Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Environ Res ; 252(Pt 4): 119073, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710428

RESUMO

Climate change, namely increased warming coupled with a rise in extreme events (e.g., droughts, storms, heatwaves), is negatively affecting forest ecosystems worldwide. In these ecosystems, growth dynamics and biomass accumulation are driven mainly by environmental constraints, inter-tree competition, and disturbance regimes. Usually, climate-growth relationships are assessed by linear correlation due to the simplicity and straightforwardness of modeling. However, applying this method may bias results, since the ecological and physiological responses of trees to environmental factors are non-linear, and usually bell-shaped. In the Eastern Carpathian, Norway spruce is at the southeasternmost edge of its natural occurrence; this region is thus potentially vulnerable to climate change. A non-linear assessment of climate-growth relationships using machine-learning techniques for Norway spruce in this area had not been conducted prior to this study. To address this knowledge gap, we analyzed a large tree-ring network from 158 stands, with over 3000 trees of varying age distributed along an elevational gradient. Our results showed that non-linearity in the growth-climate response of spruce was season-specific: temperatures from the previous autumn and current growing season, along with water availability during winter, induced a bell-shaped response. Moreover, we found that at low elevations, spruce growth was mainly limited by water availability in the growing season, while winter temperatures are likely to have had a slight influence along the entire elevational gradient. Furthermore, at elevations lower than 1400 m, spruce trees were also found to be sensitive to previous autumn water availability. Overall, our results shed new light on the response of Norway spruce to climate in the Carpathians, which may aid in management decisions.


Assuntos
Altitude , Mudança Climática , Picea , Picea/crescimento & desenvolvimento , Dinâmica não Linear , Estações do Ano , Aprendizado de Máquina , Temperatura
2.
Environ Res ; 234: 116566, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423361

RESUMO

Tropospheric ozone (O3) is a threat to vegetation and human health over the world, in particular in Asia. Knowledge on O3 impacts on tropical ecosystems is still very limited. An O3 risk assessment to crops, forests, and people from 25 monitoring stations across the tropical and subtropical Thailand during 2005-2018 showed that 44% of sites exceeded the critical levels (CLs) of SOMO35 (i.e., the annual Sum Of daily maximum 8-h Means Over 35 ppb) for human health protection. The concentration-based AOT40 CL (i.e., sum of the hourly exceedances above 40 ppb for daylight hours during the assumed growing season) was exceeded at 52% and 48% of the sites where the main crops rice and maize are present, respectively, and at 88% and 12% of the sites where evergreen or deciduous forests are present, respectively. The flux-based metric PODY (i.e., Phytotoxic Ozone Dose above a threshold Y of uptake) was calculated and was found to exceed the CLs at 1.0%, 1.5%, 20.0%, 1.5%, 0% and 68.0% of the sites where early rice, late rice, early maize, late maize, evergreen forests, and deciduous forests can grow, respectively. Trend analysis indicated that AOT40 increased over the study period (+5.9% year-1), while POD1 decreased (- 5.3% year-1), suggesting that the role of climate change in affecting the environmental factors that control stomatal uptake cannot be neglected. These results contribute novel knowledge on O3 threat to human health, forest productivity, and food security in tropical and subtropical areas.


Assuntos
Poluentes Atmosféricos , Ozônio , Humanos , Ozônio/toxicidade , Ozônio/análise , Ecossistema , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Tailândia , Florestas , Produtos Agrícolas
3.
Nat Methods ; 16(6): 493-496, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31110281

RESUMO

Here, we introduce fluorescence intensity fluctuation spectrometry for determining the identity, abundance and stability of protein oligomers. This approach was tested on monomers and oligomers of known sizes and was used to uncover the oligomeric states of the epidermal growth factor receptor and the secretin receptor in the presence and absence of their agonist ligands. This method is fast and is scalable for high-throughput screening of drugs targeting protein-protein interactions.


Assuntos
Fluorescência , Processamento de Imagem Assistida por Computador/métodos , Multimerização Proteica , Receptores Acoplados a Proteínas G/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores ErbB/química , Receptores ErbB/metabolismo , Humanos , Ligantes , Microscopia Confocal , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Espectrometria de Fluorescência
4.
Medicina (Kaunas) ; 55(5)2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108965

RESUMO

Background and objectives: Cancer is the second leading cause of death globally, an alarming but expected increase. In comparison to other types of cancer, malignant bone tumors are unusual and their treatment is a real challenge. This paper's main purpose is the study of the potential application of composite scaffolds based on biopolymers and calcium phosphates with the inclusion of magnetic nanoparticles in combination therapy for malignant bone tumors. Materials and Methods: The first step was to investigate if X-rays could modify the scaffolds' properties. In vitro degradation of the scaffolds exposed to X-rays was analyzed, as well as their interaction with phosphate buffer solutions and cells. The second step was to load an anti-tumoral drug (doxorubicin) and to study in vitro drug release and its interaction with cells. The chemical structure of the scaffolds and their morphology were studied. Results: Analyses showed that X-ray irradiation did not influence the scaffolds' features. Doxorubicin release was gradual and its interaction with cells showed cytotoxic effects on cells after 72 h of direct contact. Conclusions: The obtained scaffolds could be considered in further studies regarding combination therapy for malignant bone tumors.


Assuntos
Biopolímeros/uso terapêutico , Neoplasias Ósseas/terapia , Fosfatos de Cálcio/uso terapêutico , Quimiorradioterapia/métodos , Alicerces Teciduais , Biopolímeros/administração & dosagem , Fosfatos de Cálcio/administração & dosagem , Quimiorradioterapia/normas , Humanos , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/uso terapêutico
5.
Ecol Lett ; 21(12): 1833-1844, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30230201

RESUMO

Climatically controlled allocation to reproduction is a key mechanism by which climate influences tree growth and may explain lagged correlations between climate and growth. We used continent-wide datasets of tree-ring chronologies and annual reproductive effort in Fagus sylvatica from 1901 to 2015 to characterise relationships between climate, reproduction and growth. Results highlight that variable allocation to reproduction is a key factor for growth in this species, and that high reproductive effort ('mast years') is associated with stem growth reduction. Additionally, high reproductive effort is associated with previous summer temperature, creating lagged climate effects on growth. Consequently, understanding growth variability in forest ecosystems requires the incorporation of reproduction, which can be highly variable. Our results suggest that future response of growth dynamics to climate change in this species will be strongly influenced by the response of reproduction.


Assuntos
Fagus , Árvores , Mudança Climática , Florestas , Reprodução , Árvores/crescimento & desenvolvimento
6.
Phys Rev Lett ; 121(16): 168101, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30387621

RESUMO

Hydrogels made from structured polyprotein domains combine the properties of cross-linked polymers with the unfolding phase transition. The use of protein hydrogels as an ensemble approach to study the physics of domain unfolding is limited by the lack of scaling tools and by the complexity of the system. Here we propose a model to describe the biomechanical response of protein hydrogels based on the unfolding and extension of protein domains under force. Our model considers the contributions of the network dynamics of the molecules inside the gels, which have random cross-linking points and random topology. This model reproduces reported macroscopic viscoelastic effects and constitutes an important step toward using rheometry on protein hydrogels to scale down to the average mechanical response of protein molecules.


Assuntos
Hidrogéis/química , Fenômenos Mecânicos , Modelos Moleculares , Proteínas/química , Elasticidade , Viscosidade
7.
Nanotechnology ; 28(17): 174003, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28272024

RESUMO

Advancements in single-molecule force spectroscopy techniques such as atomic force microscopy and magnetic tweezers allow investigation of how domain folding under force can play a physiological role. Combining these techniques with protein engineering and HaloTag covalent attachment, we investigate similarities and differences between four model proteins: I10 and I91-two immunoglobulin-like domains from the muscle protein titin, and two α + ß fold proteins-ubiquitin and protein L. These proteins show a different mechanical response and have unique extensions under force. Remarkably, when normalized to their contour length, the size of the unfolding and refolding steps as a function of force reduces to a single master curve. This curve can be described using standard models of polymer elasticity, explaining the entropic nature of the measured steps. We further validate our measurements with a simple energy landscape model, which combines protein folding with polymer physics and accounts for the complex nature of tandem domains under force. This model can become a useful tool to help in deciphering the complexity of multidomain proteins operating under force.


Assuntos
Microscopia de Força Atômica/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Conectina/química , Conectina/genética , Conectina/metabolismo , Entropia , Domínios Proteicos , Engenharia de Proteínas/métodos , Dobramento de Proteína , Proteínas Recombinantes/genética , Ubiquitina/química , Ubiquitina/genética , Ubiquitina/metabolismo
8.
Angew Chem Int Ed Engl ; 56(33): 9741-9746, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28470663

RESUMO

A hallmark of tissue ageing is the irreversible oxidative modification of its proteins. We show that single proteins, kept unfolded and extended by a mechanical force, undergo accelerated ageing in times scales of minutes to days. A protein forced to be continuously unfolded completely loses its ability to contract by folding, becoming a labile polymer. Ageing rates vary among different proteins, but in all cases they lose their mechanical integrity. Random oxidative modification of cryptic side chains exposed by mechanical unfolding can be slowed by the addition of antioxidants such as ascorbic acid, or accelerated by oxidants. By contrast, proteins kept in the folded state and probed over week-long experiments show greatly reduced rates of ageing. We demonstrate a novel approach whereby protein ageing can be greatly accelerated: the constant unfolding of a protein for hours to days is equivalent to decades of exposure to free radicals under physiological conditions.


Assuntos
Proteínas/metabolismo , Antioxidantes/farmacologia , Fenômenos Mecânicos , Desnaturação Proteica/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Proteínas/química
9.
J Am Chem Soc ; 138(33): 10546-53, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27409974

RESUMO

Under physiological conditions, protein oxidation and misfolding occur with very low probability and on long times scales. Single-molecule techniques provide the ability to distinguish between properly folded and damaged proteins that are otherwise masked in ensemble measurements. However, at physiological conditions these rare events occur with a time constant of several hours, inaccessible to current single-molecule approaches. Here we present a magnetic-tweezers-based technique that allows, for the first time, the study of folding of single proteins during week-long experiments. This technique combines HaloTag anchoring, sub-micrometer positioning of magnets, and an active correction of the focal drift. Using this technique and protein L as a molecular template, we generate a magnet law by correlating the distance between the magnet and the measuring paramagnetic bead with unfolding/folding steps. We demonstrate that, using this magnet law, we can accurately measure the dynamics of proteins over a wide range of forces, with minimal dispersion from bead to bead. We also show that the force calibration remains invariant over week-long experiments applied to the same single proteins. The approach demonstrated in this Article opens new, exciting ways to examine proteins on the "human" time scale and establishes magnetic tweezers as a valuable technique to study low-probability events that occur during protein folding under force.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Imãs , Fenômenos Mecânicos , Dobramento de Proteína
10.
J Am Chem Soc ; 137(10): 3540-6, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25726700

RESUMO

The mechanical stability of force-bearing proteins is crucial for their functions. However, slow transition rates of complex protein domains have made it challenging to investigate their equilibrium force-dependent structural transitions. Using ultra stable magnetic tweezers, we report the first equilibrium single-molecule force manipulation study of the classic titin I27 immunoglobulin domain. We found that individual I27 in a tandem repeat unfold/fold independently. We obtained the force-dependent free energy difference between unfolded and folded I27 and determined the critical force (∼5.4 pN) at which unfolding and folding have equal probability. We also determined the force-dependent free energy landscape of unfolding/folding transitions based on measurement of the free energy cost of unfolding. In addition to providing insights into the force-dependent structural transitions of titin I27, our results suggest that the conformations of titin immunoglobulin domains can be significantly altered during low force, long duration muscle stretching.


Assuntos
Conectina/química , Imunoglobulinas/química , Fenômenos Mecânicos , Desdobramento de Proteína , Fenômenos Biomecânicos , Elasticidade , Estrutura Terciária de Proteína , Termodinâmica
11.
Biochem Biophys Res Commun ; 460(2): 434-8, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25796331

RESUMO

Recent studies have provided a theoretical framework for including entropic elasticity in the free energy landscape of proteins under mechanical force. Accounting for entropic elasticity using polymer physics models has helped explain the hopping behavior seen in single molecule experiments in the low force regime. Here, we expand on the construction of the free energy of a single protein domain under force proposed by Berkovich et al. to provide a free energy landscape for N tandem domains along a continuous polypeptide. Calculation of the free energy of individual domains followed by their concatenation provides a continuous free energy landscape whose curvature is dominated by the worm-like chain at forces below 20 pN. We have validated our free energy model using Brownian dynamics and reproduce key features of protein folding. This free energy model can predict the effects of changes in the elastic properties of a multidomain protein as a consequence of biological modifications such as phosphorylation or the formation of disulfide bonds. This work lays the foundations for the modeling of tissue elasticity, which is largely determined by the properties of tandem polyproteins.


Assuntos
Elasticidade , Proteínas/fisiologia
12.
Proc Natl Acad Sci U S A ; 109(36): 14416-21, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22895787

RESUMO

The elastic restoring force of tissues must be able to operate over the very wide range of loading rates experienced by living organisms. It is surprising that even the fastest events involving animal muscle tissues do not surpass a few hundred hertz. We propose that this limit is set in part by the elastic dynamics of tethered proteins extending and relaxing under a changing load. Here we study the elastic dynamics of tethered proteins using a fast force spectrometer with sub-millisecond time resolution, combined with Brownian and Molecular Dynamics simulations. We show that the act of tethering a polypeptide to an object, an inseparable part of protein elasticity in vivo and in experimental setups, greatly reduces the attempt frequency with which the protein samples its free energy. Indeed, our data shows that a tethered polypeptide can traverse its free-energy landscape with a surprisingly low effective diffusion coefficient D(eff) ~ 1,200 nm(2)/s. By contrast, our Molecular Dynamics simulations show that diffusion of an isolated protein under force occurs at D(eff) ~ 10(8) nm(2)/s. This discrepancy is attributed to the drag force caused by the tethering object. From the physiological time scales of tissue elasticity, we calculate that tethered elastic proteins equilibrate in vivo with D(eff) ~ 10(4)-10(6) nm(2)/s which is two to four orders magnitude smaller than the values measured for untethered proteins in bulk.


Assuntos
Músculos/fisiologia , Proteínas/química , Animais , Biofísica , Difusão , Elasticidade , Transferência Ressonante de Energia de Fluorescência , Cinética , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Músculos/química
13.
Sci Total Environ ; 912: 169167, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38072249

RESUMO

Climate change is affecting forest ecosystems globally, in particular through warming as well as increases in the frequency and intensity of extreme events. Norway spruce (Picea abies (L.) Karst.) is one of the most important coniferous tree species in Europe. In recent extremely dry years in Central Europe, spruce suffered and large dieback has been observed. In parts of Eastern Europe, however, no large-scale decline in spruce has been reported so far, though anticipated changes in climate pose the question how the future of these forests may look like. To assess the current state of spruce forests in Eastern Europe, we established a tree-ring network consisting of 157 Norway spruce chronologies (from >3000 trees) of different ages distributed along elevational transects in the Eastern Carpathians, Romania. We evaluated early warning signals of climate change-induced stress, i.e. (1) growth decline, (2) increased sensitivity of tree growth (assessed over the statistics first-order autocorrelation and standard deviation), and (3) increased growth synchrony. A pronounced growth decline was observed over the last two decades, which was strongest in younger stands and at lower elevations. However, growth sensitivity and synchrony did not show consistent patterns, suggesting that forest decline may not be immediately imminent. Overall, our findings highlight an increased vulnerability of spruce in the Eastern Carpathians. With ongoing climate change, spruce dieback may be expected in this part of Europe as well.


Assuntos
Picea , Mudança Climática , Ecossistema , Europa (Continente) , Noruega , Árvores , Florestas
14.
Sci Total Environ ; 937: 173321, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38782287

RESUMO

The future performance of the widely abundant European beech (Fagus sylvatica L.) across its ecological amplitude is uncertain. Although beech is considered drought-sensitive and thus negatively affected by drought events, scientific evidence indicating increasing drought vulnerability under climate change on a cross-regional scale remains elusive. While evaluating changes in climate sensitivity of secondary growth offers a promising avenue, studies from productive, closed-canopy forests suffer from knowledge gaps, especially regarding the natural variability of climate sensitivity and how it relates to radial growth as an indicator of tree vitality. Since beech is sensitive to drought, we in this study use a drought index as a climate variable to account for the combined effects of temperature and water availability and explore how the drought sensitivity of secondary growth varies temporally in dependence on growth variability, growth trends, and climatic water availability across the species' ecological amplitude. Our results show that drought sensitivity is highly variable and non-stationary, though consistently higher at dry sites compared to moist sites. Increasing drought sensitivity can largely be explained by increasing climatic aridity, especially as it is exacerbated by climate change and trees' rank progression within forest communities, as (co-)dominant trees are more sensitive to extra-canopy climatic conditions than trees embedded in understories. However, during the driest periods of the 20th century, growth showed clear signs of being decoupled from climate. This may indicate fundamental changes in system behavior and be early-warning signals of decreasing drought tolerance. The multiple significant interaction terms in our model elucidate the complexity of European beech's drought sensitivity, which needs to be taken into consideration when assessing this species' response to climate change.


Assuntos
Mudança Climática , Secas , Fagus , Fagus/crescimento & desenvolvimento , Fagus/fisiologia , Florestas , Árvores/crescimento & desenvolvimento , Árvores/fisiologia
15.
Sci Total Environ ; 913: 169692, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38160816

RESUMO

To enhance our understanding of forest carbon sequestration, climate change mitigation and drought impact on forest ecosystems, the availability of high-resolution annual forest growth maps based on tree-ring width (TRW) would provide a significant advancement to the field. Site-specific characteristics, which can be approximated by high-resolution Earth observation by satellites (EOS), emerge as crucial drivers of forest growth, influencing how climate translates into tree growth. EOS provides information on surface reflectance related to forest characteristics and thus can potentially improve the accuracy of forest growth models based on TRW. Through the modelling of TRW using EOS, climate and topography data, we showed that species-specific models can explain up to 52 % of model variance (Quercus petraea), while combining different species results in relatively poor model performance (R2 = 13 %). The integration of EOS into models based solely on climate and elevation data improved the explained variance by 6 % on average. Leveraging these insights, we successfully generated a map of annual TRW for the year 2021. We employed the area of applicability (AOA) approach to delineate the range in which our models are deemed valid. The calculated AOA for the established forest-type models was 73 % of the study region, indicating robust spatial applicability. Notably, unreliable predictions predominantly occurred in the climate margins of our dataset. In conclusion, our large-scale assessment underscores the efficacy of combining climate, EOS and topographic data to develop robust models for mapping annual TRW. This research not only fills a critical void in the current understanding of forest growth dynamics but also highlights the potential of integrated data sources for comprehensive ecosystem assessments.


Assuntos
Ecossistema , Tecnologia de Sensoriamento Remoto , Florestas , Árvores , Mudança Climática , Europa Oriental , Europa (Continente)
16.
J Am Chem Soc ; 135(34): 12762-71, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23909704

RESUMO

The active site of the Haloalkane Dehydrogenase (HaloTag) enzyme can be covalently attached to a chloroalkane ligand providing a mechanically strong tether, resistant to large pulling forces. Here we demonstrate the covalent tethering of protein L and I27 polyproteins between an atomic force microscopy (AFM) cantilever and a glass surface using HaloTag anchoring at one end and thiol chemistry at the other end. Covalent tethering is unambiguously confirmed by the observation of full length polyprotein unfolding, combined with high detachment forces that range up to ∼2000 pN. We use these covalently anchored polyproteins to study the remarkable mechanical properties of HaloTag proteins. We show that the force that triggers unfolding of the HaloTag protein exhibits a 4-fold increase, from 131 to 491 pN, when the direction of the applied force is changed from the C-terminus to the N-terminus. Force-clamp experiments reveal that unfolding of the HaloTag protein is twice as sensitive to pulling force compared to protein L and refolds at a slower rate. We show how these properties allow for the long-term observation of protein folding-unfolding cycles at high forces, without interference from the HaloTag tether.


Assuntos
Hidrolases/metabolismo , Nanotecnologia , Hidrolases/química , Hidrolases/isolamento & purificação , Fenômenos Mecânicos , Microscopia de Força Atômica , Modelos Moleculares , Dobramento de Proteína
17.
Proc Biol Sci ; 280(1751): 20122375, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23193128

RESUMO

Tree-size distribution is one of the most investigated subjects in plant population biology. The forestry literature reports that tree-size distribution trajectories vary across different stands and/or species, whereas the metabolic scaling theory suggests that the tree number scales universally as -2 power of diameter. Here, we propose a simple functional scaling model in which these two opposing results are reconciled. Basic principles related to crown shape, energy optimization and the finite-size scaling approach were used to define a set of relationships based on a single parameter that allows us to predict the slope of the tree-size distributions in a steady-state condition. We tested the model predictions on four temperate mountain forests. Plots (4 ha each, fully mapped) were selected with different degrees of human disturbance (semi-natural stands versus formerly managed). Results showed that the size distribution range successfully fitted by the model is related to the degree of forest disturbance: in semi-natural forests the range is wide, whereas in formerly managed forests, the agreement with the model is confined to a very restricted range. We argue that simple allometric relationships, at an individual level, shape the structure of the whole forest community.


Assuntos
Biota , Demografia , Modelos Biológicos , Árvores/crescimento & desenvolvimento , Biometria , Agricultura Florestal , Itália , Romênia
18.
Int J Biometeorol ; 57(5): 703-14, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23053066

RESUMO

Increase in temperature and decrease in precipitation pose a major future challenge for sustainable ecosystem management in Romania. To understand ecosystem response and the wider social consequences of environmental change, we constructed a 396-year long (1615-2010) drought sensitive tree-ring width chronology (TRW) of Pinus nigra var. banatica (Georg. et Ion.) growing on steep slopes and shallow organic soil. We established a statistical relationship between TRW and two meteorological parameters-monthly sum of precipitation (PP) and standardised precipitation index (SPI). PP and SPI correlate significantly with TRW (r = 0.54 and 0.58) and are stable in time. Rigorous statistical tests, which measure the accuracy and prediction ability of the model, were all significant. SPI was eventually reconstructed back to 1688, with extreme dry and wet years identified using the percentile method. By means of reconstruction, we identified two so far unknown extremely dry years in Romania--1725 and 1782. Those 2 years are almost as dry as 1946, which was known as the "year of great famine." Since no historical documents for these 2 years were available in local archives, we compared the results with those from neighbouring countries and discovered that both years were extremely dry in the wider region (Slovakia, Hungary, Anatolia, Syria, and Turkey). While the 1800-1900 period was relatively mild, with only two moderately extreme years as far as weather is concerned, the 1900-2009 period was highly salient owing to the very high number of wet and dry extremes--five extremely wet and three extremely dry events (one of them in 1946) were identified.


Assuntos
Interpretação Estatística de Dados , Secas/estatística & dados numéricos , Modelos Estatísticos , Pinus/anatomia & histologia , Pinus/crescimento & desenvolvimento , Chuva , Estações do Ano , Simulação por Computador , Ecossistema , Estatística como Assunto , Turquia
19.
J Biol Chem ; 286(36): 31072-9, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21768096

RESUMO

Understanding protein dynamics requires a comprehensive knowledge of the underlying potential energy surface that governs the motion of each individual protein molecule. Single molecule mechanical studies have provided the unprecedented opportunity to study the individual unfolding pathways along a well defined coordinate, the end-to-end length of the protein. In these experiments, unfolding requires surmounting an energy barrier that separates the native from the extended state. The calculation of the absolute value of the barrier height has traditionally relied on the assumption of an attempt frequency, υ(‡). Here we used single molecule force-clamp spectroscopy to directly determine the value of υ(‡) for mechanical unfolding by measuring the unfolding rate of the small protein ubiquitin at varying temperatures. Our experiments demonstrate a significant effect of the temperature on the mechanical rate of unfolding. By extrapolating the unfolding rate in the absence of force for different temperatures, varying within the range spanning from 5 to 45 °C, we measured a value for the activation barrier of ΔG(‡) = 71 ± 5 kJ/mol and an exponential prefactor υ(‡) ∼4 × 10(9) s(-1). Although the measured prefactor value is 3 orders of magnitude smaller than the value predicted by the transition state theory (∼6 × 10(12) s(-1)), it is 400-fold higher than that encountered in analogous experiments studying the effect of temperature on the reactivity of a protein-embedded disulfide bond (∼10(7) M(-1) s(-1)). This approach will allow quantitative characterization of the complete energy landscape of a folding polypeptide from highly extended states, of capital importance for proteins with elastic function.


Assuntos
Desdobramento de Proteína , Proteínas/química , Termodinâmica , Cinética , Análise Espectral , Temperatura , Ubiquitina/química
20.
Chimia (Aarau) ; 66(4): 214-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22613153

RESUMO

Forces between individual colloidal particles can be measured with the atomic force microscope (AFM), and this technique permits the study of interactions between surfaces across aqueous solutions in great detail. The most relevant forces are described by the Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory, and they include electrostatic double-layer and van der Waals forces. In symmetric systems, the electrostatic forces are repulsive and depend strongly on the type and concentration of the salts present, while van der Waals forces are always attractive. In asymmetric systems, the electrostatic force can become attractive as well, even when involving neutral surfaces, while in rare situations van der Waals forces can become repulsive too. The enormous sensitivity of the double layer forces on additives present is illustrated with oppositely charged polyelectrolytes, which may induce attractions or repulsions depending on their concentrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA