Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nanotechnology ; 35(29)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631325

RESUMO

We report on the fabrication of a novel design of GaAs/(In,Ga)As/GaAs radial nanowire heterostructures on a Si 111 substrate, where, for the first time, the growth of inhomogeneous shells on a lattice mismatched core results in straight nanowires instead of bent. Nanowire bending caused by axial tensile strain induced by the (In,Ga)As shell on the GaAs core is reversed by axial compressive strain caused by the GaAs outer shell on the (In,Ga)As shell. Progressive nanowire bending and reverse bending in addition to the axial strain evolution during the two processes are accessed byin situby x-ray diffraction. The diameter of the core, thicknesses of the shells, as well as the indium concentration and distribution within the (In,Ga)As quantum well are revealed by 2D energy dispersive x-ray spectroscopy using a transmission electron microscope. Shell(s) growth on one side of the core without substrate rotation results in planar-like radial heterostructures in the form of free standing straight nanowires.

2.
Nanotechnology ; 32(20): 205705, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33578397

RESUMO

We investigate the strain evolution and relaxation process as function of increasing lattice mismatch between the GaAs core and surrounding In x Ga1-x As shell in core-shell nanowire heterostructures grown on Si(111) substrates. The dimensions of the core and shell are kept constant whereas the indium concentration inside the shell is varied. Measuring the [Formula: see text] and [Formula: see text] in-plane Bragg reflections normal to the nanowire side edges and side facets, we observe a transition from elastic to plastic strain release for a shell indium content x > 0.5. Above the onset of plastic strain relaxation, indium rich mounds and an indium poor coherent shell grow simultaneously around the GaAs core. Mound formation was observed for indium contents x = 0.5 and 0.6 by scanning electron microscopy. Considering both the measured radial reflections and the axial 111 Bragg reflection, the 3D strain variation was extracted separately for the core and the In x Ga1-x As shell.

3.
Nanotechnology ; 33(1)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34560680

RESUMO

Misfit strain in core-shell nanowires can be elastically released by nanowire bending in case of asymmetric shell growth around the nanowire core. In this work, we investigate the bending of GaAs nanowires during the asymmetric overgrowth by an InxGa1-xAs shell caused by avoiding substrate rotation. We observe that the nanowire bending direction depends on the nature of the substrate's oxide layer, demonstrated by Si substrates covered by native and thermal oxide layers. Further, we follow the bending evolution by time-resolvedin situx-ray diffraction measurements during the deposition of the asymmetric shell. The XRD measurements give insight into the temporal development of the strain as well as the bending evolution in the core-shell nanowire.

4.
Proc Natl Acad Sci U S A ; 115(29): E6680-E6689, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29970423

RESUMO

Technologically important properties of ferroic materials are determined by their intricate response to external stimuli. This response is driven by distortions of the crystal structure and/or by domain wall motion. Experimental separation of these two mechanisms is a challenging problem which has not been solved so far. Here, we apply X-ray photon correlation spectroscopy (XPCS) to extract the contribution of domain wall dynamics to the overall response. Furthermore, we show how to distinguish the dynamics related to the passing of domain walls through the periodic (Peierls) potential of the crystal lattice and through the random potential caused by lattice defects (pinning centers). The approach involves the statistical analysis of correlations between X-ray speckle patterns produced by the interference of coherent synchrotron X-rays scattered from different nanosize volumes of the crystal and identification of Poisson-type contribution to the statistics. We find such a contribution in the thermally driven response of the monoclinic phase of a ferroelectric PbZr0.55Ti0.45O3 crystal and calculate the number of domain wall jumps in the studied microvolume.

5.
J Synchrotron Radiat ; 27(Pt 5): 1200-1208, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32876594

RESUMO

Nanoprobe X-ray diffraction (nXRD) using focused synchrotron radiation is a powerful technique to study the structural properties of individual semiconductor nanowires. However, when performing the experiment under ambient conditions, the required high X-ray dose and prolonged exposure times can lead to radiation damage. To unveil the origin of radiation damage, a comparison is made of nXRD experiments carried out on individual semiconductor nanowires in their as-grown geometry both under ambient conditions and under He atmosphere at the microfocus station of the P08 beamline at the third-generation source PETRA III. Using an incident X-ray beam energy of 9 keV and photon flux of 1010 s-1, the axial lattice parameter and tilt of individual GaAs/In0.2Ga0.8As/GaAs core-shell nanowires were monitored by continuously recording reciprocal-space maps of the 111 Bragg reflection at a fixed spatial position over several hours. In addition, the emission properties of the (In,Ga)As quantum well, the atomic composition of the exposed nanowires and the nanowire morphology were studied by cathodoluminescence spectroscopy, energy-dispersive X-ray spectroscopy and scanning electron microscopy, respectively, both prior to and after nXRD exposure. Nanowires exposed under ambient conditions show severe optical and morphological damage, which was reduced for nanowires exposed under He atmosphere. The observed damage can be largely attributed to an oxidation process from X-ray-induced ozone reactions in air. Due to the lower heat-transfer coefficient compared with GaAs, this oxide shell limits the heat transfer through the nanowire side facets, which is considered as the main channel of heat dissipation for nanowires in the as-grown geometry.

6.
Nano Lett ; 19(7): 4263-4271, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31150261

RESUMO

The growth of regular arrays of uniform III-V semiconductor nanowires is a crucial step on the route toward their application-relevant large-scale integration onto the Si platform. To this end, not only does optimal vertical yield, length, and diameter uniformity have to be engineered, but also, control over the nanowire crystal structure has to be achieved. Depending on the particular application, nanowire arrays with varying area density are required for optimal device efficiency. However, the nanowire area density substantially influences the nanowire growth and presents an additional challenge for nanowire device engineering. We report on the simultaneous in situ X-ray investigation of regular GaAs nanowire arrays with different area density during self-catalyzed vapor-liquid-solid growth on Si by molecular-beam epitaxy. Our results give novel insight into selective-area growth and demonstrate that shadowing of the Ga flux, occurring in dense nanowire arrays, has a crucial impact on the evolution of nanowire crystal structure. We observe that the onset of Ga flux shadowing, dependent on array pitch and nanowire length, is accompanied by an increase of the wurtzite formation rate. Our results moreover reveal the paramount role of the secondary reflected Ga flux for VLS NW growth (specifically, that flux that is reflected directly into the liquid Ga droplet).

7.
Nano Lett ; 19(7): 4448-4457, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31141672

RESUMO

While the properties of wurtzite GaAs have been extensively studied during the past decade, little is known about the influence of the crystal polytype on ternary (In,Ga)As quantum well structures. We address this question with a unique combination of correlated, spatially resolved measurement techniques on core-shell nanowires that contain extended segments of both the zincblende and wurtzite polytypes. Cathodoluminescence hyperspectral imaging reveals a blue-shift of the quantum well emission energy by 75 ± 15 meV in the wurtzite polytype segment. Nanoprobe X-ray diffraction and atom probe tomography enable k·p calculations for the specific sample geometry to reveal two comparable contributions to this shift. First, there is a 30% drop in In mole fraction going from the zincblende to the wurtzite segment. Second, the quantum well is under compressive strain, which has a much stronger impact on the hole ground state in the wurtzite than in the zincblende segment. Our results highlight the role of the crystal structure in tuning the emission of (In,Ga)As quantum wells and pave the way to exploit the possibilities of three-dimensional band gap engineering in core-shell nanowire heterostructures. At the same time, we have demonstrated an advanced characterization toolkit for the investigation of semiconductor nanostructures.

8.
J Synchrotron Radiat ; 26(Pt 5): 1612-1620, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490151

RESUMO

The lattice parameters and unit-cell orientation of an SrLaAlO4 crystal have been determined by means of energy-dispersive X-ray Laue diffraction (EDLD) using a pnCCD detector coupled to a columnar structure CsI(Tl) scintillator in the energy range between 40 and 130 keV. By exploiting the high quantum efficiency (QE) achieved by this combined detection system for hard X-rays, a large number of Bragg reflections could be recorded by the relatively small detector area, allowing accurate and fast determination of the lattice parameters and the moduli of the structure factors. The experiment was performed on the energy-dispersive diffraction (EDDI) beamline at the BESSY II synchrotron using a pnCCD detector with 128 × 128 pixels. Since the energies and positions of the Laue peaks can be recorded simultaneously by the pnCCD system, the tetragonal structure of the investigated specimen was determined without any prior information. The unit-cell parameters and the angles between the lattice vectors were evaluated with an accuracy of better than 0.7%, while the structure-factor moduli of the reflections were determined with a mean deviation of 2.5% relative to the theoretical values.


Assuntos
Monitoramento de Radiação/instrumentação , Espectrometria por Raios X/instrumentação , Difração de Raios X/instrumentação , Síncrotrons , Raios X
9.
Nano Lett ; 18(1): 101-108, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29283268

RESUMO

We report on a growth study of self-catalyzed GaAs nanowires based on time-resolved in situ X-ray structure characterization during molecular-beam-epitaxy in combination with ex situ scanning-electron-microscopy. We reveal the evolution of nanowire radius and polytypism and distinguish radial growth processes responsible for tapering and side-wall growth. We interpret our results using a model for diameter self-stabilization processes during growth of self-catalyzed GaAs nanowires including the shape of the liquid Ga-droplet and its evolution during growth.

10.
J Synchrotron Radiat ; 24(Pt 5): 981-990, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28862620

RESUMO

Coherent X-ray diffraction was used to measure the type, quantity and the relative distances between stacking faults along the growth direction of two individual wurtzite GaAs nanowires grown by metalorganic vapour epitaxy. The presented approach is based on the general property of the Patterson function, which is the autocorrelation of the electron density as well as the Fourier transformation of the diffracted intensity distribution of an object. Partial Patterson functions were extracted from the diffracted intensity measured along the [000\bar{1}] direction in the vicinity of the wurtzite 00\bar{1}\bar{5} Bragg peak. The maxima of the Patterson function encode both the distances between the fault planes and the type of the fault planes with the sensitivity of a single atomic bilayer. The positions of the fault planes are deduced from the positions and shapes of the maxima of the Patterson function and they are in excellent agreement with the positions found with transmission electron microscopy of the same nanowire.

11.
Biomacromolecules ; 18(5): 1563-1573, 2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28346782

RESUMO

Novel electrospun materials for bone tissue engineering were obtained by blending biodegradable polyhydroxybutyrate (PHB) or polyhydroxybutyrate valerate (PHBV) with the anionic sulfated polysaccharide κ-carrageenan (κ-CG) in varying ratios. In both systems, the two components phase separated as shown by FTIR, DSC and TGA. According to the contact angle data, κ-CG was localized preferentially at the fiber surface in PHBV/κ-CG blends in contrast to PHB/κ-CG, where the biopolymer was mostly found within the fiber. In contrast to the neat polyester fibers, the blends led to the formation of much smaller apatite crystals (800 nm vs 7 µm). According to the MTT assay, NIH3T3 cells grew in higher density on the blend mats in comparison to neat polyester mats. The osteogenic differentiation potential of the fibers was determined by SaOS-2 cell culture for 2 weeks. Alizarin red-S staining suggested an improved mineralization on the blend fibers. Thus, PHBV/κ-CG fibers resulted in more pronounced bioactive and osteogenic properties, including fast apatite-forming ability and deposition of nanosized apatite crystals.


Assuntos
Substitutos Ósseos/química , Carragenina/química , Poliésteres/química , Engenharia Tecidual/métodos , Células 3T3 , Animais , Apatitas/química , Substitutos Ósseos/efeitos adversos , Linhagem Celular Tumoral , Fibroblastos/efeitos dos fármacos , Humanos , Camundongos , Osteoblastos/efeitos dos fármacos , Osteogênese , Proibitinas
12.
Nano Lett ; 15(2): 981-9, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25631459

RESUMO

We present the results of the study of the correlation between the electrical and structural properties of individual GaAs nanowires measured in their as-grown geometry. The resistance and the effective charge carrier mobility were extracted for several nanowires, and subsequently, the same nano-objects were investigated using X-ray nanodiffraction. This revealed a number of perfectly stacked zincblende and twinned zincblende units separated by axial interfaces. Our results suggest a correlation between the electrical parameters and the number of intrinsic interfaces.

13.
J Synchrotron Radiat ; 22(1): 67-75, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25537590

RESUMO

In GaAs nanowires grown along the cubic [111]c direction, zinc blende and wurtzite arrangements have been observed in their stacking sequence, since the energetic barriers for nucleation are typically of similar order of magnitude. It is known that the interplanar spacing of the (111)c Ga (or As) planes in the zinc blende polytype varies slightly from the wurtzite polytype. However, different values have been reported in the literature. Here, the ratio of the interplanar spacing of these polytypes is extracted based on X-ray diffraction measurements for thin GaAs nanowires with a mean diameter of 18-25 nm. The measurements are performed with a nano-focused beam which facilitates the separation of the scattering of nanowires and of parasitic growth. The interplanar spacing of the (111)c Ga (or As) planes in the wurtzite arrangement in GaAs nanowires is observed to be 0.66% ± 0.02% larger than in the zinc blende arrangement.

14.
Phys Rev Lett ; 114(5): 055504, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25699455

RESUMO

In III-V nanowires the energetic barriers for nucleation in the zinc blende or wurtzite arrangement are typically of a similar order of magnitude. As a result, both arrangements can occur in a single wire. Here, we investigate the evolution of this polytypism in self-catalyzed GaAs nanowires on Si(111) grown by molecular beam epitaxy with time-resolved in situ x-ray diffraction. We interpret our data in the framework of a height dependent Markov model for the stacking in the nanowires. In this way, we extract the mean sizes of faultless wurtzite and zinc blende segments-a key parameter of polytypic nanowires-and their temporal evolution during growth. Thereby, we infer quantitative information on the differences of the nucleation barriers including their evolution without requiring a model of the nucleus.

15.
Phys Rev Lett ; 114(9): 097601, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793851

RESUMO

High piezoelectric activity of many ferroelectrics has been the focus of numerous recent studies. The structural origin of this activity remains poorly understood due to a lack of appropriate experimental techniques and mixing of different mechanisms related to ferroelectricity and ferroelasticity. Our work reports on the study of a uniaxial Sr_{0.5}Ba_{0.5}Nb_{2}O_{6} ferroelectric where the formation of regions with different spontaneous strains is ruled out by the symmetry and where the interrelation between piezoelectricity and ferroelectricity can be inspected in an isolated fashion. We performed x-ray diffraction experiments on a single crystalline sample under alternating electric field and observed an unknown hidden-in-the-bulk mechanism, which suggests that the highest piezoelectric activity is realized in the volumes where nucleation of small ferroelectric domains takes place. This new mechanism creates a novel roadmap for designing materials with enhanced piezoelectric properties.

16.
Nano Lett ; 14(12): 6878-83, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25400142

RESUMO

InAs nanowires that grow catalyst-free along the [111] crystallographic orientation are prone to wurtzite-zincblende polytypism, making the control of the crystal phase highly challenging. In this work, we explore the dynamic relation between the growth conditions and the structural composition of the nanowires using time-resolved X-ray scattering and diffraction measurements during the growth by molecular beam epitaxy. A spontaneous buildup of liquid indium is directly observed in the beginning of the growth process and associated with the simultaneous nucleation of InAs nanowires predominantly in the wurtzite phase. The highly arsenic-rich growth conditions that we used limited the existence of the liquid indium to a short time interval, which is defined as the nucleation phase. After their nucleation, the nanowires grow in the absence of liquid indium, and with a highly defective wurtzite structure. Complementary ex-situ diffuse X-ray scattering measurements and modeling revealed that this structural degradation is due to the formation of densely spaced stacking faults. Thus, high wurtzite phase purity is associated with the presence of liquid indium. This finding implies that pure wurtzite nanowires may be obtained only if the growth is performed under the continuous presence of liquid indium at the growth interface, that is, in the vapor-liquid-solid mode.

17.
J Synchrotron Radiat ; 21(Pt 3): 638-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24763656

RESUMO

Transnational access (TNA) to national radiation sources is presently provided via programmes of the European Commission by BIOSTRUCT-X and CALIPSO with a major benefit for scientists from European countries. Entirely based on scientific merit, TNA allows all European scientists to realise synchrotron radiation experiments for addressing the Societal Challenges promoted in HORIZON2020. In addition, by TNA all European users directly take part in the development of the research infrastructure of facilities. The mutual interconnection of users and facilities is a strong prerequisite for future development of the research infrastructure of photon science. Taking into account the present programme structure of HORIZON2020, the European Synchrotron User Organization (ESUO) sees considerable dangers for the continuation of this successful collaboration in the future.

18.
Phys Chem Chem Phys ; 15(12): 4444-50, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23407654

RESUMO

Undoped and Mn(2+)-doped CdSe nanowires (NWs) grown by a solution-liquid-solid (SLS) method using Bi nanocatalysts have been studied by X-ray powder diffraction measurements. Except for heavily doped nanowires no measurable changes in nanowire lattice parameters were observed. The lattice parameter of heavily doped nanowires shrinks by about 0.5% compared with the undoped ones, which corresponds to a doping concentration of 1.6%. For the other samples no change in lattice parameter is measured referring to a doping level much below 1%. Real structural parameters of nanowires were found to vary as a function of doping level, such as the zinc blende to wurtzite ratio, the static Debye-Waller factor, axial strain, and the number of stacking faults. Compared with the undoped nanowires the overall perfection is slightly improved for low doping but deteriorates drastically for higher doping. Our results highlight the importance of controlling the dopant concentration during the preparation of doped nanostructures.

19.
Nanoscale ; 15(5): 2254-2261, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36629039

RESUMO

Here we report on the non-uniform shell growth of InxGa1-xAs on the GaAs nanowire (NW) core by molecular beam epitaxy (MBE). The growth was realized on pre-patterned silicon substrates with the pitch size (p) ranging from 0.1 µm to 10 µm. Considering the preferable bending direction with respect to the MBE cells as well as the layout of the substrate pattern, we were able to modify the strain distribution along the NW growth axis and the subsequent bending profile. For NW arrays with a high number density, the obtained bending profile of the NWs is composed of straight (barely-strained) and bent (strained) segments with different lengths which depend on the pitch size. A precise control of the bent and straight NW segment length provides a method to design NW based devices with length selective strain distribution.

20.
Macromol Rapid Commun ; 33(20): 1765-9, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22778000

RESUMO

Structural and electrical properties of semicrystalline P3HT cast films onto Si/SiO(2) surface are studied during the solidification under applied electric field in lateral OFET geometry. During evaporation of the solvent, the formation of P3HT crystallites is monitored simultaneously by time-resolved X-ray diffraction and by source-drain current measurements. The electrical current is reaching its maximum in two pronounced regimes already before complete solidification of the polymer as detected by X-ray diffraction intensities. The monitored complex time dependence of current and X-ray intensities reveals a highest conducting level for the gel-like state.


Assuntos
Condutividade Elétrica , Tiofenos/química , Cristalização , Nanoestruturas/química , Dióxido de Silício/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA