhibitors and demonstrates that these small molecules represent promising lead structures, which could be further developed in the search for novel drugs for the treatment of schistosomiasis.


Assuntos
Desenho de Fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Schistosoma mansoni/enzimologia , Esquistossomose/tratamento farmacológico , Triazóis/farmacologia , Animais , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Modelos Moleculares , Estrutura Molecular , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Esquistossomose/metabolismo , Triazóis/síntese química , Triazóis/química
17.
PLoS Negl Trop Dis ; 14(7): e0008332, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32609727

RESUMO

Treatment and control of schistosomiasis still rely on only one effective drug, praziquantel (PZQ) and, due to mass treatment, the increasing risk of selecting for schistosome strains that are resistant to PZQ has alerted investigators to the urgent need to develop novel therapeutic strategies. The histone-modifying enzymes (HMEs) represent promising targets for the development of epigenetic drugs against Schistosoma mansoni. In the present study, we targeted the S. mansoni lysine-specific demethylase 1 (SmLSD1), a transcriptional corepressor, using a novel and selective synthetic inhibitor, MC3935, which was used to treat schistosomula and adult worms in vitro. By using cell viability assays and optical and electron microscopy, we showed that treatment with MC3935 affected parasite motility, egg-laying, tegument, and cellular organelle structures, culminating in the death of schistosomula and adult worms. In silico molecular modeling and docking analysis suggested that MC3935 binds to the catalytic pocket of SmLSD1. Western blot analysis revealed that MC3935 inhibited SmLSD1 demethylation activity of H3K4me1/2. Knockdown of SmLSD1 by RNAi recapitulated MC3935 phenotypes in adult worms. RNA-Seq analysis of MC3935-treated parasites revealed significant differences in gene expression related to critical biological processes. Collectively, our findings show that SmLSD1 is a promising drug target for the treatment of schistosomiasis and strongly support the further development and in vivo testing of selective schistosome LSD1 inhibitors.


Assuntos
Inibidores Enzimáticos/farmacologia , Histona Desmetilases/antagonistas & inibidores , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/ultraestrutura , Esquistossomose mansoni/tratamento farmacológico , Animais , Anti-Helmínticos/farmacologia , Resistência a Medicamentos , Microscopia Eletrônica de Varredura , Oviposição/efeitos dos fármacos , Praziquantel/farmacologia , Esquistossomose mansoni/parasitologia , Esquistossomose mansoni/patologia
18.
J Med Chem ; 62(19): 8733-8759, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31496251

RESUMO

The only drug currently available for treatment of the neglected disease Schistosomiasis is Praziquantel, and the possible emergence of resistance makes research on novel therapeutic agents necessary and urgent. To this end, the targeting of Schistosoma mansoni epigenetic enzymes, which regulate the parasitic life cycle, emerged as a promising approach. Due to the strong effects of human sirtuin inhibitors on parasite survival and reproduction, Schistosoma sirtuins were postulated as potential therapeutic targets. In vitro testing of synthetic substrates of S. mansoni sirtuin 2 (SmSirt2) and kinetic experiments on a myristoylated peptide demonstrated lysine long-chain deacylation as an intrinsic SmSirt2 activity in addition to its known deacetylase activity for the first time. Focused in vitro screening of the GSK Kinetobox library and structure-activity relationships of identified hits led to the first SmSirt2 inhibitors with activity in the low micromolar range. Several SmSirt2 inhibitors showed potency against both larval schistosomes (viability) and adult worms (pairing, egg laying) in culture without general toxicity to human cancer cells.


Assuntos
Proteínas de Helminto/antagonistas & inibidores , Schistosoma mansoni/metabolismo , Sirtuína 2/antagonistas & inibidores , Animais , Proteínas de Helminto/metabolismo , Humanos , Cinética , Larva/efeitos dos fármacos , Larva/metabolismo , Lisina/química , Niacinamida/química , Niacinamida/metabolismo , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Oxidiazóis/química , Oxidiazóis/metabolismo , Oxidiazóis/farmacologia , Oxidiazóis/uso terapêutico , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Pirimidinas/química , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Schistosoma mansoni/crescimento & desenvolvimento , Esquistossomose/tratamento farmacológico , Sirtuína 2/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
19.
Biochem Biophys Res Commun ; 377(4): 1079-84, 2008 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-18977200

RESUMO

Histone deacetylases (HDAC) form a conserved enzyme family that control gene expression via the removal of acetyl residues from histones and other proteins and are under increasing investigation as therapeutic targets, notably in cancer and parasitic diseases. To investigate the conservation of these enzymes in the platyhelminth parasite Schistosoma mansoni, we cloned and characterized three class I HDACs, orthologues of mammalian HDAC1, 3 and 8, and confirmed their identities by phylogenetic analysis. The identification of an HDAC8 orthologue showed that it is not vertebrate-specific as previously thought and insertions in its catalytic domain suggest specific enzymatic properties. SmHDAC1, 3, and 8 mRNAs are expressed at all schistosome life-cycle stages. SmHDAC1 repressed transcriptional activity in a mammalian cell line and this activity was dependent on its catalytic activity since transcription was partially restored by treatment with trichostatin A and a catalytic site mutant failed to repress transcription.


Assuntos
Regulação da Expressão Gênica , Proteínas de Helminto/classificação , Proteínas de Helminto/metabolismo , Histona Desacetilases/classificação , Histona Desacetilases/metabolismo , Schistosoma mansoni/enzimologia , Sequência de Aminoácidos , Animais , Domínio Catalítico/genética , Clonagem Molecular , Sequência Conservada , Inibidores Enzimáticos/farmacologia , Proteínas de Helminto/genética , Histona Desacetilases/genética , Ácidos Hidroxâmicos/farmacologia , Dados de Sequência Molecular , Filogenia , Schistosoma mansoni/genética , Transcrição Gênica
20.
Mol Biochem Parasitol ; 157(2): 217-27, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18187213

RESUMO

The co-evolutionary dynamics that exist in many host-parasite interactions sometimes lead to a compatibility polymorphism, of which the molecular bases are unknown. To identify key molecules involved in this phenomenon in the S. mansoni/B. glabrata model, we developed a comparative proteomics approach for the larval stages that interact with the invertebrate host. The comparison of the proteomes of compatible and incompatible parasite strains led to the identification of a new family of schistosome antigens that share molecular characteristics with the molecules of the mucin family. In particular, they possess a domain containing a variable number of tandem repeats (VNTR). The pronounced polymorphism of these proteins, that distinguishes compatible and incompatible parasite strains, led us to further investigate the role that this protein family plays in the compatibility polymorphism in our model. In the present study, we examine precursor structure, report analysis of mucin-like expression and describe their polymorphism. Our data show that these proteins share structural characteristics with highly glycosylated secreted mucins. The proteins are (i) only expressed in larval stages that interact with the mollusc, (ii) located in the apical gland of miracidia and sporocysts and (iii) secreted and released in excretion-secretion products. Finally, we show that these mucins display a high degree of polymorphism and that extensive differences are observed between S. mansoni strains. These different characteristics led us to name this novel gene family "S. mansoni polymorphic mucins" (Sm PoMuc).


Assuntos
Antígenos de Helmintos/biossíntese , Mucinas/biossíntese , Schistosoma mansoni/fisiologia , Sequência de Aminoácidos , Animais , Antígenos de Helmintos/análise , Antígenos de Helmintos/genética , Eletroforese em Gel Bidimensional , Regulação da Expressão Gênica , Microscopia de Fluorescência , Dados de Sequência Molecular , Mucinas/análise , Mucinas/genética , Organelas/química , Polimorfismo Genético , Transporte Proteico , Proteoma/análise , Schistosoma mansoni/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Sequências de Repetição em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA