Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(30): 17949-17956, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32669435

RESUMO

Individual differences in learning can influence how animals respond to and communicate about their environment, which may nonlinearly shape how a social group accomplishes a collective task. There are few empirical examples of how differences in collective dynamics emerge from variation among individuals in cognition. Here, we use a naturally variable and heritable learning behavior called latent inhibition (LI) to show that interactions among individuals that differ in this cognitive ability drive collective foraging behavior in honey bee colonies. We artificially selected two distinct phenotypes: high-LI bees that ignore previously familiar stimuli in favor of novel ones and low-LI bees that learn familiar and novel stimuli equally well. We then provided colonies differentially composed of different ratios of these phenotypes with a choice between familiar and novel feeders. Colonies of predominantly high-LI individuals preferred to visit familiar food locations, while low-LI colonies visited novel and familiar food locations equally. Interestingly, in colonies of mixed learning phenotypes, the low-LI individuals showed a preference to visiting familiar feeders, which contrasts with their behavior when in a uniform low-LI group. We show that the shift in feeder preference of low-LI bees is driven by foragers of the high-LI phenotype dancing more intensely and attracting more followers. Our results reveal that cognitive abilities of individuals and their social interactions, which we argue relate to differences in attention, drive emergent collective outcomes.


Assuntos
Abelhas/fisiologia , Comportamento Animal , Aprendizagem , Fenótipo , Análise de Variância , Animais , Modelos Teóricos
2.
J Anim Ecol ; 90(1): 62-75, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33020914

RESUMO

In the 4.5 decades since Altmann (1974) published her seminal paper on the methods for the observational study of behaviour, automated detection and analysis of social interaction networks have fundamentally transformed the ways that ecologists study social behaviour. Methodological developments for collecting data remotely on social behaviour involve indirect inference of associations, direct recordings of interactions and machine vision. These recent technological advances are improving the scale and resolution with which we can dissect interactions among animals. They are also revealing new intricacies of animal social interactions at spatial and temporal resolutions as well as in ecological contexts that have been hidden from humans, making the unwatchable seeable. We first outline how these technological applications are permitting researchers to collect exquisitely detailed information with little observer bias. We further recognize new emerging challenges from these new reality-mining approaches. While technological advances in automating data collection and its analysis are moving at an unprecedented rate, we urge ecologists to thoughtfully combine these new tools with classic behavioural and ecological monitoring methods to place our understanding of animal social networks within fundamental biological contexts.


Assuntos
Big Data , Análise de Rede Social , Animais , Feminino , Comportamento Social
3.
J Anim Ecol ; 88(2): 236-246, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30289166

RESUMO

Animals must effectively balance the time they spend exploring the environment for new resources and exploiting them. One way that social animals accomplish this balance is by allocating these two tasks to different individuals. In honeybees, foraging is divided between scouts, which tend to explore the landscape for novel resources, and recruits, which tend to exploit these resources. Exploring the variation in cognitive and physiological mechanisms of foraging behaviour will provide a deeper understanding of how the division of labour is regulated in social insect societies. Here, we uncover how honeybee foraging behaviour may be shaped by predispositions in performance of latent inhibition (LI), which is a form of non-associative learning by which individuals learn to ignore familiar information. We compared LI between scouts and recruits, hypothesizing that differences in learning would correlate with differences in foraging behaviour. Scouts seek out and encounter many new odours while locating novel resources, while recruits continuously forage from the same resource, even as its quality degrades. We found that scouts show stronger LI than recruits, possibly reflecting their need to discriminate forage quality. We also found that scouts have significantly elevated tyramine compared to recruits. Furthermore, after associative odour training, recruits have significantly diminished octopamine in their brains compared to scouts. These results suggest that individual variation in learning behaviour shapes the phenotypic behavioural differences between different types of honeybee foragers. These differences in turn have important consequences for how honeybee colonies interact with their environment. Uncovering the proximate mechanisms that influence individual variation in foraging behaviour is crucial for understanding the ecological context in which societies evolve.


Assuntos
Individualidade , Aprendizagem , Animais , Abelhas , Aminas Biogênicas , Memória , Comportamento Social
4.
Proc Biol Sci ; 285(1886)2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185649

RESUMO

The behavioural composition of a group and the dynamics of social interactions can both influence how social animals work collectively. For example, individuals exhibiting certain behavioural tendencies may have a disproportionately large impact on the group, and so are referred to as keystone individuals, while interactions between individuals can facilitate information transmission about resources. Despite the potential impact of both behavioural composition and interactions on collective behaviour, the relationship between consistent behaviours (also known as personalities) and social interactions remains poorly understood. Here, we use stochastic actor-oriented models to uncover the interdependencies between boldness and social interactions in the social spider Stegodyphus dumicola We find that boldness has no effect on the likelihood of forming social interactions, but interactions do affect boldness, and lead to an increase in the boldness of the shyer individual. Furthermore, spiders tend to interact with the same individuals as their neighbours. In general, boldness decreases over time, but once an individual's boldness begins to increase, this increase accelerates, suggesting a positive feedback mechanism. These dynamics of interactions and boldness result in skewed boldness distributions of a few bold individuals and many shy individuals, as observed in nature. This group behavioural composition facilitates efficient collective behaviours, such as rapid collective prey attack. Thus, by examining the relationship between behaviour and interactions, we reveal the mechanisms that underlie the emergence of adaptive group composition and collective behaviour.


Assuntos
Variação Biológica Individual , Aranhas/fisiologia , Animais , Modelos Biológicos , Personalidade , Comportamento Social , Processos Estocásticos
5.
Proc Biol Sci ; 285(1887)2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30232162

RESUMO

Animal social groups are complex systems that are likely to exhibit tipping points-which are defined as drastic shifts in the dynamics of systems that arise from small changes in environmental conditions-yet this concept has not been carefully applied to these systems. Here, we summarize the concepts behind tipping points and describe instances in which they are likely to occur in animal societies. We also offer ways in which the study of social tipping points can open up new lines of inquiry in behavioural ecology and generate novel questions, methods, and approaches in animal behaviour and other fields, including community and ecosystem ecology. While some behaviours of living systems are hard to predict, we argue that probing tipping points across animal societies and across tiers of biological organization-populations, communities, ecosystems-may help to reveal principles that transcend traditional disciplinary boundaries.


Assuntos
Comportamento Animal , Comportamento Social , Animais , Ecossistema
6.
J Exp Biol ; 221(Pt 24)2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30385482

RESUMO

Uncovering how and why animals explore their environment is fundamental for understanding population dynamics, the spread of invasive species, species interactions, etc. In social animals, individuals within a group can vary in their exploratory behavior, and the behavioral composition of the group can determine its collective success. Workers of the invasive Argentine ant (Linepithema humile) exhibit individual variation in exploratory behavior, which affects the colony's collective nest selection behavior. Here, we examine the mechanisms underlying this behavioral variation in exploratory behavior and determine its implications for the ecology of this species. We first establish that individual variation in exploratory behavior is repeatable and consistent across situations. We then show a relationship between exploratory behavior and the expression of genes that have been previously linked with other behaviors in social insects. Specifically, we found a negative relationship between exploratory behavior and the expression of the foraging (Lhfor) gene. Finally, we determine how colonies allocate exploratory individuals in natural conditions. We found that ants from inside the nest are the least exploratory individuals, whereas workers on newly formed foraging trails are the most exploratory individuals. Furthermore, we found temporal differences throughout the year: in early-mid spring, when new resources emerge, workers are more exploratory than at the end of winter, potentially allowing the colony to find and exploit new resources. These findings reveal the importance of individual variation in behavior for the ecology of social animals.


Assuntos
Formigas/fisiologia , Variação Biológica Individual , Expressão Gênica , Proteínas de Insetos/genética , Animais , Formigas/genética , Comportamento Exploratório , Proteínas de Insetos/metabolismo , Espécies Introduzidas
7.
J Anim Ecol ; 87(2): 369-378, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28692130

RESUMO

The traits of the primary case of an infectious disease outbreak, and the circumstances for their aetiology, potentially influence the trajectory of transmission dynamics. However, these dynamics likely also depend on the traits of the individuals with whom the primary case interacts. We used the social spider Stegodyphus dumicola to test how the traits of the primary case, group phenotypic composition and group size interact to facilitate the transmission of a GFP-labelled cuticular bacterium. We also compared bacterial transmission across experimentally generated "daisy-chain" vs. "star" networks of social interactions. Finally, we compared social network structure across groups of different sizes. Groups of 10 spiders experienced more bacterial transmission events compared to groups of 30 spiders, regardless of groups' behavioural composition. Groups containing only one bold spider experienced the lowest levels of bacterial transmission regardless of group size. We found no evidence for the traits of the primary case influencing any transmission dynamics. In a second experiment, bacteria were transmitted to more individuals in experimentally induced star networks than in daisy-chains, on which transmission never exceeded three steps. In both experimental network types, transmission success depended jointly on the behavioural traits of the interacting individuals; however, the behavioural traits of the primary case were only important for transmission on star networks. Larger social groups exhibited lower interaction density (i.e. had a low ratio of observed to possible connections) and were more modular, i.e. they had more connections between nodes within a subgroup and fewer connections across subgroups. Thus, larger groups may restrict transmission by forming fewer interactions and by isolating subgroups that interacted with the primary case. These findings suggest that accounting for the traits of single exposed hosts has less power in predicting transmission dynamics compared to the larger scale factors of the social groups in which they reside. Factors like group size and phenotypic composition appear to alter social interaction patterns, which leads to differential transmission of microbes.


Assuntos
Fenômenos Fisiológicos Bacterianos , Comportamento Animal , Aranhas/microbiologia , Animais , Densidade Demográfica , Comportamento Social
8.
Am Nat ; 189(3): 254-266, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28221831

RESUMO

Predator-prey interactions often vary on the basis of the traits of the individual predators and prey involved. Here we examine whether the multidimensional behavioral diversity of predator groups shapes prey mortality rates and selection on prey behavior. We ran individual sea stars (Pisaster ochraceus) through three behavioral assays to characterize individuals' behavioral phenotype along three axes. We then created groups that varied in the volume of behavioral space that they occupied. We further manipulated the ability of predators to interact with one another physically via the addition of barriers. Prey snails (Chlorostome funebralis) were also run through an assay to evaluate their predator avoidance behavior before their use in mesocosm experiments. We then subjected pools of prey to predator groups and recorded the number of prey consumed and their behavioral phenotypes. We found that predator-predator interactions changed survival selection on prey traits: when predators were prevented from interacting, more fearful snails had higher survival rates, whereas prey fearfulness had no effect on survival when predators were free to interact. We also found that groups of predators that occupied a larger volume in behavioral trait space consumed 35% more prey snails than homogeneous predator groups. Finally, we found that behavioral hypervolumes were better predictors of prey survival rates than single behavioral traits or other multivariate statistics (i.e., principal component analysis). Taken together, predator-predator interactions and multidimensional behavioral diversity determine prey survival rates and selection on prey traits in this system.


Assuntos
Comportamento Predatório , Caramujos , Estrelas-do-Mar , Animais , Dinâmica Populacional , Taxa de Sobrevida
9.
Am Nat ; 197(3): 390-391, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33625973
10.
Am Nat ; 188(2): 240-52, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27420788

RESUMO

Collective behavior emerges from interactions among group members who often vary in their behavior. The presence of just one or a few keystone individuals, such as leaders or tutors, may have a large effect on collective outcomes. These individuals can catalyze behavioral changes in other group members, thus altering group composition and collective behavior. The influence of keystone individuals on group function may lead to trade-offs between ecological situations, because the behavioral composition they facilitate may be suitable in one situation but not another. We use computer simulations to examine various mechanisms that allow keystone individuals to exert their influence on group members. We further discuss a trade-off between two potentially conflicting collective outcomes, cooperative prey attack and disease dynamics. Our simulations match empirical data from a social spider system and produce testable predictions for the causes and consequences of the influence of keystone individuals on group composition and collective outcomes. We find that a group's behavioral composition can be impacted by the keystone individual through changes to interaction patterns or behavioral persistence over time. Group behavioral composition and the mechanisms that drive the distribution of phenotypes influence collective outcomes and lead to trade-offs between disease dynamics and cooperative prey attack.


Assuntos
Aranhas/fisiologia , Animais , Comportamento Animal , Simulação por Computador , Personalidade , Comportamento Predatório , Comportamento Social
11.
Proc Biol Sci ; 283(1823)2016 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-26817771

RESUMO

Many animal societies rely on highly influential keystone individuals for proper functioning. When information quality is important for group success, such keystone individuals have the potential to diminish group performance if they possess inaccurate information. Here, we test whether information quality (accurate or inaccurate) influences collective outcomes when keystone individuals are the first to acquire it. We trained keystone or generic individuals to attack or avoid novel stimuli and implanted these trained individuals within groups of naive colony-mates. We subsequently tracked how quickly groups learned about their environment in situations that matched (accurate information) or mismatched (inaccurate information) the training of the trained individual. We found that colonies with just one accurately informed individual were quicker to learn to attack a novel prey stimulus than colonies with no informed individuals. However, this effect was no more pronounced when the informed individual was a keystone individual. In contrast, keystones with inaccurate information had larger effects than generic individuals with identical information: groups containing keystones with inaccurate information took longer to learn to attack/avoid prey/predator stimuli and gained less weight than groups harbouring generic individuals with identical information. Our results convey that misinformed keystone individuals can become points of vulnerability for their societies.


Assuntos
Agressão , Aprendizagem , Comportamento Predatório , Comportamento Social , Aranhas/fisiologia , Animais , Meio Ambiente , Feminino
12.
Proc Biol Sci ; 283(1829)2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27097926

RESUMO

Despite the importance of host attributes for the likelihood of associated microbial transmission, individual variation is seldom considered in studies of wildlife disease. Here, we test the influence of host phenotypes on social network structure and the likelihood of cuticular bacterial transmission from exposed individuals to susceptible group-mates using female social spiders (Stegodyphus dumicola). Based on the interactions of resting individuals of known behavioural types, we assessed whether individuals assorted according to their behavioural traits. We found that individuals preferentially interacted with individuals of unlike behavioural phenotypes. We next applied a green fluorescent protein-transformed cuticular bacterium,Pantoeasp., to individuals and allowed them to interact with an unexposed colony-mate for 24 h. We found evidence for transmission of bacteria in 55% of cases. The likelihood of transmission was influenced jointly by the behavioural phenotypes of both the exposed and susceptible individuals: transmission was more likely when exposed spiders exhibited higher 'boldness' relative to their colony-mate, and when unexposed individuals were in better body condition. Indirect transmission via shared silk took place in only 15% of cases. Thus, bodily contact appears key to transmission in this system. These data represent a fundamental step towards understanding how individual traits influence larger-scale social and epidemiological dynamics.


Assuntos
Aranhas/microbiologia , Aranhas/fisiologia , Animais , Feminino , Pantoea/isolamento & purificação , Fenótipo , Seda , Comportamento Social
13.
Biol Lett ; 12(7)2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27381885

RESUMO

The initial stages of a disease outbreak can determine the magnitude of the ensuing epidemic. Though rarely tested in unison, two factors with important consequences for the transmission dynamics of infectious agents are the collective traits of the susceptible population and the individual traits of the index case (i.e. 'patient zero'). Here, we test whether the personality composition of a social group can explain horizontal transmission dynamics of cuticular bacteria using the social spider Stegodyphus dumicola We exposed focal spiders of known behavioural phenotypes with a GFP-transformed cuticular bacterium (Pantoea sp.) and placed them in groups of 10 susceptible individuals (i.e. those with no experience with this bacterium). We measured bacterial transmission to groups composed of either all shy spiders, 10% bold spiders or 40% bold spiders. We found that colonies with 40% bold spiders experienced over twice the incidence of transmission compared to colonies with just 10% bold individuals after only 24 h of interaction. Colonies of all shy spiders experienced an intermediate degree of transmission. Interestingly, we did not detect an effect of the traits of the index case on transmission. These data suggest that the phenotypic composition of the susceptible population can have a greater influence on the degree of early transmission events than the traits of the index case.


Assuntos
Pantoea/fisiologia , Aranhas/fisiologia , Animais , Comportamento Animal , Feminino , Personalidade , Comportamento Social , Aranhas/microbiologia
14.
J Theor Biol ; 367: 61-75, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25484006

RESUMO

Collective behaviors in social insect societies often emerge from simple local rules. However, little is known about how these behaviors are dynamically regulated in response to environmental changes. Here, we use a compartmental modeling approach to identify factors that allow harvester ant colonies to regulate collective foraging activity in response to their environment. We propose a set of differential equations describing the dynamics of: (1) available foragers inside the nest, (2) active foragers outside the nest, and (3) successful returning foragers, to understand how colony-specific parameters, such as baseline number of foragers, interactions among foragers, food discovery rates, successful forager return rates, and foraging duration might influence collective foraging dynamics, while maintaining functional robustness to perturbations. Our analysis indicates that the model can undergo a forward (transcritical) bifurcation or a backward bifurcation depending on colony-specific parameters. In the former case, foraging activity persists when the average number of recruits per successful returning forager is larger than one. In the latter case, the backward bifurcation creates a region of bistability in which the size and fate of foraging activity depends on the distribution of the foraging workforce among the model's compartments. We validate the model with experimental data from harvester ants (Pogonomyrmex barbatus) and perform sensitivity analysis. Our model provides insights on how simple, local interactions can achieve an emergent and robust regulatory system of collective foraging activity in ant colonies.


Assuntos
Formigas/fisiologia , Comportamento Alimentar/fisiologia , Modelos Biológicos , Comportamento Social , Animais , Simulação por Computador , Análise Numérica Assistida por Computador
15.
Biol Lett ; 11(10)2015 10.
Artigo em Inglês | MEDLINE | ID: mdl-26490416

RESUMO

Structures influence how individuals interact and, therefore, shape the collective behaviours that emerge from these interactions. Here I show that the structure of a nest influences the collective behaviour of harvester ant colonies. Using network analysis, I quantify nest architecture and find that as chamber connectivity and redundancy of connections among chambers increase, so does a colony's speed of recruitment to food. Interestingly, the volume of the chambers did not influence speed of recruitment, suggesting that the spatial organization of a nest has a greater impact on collective behaviour than the number of workers it can hold. Thus, by changing spatial constraints on social interactions organisms can modify their behaviour and impact their fitness.


Assuntos
Formigas/fisiologia , Animais , Comportamento Apetitivo , Comportamento Animal , California , Comportamento de Nidação , Comportamento Social , Comportamento Espacial
16.
Curr Zool ; 69(5): 585-591, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37637320

RESUMO

Individual differences in behavior have large consequences for the way in which ecology impacts fitness. Individuals differ in how they explore their environment and how exploratory behavior benefits them. In group-living animals, behavioral heterogeneity can be beneficial because different individuals perform different tasks. For example, exploratory individuals may discover new food sources and recruit group members to exploit the food, while less exploratory individuals forgo the risks of exploration. Here we ask how individual variation in exploratory behavior affects the ability of Argentine ant Linepithema humile colonies to (1) locate novel food sources, (2) exploit known food resources, and (3) respond to disruptions while foraging. To address these questions, we conducted field experiments on L. humile foraging trails in which we manipulated food availability near and at the foraging trails and disrupted the foraging trails. We sampled individuals based on their response to the perturbations in the field and tested their exploratory behavior in the lab. We found that exploratory individuals benefit the colony by locating novel foods and increasing resource exploitation, but they do not play an important role in the recovery of a foraging trail after disruption. Thus, the benefits of behavioral heterogeneity to the group, specifically in exploratory behavior, differ across ecological contexts.

17.
Curr Zool ; 69(6): 747-755, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37876638

RESUMO

When foraging, internal needs for particular nutrients might affect food choice, and external constraints, such as predation risk, might impact trade-offs between foraging and risk avoidance. Examining both internal and external constraints simultaneously can provide important insights into how animals make decisions. We examined how internal nutritional needs and external cues of mortality risk jointly impact the foraging behavior of ants. Ant colonies require carbohydrates to support workers energetically and proteins to raise brood. Furthermore, colonies adjust their foraging activity in response to the environment, such as food availability and the presence of predators or heterospecifics. Here we examine the foraging decisions of groups of Argentine ants Linepithema humile, which differ in their nutritional needs in high-risk environments. We starved groups of ants for either proteins or carbohydrates and determined the foraging choices that ants made when cues of heterospecifics were present. We found that ants preferentially forage for carbohydrates in high-risk conditions. Furthermore, starvation for carbohydrates increased the ants' preference for carbohydrates, even when cues of heterospecifics were present at both carbohydrates and protein resources. Starvation for protein also resulted in preferential foraging for carbohydrates, but it increased visitation to a protein food source in high-risk environments compared to when ants were starved for carbohydrates or for both resources. Examining the effect of both nutrition and mortality risk on foraging simultaneously provides insights about state-dependent risk-taking behavior that may have important implications for predicting the invasion of species into novel habitats.

18.
Trends Ecol Evol ; 38(4): 337-345, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36473809

RESUMO

While direct influences of the environment on population growth and resilience are well studied, indirect routes linking environmental changes to population consequences are less explored. We suggest that social behavior is key for understanding how anthropogenic environmental changes affect the resilience of animal populations. Social structures of animal groups are evolved and emergent phenotypes that often have demographic consequences for group members. Importantly, environmental drivers may directly influence the consequences of social structure or indirectly influence them through modifications to social interactions, group composition, or group size. We have developed a framework to study these demographic consequences. Estimating the strength of direct and indirect pathways will give us tools to understand, and potentially manage, the effect of human-induced rapid environmental changes.


Assuntos
Crescimento Demográfico , Comportamento Social , Animais , Humanos , Fenótipo
19.
Ecol Evol ; 13(6): e10139, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37274150

RESUMO

Social relationships among animals emerge from interactions in multiple ecological and social situations. However, we seldom ask how each situation contributes to the global structure of a population, and whether different situations contribute different information about social relationships and the position of individuals within the social fabric. Griffon vultures (Gyps fulvus) interact socially in multiple situations, including communal roosting, joint flights, and co-feeding. These social interactions can influence population-level outcomes, such as disease transmission and information sharing that determine survival and response to changes. We examined the unique contribution of each social and ecological situation to the social structure of the population and individuals' positions within the overall social network using high-resolution GPS tracking. We found that the number of individuals each vulture interacted with (degree) was best predicted by diurnal interactions-both during flights and on the ground (such as when feeding). However, the strength of social bonds, that is, the number of interactions an individual had (strength), was best predicted by interactions on the ground-both during the day (e.g., while feeding) and at night (e.g., while roosting) but not by interactions while flying. Thus, social situations differ in their impact on the relationships that individuals form. By incorporating the ecological situations in which social interactions occur we gain a more complete view of how social relationships are formed and which situations are important for different types of interactions.

20.
Philos Trans R Soc Lond B Biol Sci ; 378(1884): 20220146, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37427470

RESUMO

Animals construct and inhabit nests that can exhibit dramatic intra- and interspecific variation due to differences in behaviour, the biotic and abiotic environment, and evolutionary history. In ants, variation in nest architecture reflects both differences in ecology and in the collective behaviour of the colonies that live in the nests. Each component of the nest (such as depth, and the number, size and connectivity of chambers) reflects selective pressures for different functions, or structural constraints that are imposed by the environment or evolutionary history. To determine potential drivers of nest structure variation in subterranean nests, we performed a meta-analysis of measures of published ant nests to compare different structural elements within and across species. We complemented this survey with 42 nest casts of two closely related species. We quantified nest features that can potentially impact ant foraging behaviour and examined whether phylogeny or foraging strategy are better explanatory variables for the variation we observed. We found that foraging strategy better explained nest features than evolutionary history. Our work reveals the importance of ecology in shaping nest structure and provides an important foundation for future investigations into the selective pressures that have shaped ant nest architecture. This article is part of the theme issue 'The evolutionary ecology of nests: a cross-taxon approach'.


Assuntos
Formigas , Animais , Comportamento de Nidação , Ecologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA