Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Nature ; 588(7837): 284-289, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33239781

RESUMO

Genetic diversity is key to crop improvement. Owing to pervasive genomic structural variation, a single reference genome assembly cannot capture the full complement of sequence diversity of a crop species (known as the 'pan-genome'1). Multiple high-quality sequence assemblies are an indispensable component of a pan-genome infrastructure. Barley (Hordeum vulgare L.) is an important cereal crop with a long history of cultivation that is adapted to a wide range of agro-climatic conditions2. Here we report the construction of chromosome-scale sequence assemblies for the genotypes of 20 varieties of barley-comprising landraces, cultivars and a wild barley-that were selected as representatives of global barley diversity. We catalogued genomic presence/absence variants and explored the use of structural variants for quantitative genetic analysis through whole-genome shotgun sequencing of 300 gene bank accessions. We discovered abundant large inversion polymorphisms and analysed in detail two inversions that are frequently found in current elite barley germplasm; one is probably the product of mutation breeding and the other is tightly linked to a locus that is involved in the expansion of geographical range. This first-generation barley pan-genome makes previously hidden genetic variation accessible to genetic studies and breeding.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta/genética , Hordeum/genética , Internacionalidade , Mutação , Melhoramento Vegetal , Inversão Cromossômica/genética , Mapeamento Cromossômico , Loci Gênicos/genética , Genótipo , Hordeum/classificação , Polimorfismo Genético/genética , Padrões de Referência , Banco de Sementes , Inversão de Sequência , Sequenciamento Completo do Genoma
2.
Proc Natl Acad Sci U S A ; 119(48): e2209875119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36417432

RESUMO

Semidwarfing genes have greatly increased wheat yields globally, yet the widely used gibberellin (GA)-insensitive genes Rht-B1b and Rht-D1b have disadvantages for seedling emergence. Use of the GA-sensitive semidwarfing gene Rht13 avoids this pleiotropic effect. Here, we show that Rht13 encodes a nucleotide-binding site/leucine-rich repeat (NB-LRR) gene. A point mutation in the semidwarf Rht-B13b allele autoactivates the NB-LRR gene and causes a height reduction comparable with Rht-B1b and Rht-D1b in diverse genetic backgrounds. The autoactive Rht-B13b allele leads to transcriptional up-regulation of pathogenesis-related genes including class III peroxidases associated with cell wall remodeling. Rht13 represents a new class of reduced height (Rht) gene, unlike other Rht genes, which encode components of the GA signaling or metabolic pathways. This discovery opens avenues to use autoactive NB-LRR genes as semidwarfing genes in a range of crop species, and to apply Rht13 in wheat breeding programs using a perfect genetic marker.


Assuntos
Nanismo , Triticum , Triticum/genética , Triticum/metabolismo , Nucleotídeos/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sítios de Ligação
3.
Plant J ; 114(1): 209-224, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36710629

RESUMO

Reproductive success hinges on precisely coordinated meiosis, yet our understanding of how structural rearrangements of chromatin and phase transitions during meiosis are transcriptionally regulated is limited. In crop plants, detailed analysis of the meiotic transcriptome could identify regulatory genes and epigenetic regulators that can be targeted to increase recombination rates and broaden genetic variation, as well as provide a resource for comparison among eukaryotes of different taxa to answer outstanding questions about meiosis. We conducted a meiotic stage-specific analysis of messenger RNA (mRNA), small non-coding RNA (sncRNA), and long intervening/intergenic non-coding RNA (lincRNA) in wheat (Triticum aestivum L.) and revealed novel mechanisms of meiotic transcriptional regulation and meiosis-specific transcripts. Amidst general repression of mRNA expression, significant enrichment of ncRNAs was identified during prophase I relative to vegetative cells. The core meiotic transcriptome was comprised of 9309 meiosis-specific transcripts, 48 134 previously unannotated meiotic transcripts, and many known and novel ncRNAs differentially expressed at specific stages. The abundant meiotic sncRNAs controlled the reprogramming of central metabolic pathways by targeting genes involved in photosynthesis, glycolysis, hormone biosynthesis, and cellular homeostasis, and lincRNAs enhanced the expression of nearby genes. Alternative splicing was not evident in this polyploid species, but isoforms were switched at phase transitions. The novel, stage-specific regulatory controls uncovered here challenge the conventional understanding of this crucial biological process and provide a new resource of requisite knowledge for those aiming to directly modulate meiosis to improve crop plants. The wheat meiosis transcriptome dataset can be queried for genes of interest using an eFP browser located at https://bar.utoronto.ca/efp_wheat/cgi-bin/efpWeb.cgi?dataSource=Wheat_Meiosis.


Assuntos
Transcriptoma , Triticum , Triticum/genética , Triticum/metabolismo , Meiose/genética , RNA Mensageiro/genética , RNA não Traduzido/genética
4.
Plant Cell ; 33(6): 1888-1906, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-33710295

RESUMO

Sequence assembly of large and repeat-rich plant genomes has been challenging, requiring substantial computational resources and often several complementary sequence assembly and genome mapping approaches. The recent development of fast and accurate long-read sequencing by circular consensus sequencing (CCS) on the PacBio platform may greatly increase the scope of plant pan-genome projects. Here, we compare current long-read sequencing platforms regarding their ability to rapidly generate contiguous sequence assemblies in pan-genome studies of barley (Hordeum vulgare). Most long-read assemblies are clearly superior to the current barley reference sequence based on short-reads. Assemblies derived from accurate long reads excel in most metrics, but the CCS approach was the most cost-effective strategy for assembling tens of barley genomes. A downsampling analysis indicated that 20-fold CCS coverage can yield very good sequence assemblies, while even five-fold CCS data may capture the complete sequence of most genes. We present an updated reference genome assembly for barley with near-complete representation of the repeat-rich intergenic space. Long-read assembly can underpin the construction of accurate and complete sequences of multiple genomes of a species to build pan-genome infrastructures in Triticeae crops and their wild relatives.


Assuntos
Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hordeum/genética , Biologia Computacional/métodos , DNA Intergênico , Genoma de Planta , Anotação de Sequência Molecular , Retroelementos , Análise de Sequência de DNA , Sequências Repetidas Terminais
5.
Proc Natl Acad Sci U S A ; 117(46): 28708-28718, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33127757

RESUMO

Stem solidness is an important agronomic trait of durum (Triticum turgidum L. var. durum) and bread (Triticum aestivum L.) wheat that provides resistance to the wheat stem sawfly. This dominant trait is conferred by the SSt1 locus on chromosome 3B. However, the molecular identity and mechanisms underpinning stem solidness have not been identified. Here, we demonstrate that copy number variation of TdDof, a gene encoding a putative DNA binding with one finger protein, controls the stem solidness trait in wheat. Using map-based cloning, we localized TdDof to within a physical interval of 2.1 Mb inside the SSt1 locus. Molecular analysis revealed that hollow-stemmed wheat cultivars such as Kronos carry a single copy of TdDof, whereas solid-stemmed cultivars such as CDC Fortitude carry multiple identical copies of the gene. Deletion of all TdDof copies from CDC Fortitude resulted in the loss of stem solidness, whereas the transgenic overexpression of TdDof restored stem solidness in the TdDof deletion mutant pithless1 and conferred stem solidness in Kronos. In solid-stemmed cultivars, increased TdDof expression was correlated with the down-regulation of genes whose orthologs have been implicated in programmed cell death (PCD) in other species. Anatomical and histochemical analyses revealed that hollow-stemmed lines had stronger PCD-associated signals in the pith cells compared to solid-stemmed lines, which suggests copy number-dependent expression of TdDof could be directly or indirectly involved in the negative regulation of PCD. These findings provide opportunities to manipulate stem development in wheat and other monocots for agricultural or industrial purposes.


Assuntos
Variações do Número de Cópias de DNA , Caules de Planta/anatomia & histologia , Fatores de Transcrição/genética , Triticum/genética , Genes de Plantas , Proteínas de Plantas/genética , Triticum/anatomia & histologia
6.
Int J Mol Sci ; 24(9)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37176097

RESUMO

Wheat was one of the crops domesticated in the Fertile Crescent region approximately 10,000 years ago. Despite undergoing recent polyploidization, hull-to-free-thresh transition events, and domestication bottlenecks, wheat is now grown in over 130 countries and accounts for a quarter of the world's cereal production. The main reason for its widespread success is its broad genetic diversity that allows it to thrive in different environments. To trace historical selection and hybridization signatures, genome scans were performed on two datasets: approximately 113K SNPs from 921 predominantly bread wheat accessions and approximately 110K SNPs from about 400 wheat accessions representing all ploidy levels. To identify environmental factors associated with the loci, a genome-environment association (GEA) was also performed. The genome scans on both datasets identified a highly differentiated region on chromosome 4A where accessions in the first dataset were dichotomized into a group (n = 691), comprising nearly all cultivars, wild emmer, and most landraces, and a second group (n = 230), dominated by landraces and spelt accessions. The grouping of cultivars is likely linked to their potential ancestor, bread wheat cv. Norin-10. The 4A region harbored important genes involved in adaptations to environmental conditions. The GEA detected loci associated with latitude and temperature. The genetic signatures detected in this study provide insight into the historical selection and hybridization events in the wheat genome that shaped its current genetic structure and facilitated its success in a wide spectrum of environmental conditions. The genome scans and GEA approaches applied in this study can help in screening the germplasm housed in gene banks for breeding, and for conservation purposes.


Assuntos
Genoma de Planta , Triticum , Triticum/genética , Melhoramento Vegetal , Ploidias , Aclimatação , Polimorfismo de Nucleotídeo Único
7.
Theor Appl Genet ; 135(4): 1143-1162, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35306567

RESUMO

KEY MESSAGE: A major QTL on chromosome arm 4BS was associated with reduced spike shattering and reduced plant height in coupling phase, and a second major QTL associated with reduced spike shattering was detected on chromosome arm 5AL in the same wheat variety Carberry. Spike shattering can cause severe grain yield loss in wheat. Development of cultivars with reduced shattering but having easy mechanical threshability is the target of wheat breeding programs. This study was conducted to determine quantitative trait loci (QTL) associated with shattering resistance, and epistasis among QTL in the populations Carberry/AC Cadillac and Carberry/Thatcher. Response of the populations to spike shattering was evaluated near Swift Current, SK, in four to five environments. Plant height data recorded in different locations and years were used to determine the relationship of the trait with spike shattering. Each population was genotyped and mapped with the wheat 90 K Illumina iSelect SNP array. Main effect QTL were analyzed by MapQTL 6, and epistatic interactions between main effect QTL were determined by QTLNetwork 2.0. Correlations between height and shattering ranged from 0.15 to 0.49. Carberry contributed two major QTL associated with spike shattering on chromosome arms 4BS and 5AL, detected in both populations. Carberry also contributed two minor QTL on 7AS and 7AL. AC Cadillac contributed five minor QTL on 1AL, 2DL, 3AL, 3DL and 7DS. Nine epistatic QTL interactions were identified, out of which the most consistent and synergistic interaction, that reduced the expression of shattering, occurred between 4BS and 5AL QTL. The 4BS QTL was consistently associated with reduced shattering and reduced plant height in the coupling phase. The present findings shed light on the inheritance of shattering resistance and provide genetic markers for manipulating the trait to develop wheat cultivars.


Assuntos
Basidiomycota , Locos de Características Quantitativas , Basidiomycota/fisiologia , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Resistência à Doença/genética , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética
8.
Mol Plant Microbe Interact ; 34(10): 1094-1102, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34096764

RESUMO

Plant-pathogen interactions result in disease development in a susceptible host. Plants actively resist pathogens via a complex immune system comprising both surface-localized receptors that sense the extracellular space as well as intracellular receptors recognizing pathogen effectors. To date, the majority of cloned resistance genes encode intracellular nucleotide-binding leucine-rich repeat receptor proteins. Recent discoveries have revealed tandem kinase proteins (TKPs) as another important family of intracellular proteins involved in plant immune responses. Five TKP genes-barley Rpg1 and wheat WTK1 (Yr15), WTK2 (Sr60), WTK3 (Pm24), and WTK4-protect against devastating fungal diseases. Moreover, a large diversity and numerous putative TKPs exist across the plant kingdom. This review explores our current knowledge of TKPs and serves as a basis for future studies that aim to develop and exploit a deeper understanding of innate plant immunity receptor proteins.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Resistência à Doença , Hordeum , Imunidade Vegetal , Proteínas Quinases , Triticum , Hordeum/enzimologia , Hordeum/imunologia , Doenças das Plantas , Proteínas Quinases/genética , Triticum/enzimologia , Triticum/imunologia
9.
Plant Biotechnol J ; 19(4): 660-670, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33657682

RESUMO

Human population growth has increased the demand for food crops, animal feed, biofuel and biomaterials, all the while climate change is impacting environmental growth conditions. There is an urgent need to develop crop varieties which tolerate adverse growth conditions while requiring fewer inputs. Plant breeding is critical to global food security and, while it has benefited from modern technologies, it remains constrained by a lack of valuable genetic diversity, linkage drag, and an effective way to combine multiple favourable alleles for complex traits. CRISPR/Cas technology has transformed genome editing across biological systems and promises to transform agriculture with its high precision, ease of design, multiplexing ability and low cost. We discuss the integration of CRISPR/Cas-based gene editing into crop breeding to advance domestication and refine inbred crop varieties for various applications and growth environments. We highlight the use of CRISPR/Cas-based gene editing to fix desirable allelic variants, generate novel alleles, break deleterious genetic linkages, support pre-breeding and for introgression of favourable loci into elite lines.


Assuntos
Domesticação , Edição de Genes , Sistemas CRISPR-Cas/genética , Genoma de Planta/genética , Melhoramento Vegetal
10.
Theor Appl Genet ; 134(1): 381-398, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33135095

RESUMO

KEY MESSAGE: Genomic predictions across environments and within populations resulted in moderate to high accuracies but across-population genomic prediction should not be considered in wheat for small population size. Genomic selection (GS) is a marker-based selection suggested to improve the genetic gain of quantitative traits in plant breeding programs. We evaluated the effects of training population (TP) composition, cross-validation design, and genetic relationship between the training and breeding populations on the accuracy of GS in spring wheat (Triticum aestivum L.). Two populations of 231 and 304 spring hexaploid wheat lines that were phenotyped for six agronomic traits and genotyped with the wheat 90 K array were used to assess the accuracy of seven GS models (RR-BLUP, G-BLUP, BayesB, BL, RKHS, GS + de novo GWAS, and reaction norm) using different cross-validation designs. BayesB outperformed the other models for within-population genomic predictions in the presence of few quantitative trait loci (QTL) with large effects. However, including fixed-effect marker covariates gave better performance for an across-population prediction when the same QTL underlie traits in both populations. The accuracy of prediction was highly variable based on the cross-validation design, which suggests the importance to use a design that resembles the variation within a breeding program. Moderate to high accuracies were obtained when predictions were made within populations. In contrast, across-population genomic prediction accuracies were very low, suggesting that the evaluated models are not suitable for prediction across independent populations. On the other hand, across-environment prediction and forward prediction designs using the reaction norm model resulted in moderate to high accuracies, suggesting that GS can be applied in wheat to predict the performance of newly developed lines and lines in incomplete field trials.


Assuntos
Genômica , Modelos Genéticos , Locos de Características Quantitativas , Triticum/genética , Estudos de Associação Genética , Genética Populacional , Genótipo , Fenótipo , Melhoramento Vegetal , Poliploidia
11.
Theor Appl Genet ; 134(2): 647-660, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33200319

RESUMO

KEY MESSAGE: A major QTL for oviposition deterrence to orange wheat blossom midge was detected on chromosome 1A in the Canadian breeding line BW278 that was inherited from the Chinese variety Sumai-3. Orange wheat blossom midge (OWBM, Sitodiplosis mosellana Géhin, Diptera: Cecidomyiidae) is an important insect pest of wheat (Triticum aestivum L.) that reduces both grain yield and quality. Oviposition deterrence results in a reduction of eggs deposited on spikes relative to that observed on a wheat line preferred by OWBM. Quantification of oviposition deterrence is labor-intensive, so wheat breeders require efficient DNA markers for the selection of this trait. The objective of this study was to identify quantitative trait loci (QTL) for oviposition deterrence in a doubled haploid (DH) population developed from the spring wheat cross Superb/BW278. The DH population and check varieties were evaluated for OWBM kernel damage from five field nurseries over three growing seasons. QTL analysis identified major effect loci on chromosomes 1A (QSm.mrc-1A) and 5A (QSm.mrc-5A). Reduced kernel damage was contributed by BW278 at QSm.mrc-1A and Superb at QSm.mrc-5A. QSm.mrc-1A mapped to the approximate location of the oviposition deterrence QTL previously found in the American variety Reeder. However, haplotype analysis revealed that BW278 inherited this oviposition deterrence allele from the Chinese spring wheat variety Sumai-3. QSm.mrc-5A mapped to the location of awn inhibitor gene B1, suggesting that awns hinder OWBM oviposition. Single-nucleotide polymorphisms (SNPs) were identified for predicting the presence or absence of QSm.mrc-1A based upon haplotype. Functional annotation of candidate genes in 1A QTL intervals revealed eleven potential candidate genes, including a gene involved in terpenoid biosynthesis. SNPs for QSm.mrc-1A and fully awned spikes provide a basis for the selection of oviposition deterrence to OWBM.


Assuntos
Ceratopogonidae/anatomia & histologia , Ceratopogonidae/fisiologia , Resistência à Doença/genética , Genes de Plantas , Oviposição , Doenças das Plantas/genética , Triticum/genética , Animais , Mapeamento Cromossômico , Resistência à Doença/imunologia , Haploidia , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/parasitologia
12.
Theor Appl Genet ; 133(10): 2775-2796, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32556394

RESUMO

KEY MESSAGE: QTL analyses of two bi-parental mapping populations with AC Barrie as a parent revealed numerous FHB-resistance QTL unique to each population and uncovered novel variation near Fhb1. Fusarium head blight (FHB) is a destructive disease of wheat worldwide, leading to severe yield and quality losses. The genetic basis of native FHB resistance was examined in two populations: a recombinant inbred line population from the cross Cutler/AC Barrie and a doubled haploid (DH) population from the cross AC Barrie/Reeder. Numerous QTL were detected among the two mapping populations with many being cross-specific. Photoperiod insensitivity at Ppd-D1 and dwarfing at Rht-B1 and Rht-D1 was associated with increased FHB susceptibility. Anthesis date QTL at or near the Vrn-A1 and Vrn-B1 loci co-located with major FHB-resistance QTL in the AC Barrie/Reeder population. The loci were epistatic for both traits, such that DH lines with both late alleles were considerably later to anthesis and had reduced FHB symptoms (i.e., responsible for the epistatic interaction). Interestingly, AC Barrie contributed FHB resistance near the Fhb1 locus in the Cutler population and susceptibility in the Reeder population. Analyses of the Fhb1 candidate genes PFT and TaHRC confirmed that AC Barrie, Cutler, and Reeder do not carry the Sumai-3 Fhb1 gene. Resistance QTL were also detected at the expected locations of Fhb2 and Fhb5. The native FHB-resistance QTL detected near Fhb1, Fhb2, and Fhb5 do not appear to be as effective as Fhb1, Fhb2, and Fhb5 from Sumai-3. The presence of awns segregated at the B1 awn inhibitor locus in both populations, but was only associated with FHB resistance in the Cutler/AC Barrie population suggesting linkage caused the association rather than pleiotropy.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Alelos , Mapeamento Cromossômico , Fusarium/patogenicidade , Genes de Plantas , Genótipo , Fenótipo , Doenças das Plantas/microbiologia , Triticum/microbiologia
13.
Plant J ; 96(6): 1148-1159, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30238531

RESUMO

The reference genome sequence of wheat 'Chinese Spring' (CS) is now available (IWGSC RefSeq v1.0), but the core sequences defining the nucleolar organizer regions (NORs) have not been characterized. We estimated that the total copy number of the rDNA units in the wheat genome is 11 160, of which 30.5%, 60.9% and 8.6% are located on Nor-B1 (1B), Nor-B2 (6B) and other NORs, respectively. The total length of the NORs is estimated to be 100 Mb, corresponding to approximately 10% of the unassembled portion of the genome not represented in RefSeq v1.0. Four subtypes (S1-S4) of the rDNA units were identified based on differences within the 3' external transcribed spacer regions in Nor-B1 and Nor-B2, and quantitative PCR indicated locus-specific variation in rDNA subtype contents. Expression analyses of rDNA subtypes revealed that S1 was predominantly expressed and S2 weakly expressed, in contrast to the relative abundance of rDNA subtypes in the wheat genome. These results suggest a regulation mechanism of differential rDNA expression based on sequence differences. S3 expression increased in the ditelosomic lines Dt1BL and Dt6BL, suggesting that S3 is subjected to chromosome-mediated silencing. Structural differences were detected in the regions surrounding the NOR among homoeologous chromosomes of groups 1 and 6. The adjacent regions distal to the major NORs were expanded compared with their homoeologous counterparts, and the gene density of these expanded regions was relatively low. We provide evidence that these regions are likely to be important for autoregulation of the associated major NORs as well as silencing of minor NORs.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Região Organizadora do Nucléolo/genética , RNA de Plantas/genética , RNA Ribossômico/genética , Triticum/genética , Cromossomos de Plantas/genética , Variações do Número de Cópias de DNA/genética , Loci Gênicos/genética , Genoma de Planta/genética , Hibridização in Situ Fluorescente , Região Organizadora do Nucléolo/metabolismo , Reação em Cadeia da Polimerase , RNA de Plantas/metabolismo , RNA Ribossômico/metabolismo , Triticum/metabolismo
14.
Theor Appl Genet ; 132(9): 2591-2604, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31177292

RESUMO

KEY MESSAGE: Genome-wide association on winter survival was conducted using data from image-based phenotyping method. Nine QTL were observed and three of them with candidate gene identified. Winter survival is an essential trait of winter wheat (Triticum aestivum L.) grown in regions with high risk of winterkill. We characterized a diversity panel of 450 Canadian wheat varieties that included mostly winter-growth habit wheats to identify key genetic factors that contribute to higher winter survival under field conditions. To more accurately quantify winter survival differences among varieties, image-based phenotyping methods, captured by unmanned aerial vehicle (UAV) and on ground level, were used to estimate the winter survival of each varieties. Winter survival index was developed to correct for emergence when evaluating winter survival. Winter survival measurement estimated by visual estimation, UAV imagery and ground imagery showed strong correlation with each other and had comparable broad-sense heritability. Genome-wide association studies resulted in the identification of seven quantitative trait loci (QTL) for winter survival including Vrn-A1. By using the recently released annotated sequence of the wheat genome and the available RNA-Seq data, two putative candidate genes underlying the QTL for winter survival were identified. However, our study showed that certain QTL was unique to specific winter survival measurement. Collectively, our study demonstrated the feasibility of using UAV-based imagery for the identification of loci associated with winter survival in wheat. The complexity of in-field condition make our result a valuable complement to indoor frost-tolerance studies in the identification of genetic factors not directly linked to freezing tolerance.


Assuntos
Aeronaves/instrumentação , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Estações do Ano , Triticum/crescimento & desenvolvimento , Triticum/genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Estudo de Associação Genômica Ampla , Processamento de Imagem Assistida por Computador/métodos , Fenótipo , Tecnologia de Sensoriamento Remoto
15.
Theor Appl Genet ; 132(11): 3023-3033, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31410494

RESUMO

KEY MESSAGE: Based on their consistency over environments, two QTL identified in Lillian on chromosomes 5A and 7A could be useful targets for marker assisted breeding of common bunt resistance. Common bunt of wheat (Triticum aestivum L.) caused by Tilletia tritici and T. laevis is an economically important disease because of losses in grain yield and reduced grain quality. Resistance can be quantitative, under the control of multiple small effect genes. The Canada Western Red Spring wheat variety Lillian is moderately resistant to common bunt races found on the Canadian prairies. This study was conducted to identify and map quantitative trait loci (QTL) conferring resistance against common bunt in Lillian. A doubled haploid population comprising 280 lines was developed from F1 plants of the cross of Lillian by Vesper. The lines were inoculated at seeding with the two races L16 (T. laevis) and T19 (T. tritici), grown in field near Swift Current, SK, in 2014, 2015 and 2016 and assessed for disease incidence. The lines were genotyped with the 90 K iSelect SNP genotyping assay, and a high-density genetic map was constructed. Quantitative trait locus analysis was performed with MapQTL.6® software. Two relatively stable common bunt resistance QTL, detected in two of the 3 years, were identified on chromosomes 5A and 7A from Lillian. In addition, three less stable QTL, appearing in one out of 3 years, were identified: one was contributed by Lillian on chromosome 3D and two were contributed by Vesper on chromosomes 1D and 2A. Epistatic interaction was identified for the bunt incidence between 3D and 7A resulting in greater bunt resistance. Future bunt resistance breeding will benefit from combining these QTL through gene pyramiding.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Basidiomycota/patogenicidade , Mapeamento Cromossômico , Cromossomos de Plantas , Genes de Plantas , Genótipo , Haploidia , Fenótipo , Doenças das Plantas/microbiologia , Triticum/microbiologia
16.
Phytopathology ; 109(10): 1664-1675, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31369363

RESUMO

Fusarium head blight (FHB) is a major fungal disease affecting wheat production worldwide. Since the early 1990s, FHB, caused primarily by Fusarium graminearum, has become one of the most significant diseases faced by wheat producers in Canada and the United States. The increasing FHB problem is likely due to the increased adoption of conservation tillage practices, expansion of maize production, use of susceptible wheat varieties in rotation, and climate variability. Durum wheat (Triticum turgidum sp. durum) is notorious for its extreme susceptibility to FHB and breeding for resistance is complicated because sources of FHB resistance are rare in the primary gene pool of tetraploid wheat. Losses due to this disease include yield, test weight, seed quality, food and feed quality, and when severe, market access. More importantly, it is the contamination with mycotoxins, such as deoxynivalenol, in Fusarium-infected durum kernels that causes the most serious economic as well as food and feed safety concerns. Several studies and thorough reviews have been published on germplasm development and breeding for FHB resistance and the genetics and genomics of FHB resistance in bread or common wheat (T. aestivum); however, similar reviews have not been conducted in durum wheat. Thus, the aim of this review is to summarize and discuss the recent research efforts to mitigate FHB in durum wheat, including quantitative trait locus mapping, genome-wide association studies, genomic prediction, mutagenesis and characterization of genes and pathways involved in FHB resistance. It also highlights future directions, FHB-resistant germplasm, and the potential role of morphological traits to enhance FHB resistance in durum wheat.


Assuntos
Resistência à Doença , Fusarium , Melhoramento Vegetal , Triticum , Canadá , Fusarium/fisiologia , Estudo de Associação Genômica Ampla , Pesquisa/tendências , Triticum/microbiologia
17.
Environ Microbiol ; 20(4): 1498-1515, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29411480

RESUMO

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is an important disease in Canada. The worldwide genetic structure of Pst populations have been characterized, excluding Canada. Here, we elucidated the genetic structure of the western Canadian Pst population using molecular markers, revealing the presence of four divergent lineages with predominantly clonal structure. In the worldwide context, two previously reported lineages were identified: PstS0 (22%), representing an old Northwestern-European and PstS1 (35%), an invasive warm-temperature adapted. Additionally, two new, unreported lineages, PstPr (9%) and PstS1-related (35%), were detected, which produced more telia than other lineages and had double the number of unique recombination events. The PstPr was a recent invasion, and likely evolved in a diverse, recombinant population as it was closely related to the PstS5, PstS7/Warrior, PstS8/Kranich, and PstS9 lineages originating from sexually recombining populations in the centre of diversity. The DNA methylation analysis revealed DNA-methyltransferase1-homologs, providing compelling evidence for epigenetic regulation and as a first report, an average of ∼5%, 5hmC in the Puccinia epigenome merits further investigation. The divergent lineages in the Canadian Pst population with the potential for genetic recombination, as well as epigenetic regulation needs consideration in the context of pathogen adaptation and management.


Assuntos
Basidiomycota/classificação , Basidiomycota/genética , Metilação de DNA/genética , Doenças das Plantas/microbiologia , Triticum/microbiologia , Canadá , Mapeamento Cromossômico , Epigênese Genética , Marcadores Genéticos/genética , Repetições de Microssatélites/genética
18.
BMC Plant Biol ; 17(1): 45, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28202046

RESUMO

BACKGROUND: Lr16 is a widely deployed leaf rust resistance gene in wheat (Triticum aestivum L.) that is highly effective against the North American Puccinia triticina population when pyramided with the gene Lr34. Lr16 is a seedling leaf rust resistance gene conditioning an incompatible interaction with a distinct necrotic ring surrounding the uredinium. Lr16 was previously mapped to the telomeric region of the short arm of wheat chromosome 2B. The goals of this study were to develop numerous single nucleotide polymorphism (SNP) markers for the Lr16 region and identify diagnostic gene-specific SNP marker assays for marker-assisted selection (MAS). RESULTS: Forty-three SNP markers were developed and mapped on chromosome 2BS tightly linked with the resistance gene Lr16 across four mapping populations representing a total of 1528 gametes. Kompetitive Allele Specific PCR (KASP) assays were designed for all identified SNPs. Resistance gene analogs (RGAs) linked with the Lr16 locus were identified and RGA-based SNP markers were developed. The diagnostic potential of the SNPs co-segregating with Lr16 was evaluated in a diverse set of 133 cultivars and breeding lines. Six SNP markers were consistent with the Lr16 phenotype and are accurately predictive of Lr16 for all wheat lines/cultivars in the panel. CONCLUSIONS: Lr16 was mapped relative to SNP markers in four populations. Six SNP markers exhibited high quality clustering in the KASP assay and are suitable for MAS of Lr16 in wheat breeding programs.


Assuntos
Doenças das Plantas/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Triticum/genética , Triticum/microbiologia , Basidiomycota/patogenicidade , Mapeamento Cromossômico , Resistência à Doença/genética , Marcadores Genéticos , Haplótipos , Fenótipo , Doenças das Plantas/microbiologia , Plântula/genética , Plântula/microbiologia
19.
Theor Appl Genet ; 130(12): 2617-2635, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28913655

RESUMO

KEY MESSAGE: Quantitative trait loci controlling stripe rust resistance were identified in adapted Canadian spring wheat cultivars providing opportunity for breeders to stack loci using marker-assisted breeding. Stripe rust or yellow rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss., is a devastating disease of common wheat (Triticum aestivum L.) in many regions of the world. The objectives of this research were to identify and map quantitative trait loci (QTL) associated with stripe rust resistance in adapted Canadian spring wheat cultivars that are effective globally, and investigate opportunities for stacking resistance. Doubled haploid (DH) populations from the crosses Vesper/Lillian, Vesper/Stettler, Carberry/Vesper, Stettler/Red Fife and Carberry/AC Cadillac were phenotyped for stripe rust severity and infection response in field nurseries in Canada (Lethbridge and Swift Current), New Zealand (Lincoln), Mexico (Toluca) and Kenya (Njoro), and genotyped with SNP markers. Six QTL for stripe rust resistance in the population of Vesper/Lillian, five in Vesper/Stettler, seven in Stettler/Red Fife, four in Carberry/Vesper and nine in Carberry/AC Cadillac were identified. Lillian contributed stripe rust resistance QTL on chromosomes 4B, 5A, 6B and 7D, AC Cadillac on 2A, 2B, 3B and 5B, Carberry on 1A, 1B, 4A, 4B, 7A and 7D, Stettler on 1A, 2A, 3D, 4A, 5B and 6A, Red Fife on 2D, 3B and 4B, and Vesper on 1B, 2B and 7A. QTL on 1A, 1B, 2A, 2B, 3B, 4A, 4B, 5B, 7A and 7D were observed in multiple parents. The populations are compelling sources of recombination of many stripe rust resistance QTL for stacking disease resistance. Gene pyramiding should be possible with little chance of linkage drag of detrimental genes as the source parents were mostly adapted cultivars widely grown in Canada.


Assuntos
Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Basidiomycota , Canadá , Mapeamento Cromossômico , Cruzamentos Genéticos , Genética Populacional , Técnicas de Genotipagem , Quênia , México , Nova Zelândia , Fenótipo , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA