Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Nat Rev Mol Cell Biol ; 19(5): 327-341, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29339797

RESUMO

RNA-binding proteins (RBPs) are typically thought of as proteins that bind RNA through one or multiple globular RNA-binding domains (RBDs) and change the fate or function of the bound RNAs. Several hundred such RBPs have been discovered and investigated over the years. Recent proteome-wide studies have more than doubled the number of proteins implicated in RNA binding and uncovered hundreds of additional RBPs lacking conventional RBDs. In this Review, we discuss these new RBPs and the emerging understanding of their unexpected modes of RNA binding, which can be mediated by intrinsically disordered regions, protein-protein interaction interfaces and enzymatic cores, among others. We also discuss the RNA targets and molecular and cellular functions of the new RBPs, as well as the possibility that some RBPs may be regulated by RNA rather than regulate RNA.


Assuntos
Proteínas de Ligação a RNA/metabolismo , Animais , Humanos , Ligação Proteica/fisiologia , Proteoma/metabolismo , RNA/metabolismo
2.
Mol Cell ; 79(4): 546-560.e7, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32589964

RESUMO

Translational control targeting the initiation phase is central to the regulation of gene expression. Understanding all of its aspects requires substantial technological advancements. Here we modified yeast translation complex profile sequencing (TCP-seq), related to ribosome profiling, and adapted it for mammalian cells. Human TCP-seq, capable of capturing footprints of 40S subunits (40Ss) in addition to 80S ribosomes (80Ss), revealed that mammalian and yeast 40Ss distribute similarly across 5'TRs, indicating considerable evolutionary conservation. We further developed yeast and human selective TCP-seq (Sel-TCP-seq), enabling selection of 40Ss and 80Ss associated with immuno-targeted factors. Sel-TCP-seq demonstrated that eIF2 and eIF3 travel along 5' UTRs with scanning 40Ss to successively dissociate upon AUG recognition; notably, a proportion of eIF3 lingers on during the initial elongation cycles. Highlighting Sel-TCP-seq versatility, we also identified four initiating 48S conformational intermediates, provided novel insights into ATF4 and GCN4 mRNA translational control, and demonstrated co-translational assembly of initiation factor complexes.


Assuntos
Complexos Multiproteicos/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Regiões 5' não Traduzidas , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Códon de Iniciação , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Células HEK293 , Humanos , Complexos Multiproteicos/genética , Fatores de Iniciação de Peptídeos/genética , Subunidades Ribossômicas Menores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Ribossomos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Cell ; 149(6): 1393-406, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22658674

RESUMO

RNA-binding proteins (RBPs) determine RNA fate from synthesis to decay. Employing two complementary protocols for covalent UV crosslinking of RBPs to RNA, we describe a systematic, unbiased, and comprehensive approach, termed "interactome capture," to define the mRNA interactome of proliferating human HeLa cells. We identify 860 proteins that qualify as RBPs by biochemical and statistical criteria, adding more than 300 RBPs to those previously known and shedding light on RBPs in disease, RNA-binding enzymes of intermediary metabolism, RNA-binding kinases, and RNA-binding architectures. Unexpectedly, we find that many proteins of the HeLa mRNA interactome are highly intrinsically disordered and enriched in short repetitive amino acid motifs. Interactome capture is broadly applicable to study mRNA interactome composition and dynamics in varied biological settings.


Assuntos
Proteômica/métodos , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/isolamento & purificação , Animais , Células HeLa , Humanos , Proteínas de Ligação a RNA/metabolismo
4.
RNA ; 30(5): 560-569, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38531644

RESUMO

The potential presence of 5-methylcytosine as a sparse internal modification of mRNA was first raised in 1975, and a first map of the modification was also part of the epitranscriptomics "big bang" in 2012. Since then, the evidence for its presence in mRNA has firmed up, and initial insights have been gained into the molecular function and broader biological relevance of 5-methylcytosine when present in mRNA. Here, we summarize the status quo of the field, outline some of its current challenges, and suggest how to address them in future work.


Assuntos
5-Metilcitosina , RNA , RNA Mensageiro/genética
5.
Nucleic Acids Res ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721779

RESUMO

Translational control is important in all life, but it remains a challenge to accurately quantify. When ribosomes translate messenger (m)RNA into proteins, they attach to the mRNA in series, forming poly(ribo)somes, and can co-localize. Here, we computationally model new types of co-localized ribosomal complexes on mRNA and identify them using enhanced translation complex profile sequencing (eTCP-seq) based on rapid in vivo crosslinking. We detect long disome footprints outside regions of non-random elongation stalls and show these are linked to translation initiation and protein biosynthesis rates. We subject footprints of disomes and other translation complexes to artificial intelligence (AI) analysis and construct a new, accurate and self-normalized measure of translation, termed stochastic translation efficiency (STE). We then apply STE to investigate rapid changes to mRNA translation in yeast undergoing glucose depletion. Importantly, we show that, well beyond tagging elongation stalls, footprints of co-localized ribosomes provide rich insight into translational mechanisms, polysome dynamics and topology. STE AI ranks cellular mRNAs by absolute translation rates under given conditions, can assist in identifying its control elements and will facilitate the development of next-generation synthetic biology designs and mRNA-based therapeutics.

6.
Mol Cell ; 62(3): 323-324, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27153530

RESUMO

Epitranscriptomic marks are dynamically placed on mRNA by "writer" or "eraser" enzymes, while "readers" modulate their function accordingly. Lin et al. (2016) now report that the N6-methyladenosine:RNA methyltransferase METTL3 is both a writer and a reader, directly enhancing mRNA translation.


Assuntos
RNA Mensageiro/genética , RNA/genética , Metiltransferases/genética
7.
Mol Cancer ; 22(1): 83, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173708

RESUMO

BACKGROUND: RNA modifications are important regulators of transcript activity and an increasingly emerging body of data suggests that the epitranscriptome and its associated enzymes are altered in human tumors. METHODS: Combining data mining and conventional experimental procedures, NSUN7 methylation and expression status was assessed in liver cancer cell lines and primary tumors. Loss-of-function and transfection-mediated recovery experiments coupled with RNA bisulfite sequencing and proteomics determined the activity of NSUN7 in downstream targets and drug sensitivity. RESULTS: In this study, the initial screening for genetic and epigenetic defects of 5-methylcytosine RNA methyltransferases in transformed cell lines, identified that the NOL1/NOP2/Sun domain family member 7 (NSUN7) undergoes promoter CpG island hypermethylation-associated with transcriptional silencing in a cancer-specific manner. NSUN7 epigenetic inactivation was common in liver malignant cells and we coupled bisulfite conversion of cellular RNA with next-generation sequencing (bsRNA-seq) to find the RNA targets of this poorly characterized putative RNA methyltransferase. Using knock-out and restoration-of-function models, we observed that the mRNA of the coiled-coil domain containing 9B (CCDC9B) gene required NSUN7-mediated methylation for transcript stability. Most importantly, proteomic analyses determined that CCDC9B loss impaired protein levels of its partner, the MYC-regulator Influenza Virus NS1A Binding Protein (IVNS1ABP), creating sensitivity to bromodomain inhibitors in liver cancer cells exhibiting NSUN7 epigenetic silencing. The DNA methylation-associated loss of NSUN7 was also observed in primary liver tumors where it was associated with poor overall survival. Interestingly, NSUN7 unmethylated status was enriched in the immune active subclass of liver tumors. CONCLUSION: The 5-methylcytosine RNA methyltransferase NSUN7 undergoes epigenetic inactivation in liver cancer that prevents correct mRNA methylation. Furthermore, NSUN7 DNA methylation-associated silencing is associated with clinical outcome and distinct therapeutic vulnerability.


Assuntos
Neoplasias Hepáticas , Metiltransferases , Humanos , 5-Metilcitosina , Ilhas de CpG , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Proteômica , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética
8.
Nature ; 535(7613): 570-4, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27437580

RESUMO

Regulation of messenger RNA translation is central to eukaryotic gene expression control. Regulatory inputs are specified by them RNA untranslated regions (UTRs) and often target translation initiation. Initiation involves binding of the 40S ribosomal small subunit (SSU) and associated eukaryotic initiation factors (eIFs)near the mRNA 5' cap; the SSU then scans in the 3' direction until it detects the start codon and is joined by the 60S ribosomal large subunit (LSU) to form the 80S ribosome. Scanning and other dynamic aspects of the initiation model have remained as conjectures because methods to trap early intermediates were lacking. Here we uncover the dynamics of the complete translation cycle in live yeast cells using translation complex profile sequencing (TCP-seq), a method developed from the ribosome profiling approach. We document scanning by observing SSU footprints along 5' UTRs. Scanning SSU have 5'-extended footprints (up to~75 nucleotides), indicative of additional interactions with mRNA emerging from the exit channel, promoting forward movement. We visualized changes in initiation complex conformation as SSU footprints coalesced into three major sizes at start codons (19, 29 and 37 nucleotides). These share the same 5' start site but differ at the 3' end, reflecting successive changes at the entry channel from an open to a closed state following start codon recognition. We also observe SSU 'lingering' at stop codons after LSU departure. Our results underpin mechanistic models of translation initiation and termination, built on decades of biochemical and structural investigation, with direct genome-wide in vivo evidence. Our approach captures ribosomal complexes at all phases of translation and will aid in studying translation dynamics in diverse cellular contexts. Dysregulation of translation is common in disease and, for example, SSU scanning is a target of anti-cancer drug development. TCP-seq will prove useful in discerning differences in mRNA-specific initiation in pathologies and their response to treatment.


Assuntos
Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Regiões 5' não Traduzidas/genética , Códon de Iniciação/metabolismo , Códon de Terminação/metabolismo , Movimento , Nucleotídeos/genética , Iniciação Traducional da Cadeia Peptídica , Terminação Traducional da Cadeia Peptídica , Capuzes de RNA/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , Ribossomos/química
9.
Nucleic Acids Res ; 47(16): 8785-8806, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31299079

RESUMO

RNA structures that impede ribosome binding or subsequent scanning of the 5'-untranslated region (5'-UTR) for the AUG initiation codon reduce translation efficiency. Yeast DEAD-box RNA helicase Ded1 appears to promote translation by resolving 5'-UTR structures, but whether its paralog, Dbp1, performs similar functions is unknown. Furthermore, direct in vivo evidence was lacking that Ded1 or Dbp1 resolves 5'-UTR structures that impede attachment of the 43S preinitiation complex (PIC) or scanning. Here, profiling of translating 80S ribosomes reveals that the translational efficiencies of many more mRNAs are reduced in a ded1-ts dbp1Δ double mutant versus either single mutant, becoming highly dependent on Dbp1 or Ded1 only when the other helicase is impaired. Such 'conditionally hyperdependent' mRNAs contain unusually long 5'-UTRs with heightened propensity for secondary structure and longer transcript lengths. Consistently, overexpressing Dbp1 in ded1 cells improves the translation of many such Ded1-hyperdependent mRNAs. Importantly, Dbp1 mimics Ded1 in conferring greater acceleration of 48S PIC assembly in a purified system on mRNAs harboring structured 5'-UTRs. Profiling 40S initiation complexes in ded1 and dbp1 mutants provides direct evidence that Ded1 and Dbp1 cooperate to stimulate both PIC attachment and scanning on many Ded1/Dbp1-hyperdependent mRNAs in vivo.


Assuntos
RNA Helicases DEAD-box/genética , Regulação Fúngica da Expressão Gênica , Biossíntese de Proteínas , RNA Fúngico/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Regiões 5' não Traduzidas , RNA Helicases DEAD-box/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Conformação de Ácido Nucleico , RNA Fúngico/química , RNA Fúngico/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
BMC Biol ; 18(1): 40, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32293435

RESUMO

BACKGROUND: 5-Methylcytosine (m5C) is a prevalent base modification in tRNA and rRNA but it also occurs more broadly in the transcriptome, including in mRNA, where it serves incompletely understood molecular functions. In pursuit of potential links of m5C with mRNA translation, we performed polysome profiling of human HeLa cell lysates and subjected RNA from resultant fractions to efficient bisulfite conversion followed by RNA sequencing (bsRNA-seq). Bioinformatic filters for rigorous site calling were devised to reduce technical noise. RESULTS: We obtained ~ 1000 candidate m5C sites in the wider transcriptome, most of which were found in mRNA. Multiple novel sites were validated by amplicon-specific bsRNA-seq in independent samples of either human HeLa, LNCaP and PrEC cells. Furthermore, RNAi-mediated depletion of either the NSUN2 or TRDMT1 m5C:RNA methyltransferases showed a clear dependence on NSUN2 for the majority of tested sites in both mRNAs and noncoding RNAs. Candidate m5C sites in mRNAs are enriched in 5'UTRs and near start codons and are embedded in a local context reminiscent of the NSUN2-dependent m5C sites found in the variable loop of tRNA. Analysing mRNA sites across the polysome profile revealed that modification levels, at bulk and for many individual sites, were inversely correlated with ribosome association. CONCLUSIONS: Our findings emphasise the major role of NSUN2 in placing the m5C mark transcriptome-wide. We further present evidence that substantiates a functional interdependence of cytosine methylation level with mRNA translation. Additionally, we identify several compelling candidate sites for future mechanistic analysis.


Assuntos
5-Metilcitosina/química , Polirribossomos/química , Biossíntese de Proteínas , RNA Mensageiro/química , Células HeLa , Humanos
11.
Int J Mol Sci ; 22(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918165

RESUMO

Oxidation of the neurotransmitter, dopamine (DA), is a pathological hallmark of Parkinson's disease (PD). Oxidized DA forms adducts with proteins which can alter their functionality. αB-crystallin and Hsp27 are intracellular, small heat-shock molecular chaperone proteins (sHsps) which form the first line of defense to prevent protein aggregation under conditions of cellular stress. In vitro, the effects of oxidized DA on the structure and function of αB-crystallin and Hsp27 were investigated. Oxidized DA promoted the cross-linking of αB-crystallin and Hsp27 to form well-defined dimer, trimer, tetramer, etc., species, as monitored by SDS-PAGE. Lysine residues were involved in the cross-links. The secondary structure of the sHsps was not altered significantly upon cross-linking with oxidized DA but their oligomeric size was increased. When modified with a molar equivalent of DA, sHsp chaperone functionality was largely retained in preventing both amorphous and amyloid fibrillar aggregation, including fibril formation of mutant (A53T) α-synuclein, a protein whose aggregation is associated with autosomal PD. In the main, higher levels of sHsp modification with DA led to a reduction in chaperone effectiveness. In vivo, DA is sequestered into acidic vesicles to prevent its oxidation and, intracellularly, oxidation is minimized by mM levels of the antioxidant, glutathione. In vitro, acidic pH and glutathione prevented the formation of oxidized DA-induced cross-linking of the sHsps. Oxidized DA-modified αB-crystallin and Hsp27 were not cytotoxic. In a cellular context, retention of significant chaperone functionality by mildly oxidized DA-modified sHsps would contribute to proteostasis by preventing protein aggregation (particularly of α-synuclein) that is associated with PD.


Assuntos
Amiloide/metabolismo , Dopamina/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Cadeia B de alfa-Cristalina/metabolismo , Humanos , Oxirredução , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo
12.
Trends Biochem Sci ; 41(2): 121-123, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26682497

RESUMO

Ribosomes are generally thought of as molecular machines with a constitutive rather than regulatory role during protein synthesis. A study by Slavov et al.[1] now shows that ribosomes of distinct composition and functionality exist within eukaryotic cells, giving credence to the concept of 'specialized' ribosomes.


Assuntos
Biossíntese de Proteínas , Ribossomos/metabolismo , Células Eucarióticas
13.
Plant Cell ; 29(3): 445-460, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28062751

RESUMO

Posttranscriptional methylation of RNA cytosine residues to 5-methylcytosine (m5C) is an important modification with diverse roles, such as regulating stress responses, stem cell proliferation, and RNA metabolism. Here, we used RNA bisulfite sequencing for transcriptome-wide quantitative mapping of m5C in the model plant Arabidopsis thaliana We discovered more than a thousand m5C sites in Arabidopsis mRNAs, long noncoding RNAs, and other noncoding RNAs across three tissue types (siliques, seedling shoots, and roots) and validated a number of these sites. Quantitative differences in methylated sites between these three tissues suggest tissue-specific regulation of m5C. Perturbing the RNA m5C methyltransferase TRM4B resulted in the loss of m5C sites on mRNAs and noncoding RNAs and reduced the stability of tRNAAsp(GTC) We also demonstrate the importance of m5C in plant development, as trm4b mutants have shorter primary roots than the wild type due to reduced cell division in the root apical meristem. In addition, trm4b mutants show increased sensitivity to oxidative stress. Finally, we provide insights into the targeting mechanism of TRM4B by demonstrating that a 50-nucleotide sequence flanking m5C C3349 in MAIGO5 mRNA is sufficient to confer methylation of a transgene reporter in Nicotiana benthamiana.


Assuntos
5-Metilcitosina/metabolismo , Arabidopsis/metabolismo , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , RNA não Traduzido/metabolismo , Transcriptoma/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA de Plantas/genética , RNA não Traduzido/genética , Nicotiana/genética , Nicotiana/metabolismo
14.
Nature ; 516(7530): 192-7, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25503232

RESUMO

Pluripotency is defined by the ability of a cell to differentiate to the derivatives of all the three embryonic germ layers: ectoderm, mesoderm and endoderm. Pluripotent cells can be captured via the archetypal derivation of embryonic stem cells or via somatic cell reprogramming. Somatic cells are induced to acquire a pluripotent stem cell (iPSC) state through the forced expression of key transcription factors, and in the mouse these cells can fulfil the strictest of all developmental assays for pluripotent cells by generating completely iPSC-derived embryos and mice. However, it is not known whether there are additional classes of pluripotent cells, or what the spectrum of reprogrammed phenotypes encompasses. Here we explore alternative outcomes of somatic reprogramming by fully characterizing reprogrammed cells independent of preconceived definitions of iPSC states. We demonstrate that by maintaining elevated reprogramming factor expression levels, mouse embryonic fibroblasts go through unique epigenetic modifications to arrive at a stable, Nanog-positive, alternative pluripotent state. In doing so, we prove that the pluripotent spectrum can encompass multiple, unique cell states.


Assuntos
Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Epigênese Genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Fibroblastos/classificação , Fibroblastos/citologia , Fibroblastos/metabolismo , Histona Desacetilases/metabolismo , Células-Tronco Pluripotentes Induzidas/classificação , Camundongos , Camundongos Nus , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transgenes/genética
15.
Nature ; 516(7530): 198-206, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25503233

RESUMO

Somatic cell reprogramming to a pluripotent state continues to challenge many of our assumptions about cellular specification, and despite major efforts, we lack a complete molecular characterization of the reprograming process. To address this gap in knowledge, we generated extensive transcriptomic, epigenomic and proteomic data sets describing the reprogramming routes leading from mouse embryonic fibroblasts to induced pluripotency. Through integrative analysis, we reveal that cells transition through distinct gene expression and epigenetic signatures and bifurcate towards reprogramming transgene-dependent and -independent stable pluripotent states. Early transcriptional events, driven by high levels of reprogramming transcription factor expression, are associated with widespread loss of histone H3 lysine 27 (H3K27me3) trimethylation, representing a general opening of the chromatin state. Maintenance of high transgene levels leads to re-acquisition of H3K27me3 and a stable pluripotent state that is alternative to the embryonic stem cell (ESC)-like fate. Lowering transgene levels at an intermediate phase, however, guides the process to the acquisition of ESC-like chromatin and DNA methylation signature. Our data provide a comprehensive molecular description of the reprogramming routes and is accessible through the Project Grandiose portal at http://www.stemformatics.org.


Assuntos
Reprogramação Celular/genética , Genoma/genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Metilação de DNA , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Epistasia Genética/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Histonas/química , Histonas/metabolismo , Internet , Camundongos , Proteoma/genética , Proteômica , RNA Longo não Codificante/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Transcriptoma/genética , Transgenes/genética
16.
Plant Cell ; 28(10): 2435-2452, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27729395

RESUMO

RNA binding proteins (RBPs) control the fate and expression of a transcriptome. Despite this fundamental importance, our understanding of plant RBPs is rudimentary, being mainly derived via bioinformatic extrapolation from other kingdoms. Here, we adapted the mRNA-protein interactome capture method to investigate the RNA binding proteome in planta. From Arabidopsis thaliana etiolated seedlings, we captured more than 700 proteins, including 300 with high confidence that we have defined as the At-RBP set. Approximately 75% of these At-RBPs are bioinformatically linked with RNA biology, containing a diversity of canonical RNA binding domains (RBDs). As no prior experimental RNA binding evidence exists for the majority of these proteins, their capture now authenticates them as RBPs. Moreover, we identified protein families harboring emerging and potentially novel RBDs, including WHIRLY, LIM, ALBA, DUF1296, and YTH domain-containing proteins, the latter being homologous to animal RNA methylation readers. Other At-RBP set proteins include major signaling proteins, cytoskeleton-associated proteins, membrane transporters, and enzymes, suggesting the scope and function of RNA-protein interactions within a plant cell is much broader than previously appreciated. Therefore, our foundation data set has provided an unbiased insight into the RNA binding proteome of plants, on which future investigations into plant RBPs can be based.


Assuntos
Arabidopsis/metabolismo , Proteoma/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Plântula/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a RNA/genética , Plântula/genética
17.
Int J Mol Sci ; 20(16)2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430885

RESUMO

Glucose is one of the most important sources of carbon across all life. Glucose starvation is a key stress relevant to all eukaryotic cells. Glucose starvation responses have important implications in diseases, such as diabetes and cancer. In yeast, glucose starvation causes rapid and dramatic effects on the synthesis of proteins (mRNA translation). Response to glucose deficiency targets the initiation phase of translation by different mechanisms and with diverse dynamics. Concomitantly, translationally repressed mRNAs and components of the protein synthesis machinery may enter a variety of cytoplasmic foci, which also form with variable kinetics and may store or degrade mRNA. Much progress has been made in understanding these processes in the last decade, including with the use of high-throughput/omics methods of RNA and RNA:protein detection. This review dissects the current knowledge of yeast reactions to glucose starvation systematized by the stage of translation initiation, with the focus on rapid responses. We provide parallels to mechanisms found in higher eukaryotes, such as metazoans, for the most critical responses, and point out major remaining gaps in knowledge and possible future directions of research on translational responses to glucose starvation.


Assuntos
Proteínas Fúngicas/metabolismo , Glucose/metabolismo , Leveduras/metabolismo , Animais , Códon de Iniciação/genética , Códon de Iniciação/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Glucose/genética , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Leveduras/genética
18.
Int J Mol Sci ; 20(18)2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31510048

RESUMO

Several control mechanisms of eukaryotic gene expression target the initiation step of mRNA translation. The canonical translation initiation pathway begins with cap-dependent attachment of the small ribosomal subunit (SSU) to the messenger ribonucleic acid (mRNA) followed by an energy-dependent, sequential 'scanning' of the 5' untranslated regions (UTRs). Scanning through the 5'UTR requires the adenosine triphosphate (ATP)-dependent RNA helicase eukaryotic initiation factor (eIF) 4A and its efficiency contributes to the specific rate of protein synthesis. Thus, understanding the molecular details of the scanning mechanism remains a priority task for the field. Here, we studied the effects of inhibiting ATP-dependent translation and eIF4A in cell-free translation and reconstituted initiation reactions programmed with capped mRNAs featuring different 5'UTRs. An aptamer that blocks eIF4A in an inactive state away from mRNA inhibited translation of capped mRNA with the moderately structured ß-globin sequences in the 5'UTR but not that of an mRNA with a poly(A) sequence as the 5'UTR. By contrast, the nonhydrolysable ATP analogue ß,γ-imidoadenosine 5'-triphosphate (AMP-PNP) inhibited translation irrespective of the 5'UTR sequence, suggesting that complexes that contain ATP-binding proteins in their ATP-bound form can obstruct and/or actively block progression of ribosome recruitment and/or scanning on mRNA. Further, using primer extension inhibition to locate SSUs on mRNA ('toeprinting'), we identify an SSU complex which inhibits primer extension approximately eight nucleotides upstream from the usual toeprinting stop generated by SSUs positioned over the start codon. This '-8 nt toeprint' was seen with mRNA 5'UTRs of different length, sequence and structure potential. Importantly, the '-8 nt toeprint' was strongly stimulated by the presence of the cap on the mRNA, as well as the presence of eIFs 4F, 4A/4B and ATP, implying active scanning. We assembled cell-free translation reactions with capped mRNA featuring an extended 5'UTR and used cycloheximide to arrest elongating ribosomes at the start codon. Impeding scanning through the 5'UTR in this system with elevated magnesium and AMP-PNP (similar to the toeprinting conditions), we visualised assemblies consisting of several SSUs together with one full ribosome by electron microscopy, suggesting direct detection of scanning intermediates. Collectively, our data provide additional biochemical, molecular and physical evidence to underpin the scanning model of translation initiation in eukaryotes.


Assuntos
Regiões 5' não Traduzidas/genética , Biossíntese de Proteínas , Capuzes de RNA/genética , RNA Mensageiro/genética , Subunidades Ribossômicas Menores/genética , Trifosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/metabolismo , Animais , Linhagem Celular Tumoral , Sistema Livre de Células , Fator de Iniciação 4F em Eucariotos/metabolismo , Camundongos , Modelos Genéticos , RNA Helicases/metabolismo , Subunidades Ribossômicas Menores/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
19.
Mol Cell Proteomics ; 15(8): 2699-714, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27281784

RESUMO

Pathogen components, such as lipopolysaccharides of Gram-negative bacteria that activate Toll-like receptor 4, induce mitogen activated protein kinases and NFκB through different downstream pathways to stimulate pro- and anti-inflammatory cytokine expression. Importantly, post-transcriptional control of the expression of Toll-like receptor 4 downstream signaling molecules contributes to the tight regulation of inflammatory cytokine synthesis in macrophages. Emerging evidence highlights the role of RNA-binding proteins (RBPs) in the post-transcriptional control of the innate immune response. To systematically identify macrophage RBPs and their response to LPS stimulation, we employed RNA interactome capture in LPS-induced and untreated murine RAW 264.7 macrophages. This combines RBP-crosslinking to RNA, cell lysis, oligo(dT) capture of polyadenylated RNAs and mass spectrometry analysis of associated proteins. Our data revealed 402 proteins of the macrophage RNA interactome including 91 previously not annotated as RBPs. A comparison with published RNA interactomes classified 32 RBPs uniquely identified in RAW 264.7 macrophages. Of these, 19 proteins are linked to biochemical activities not directly related to RNA. From this group, we validated the HSP90 cochaperone P23 that was demonstrated to exhibit cytosolic prostaglandin E2 synthase 3 (PTGES3) activity, and the hematopoietic cell-specific LYN substrate 1 (HCLS1 or HS1), a hematopoietic cell-specific adapter molecule, as novel macrophage RBPs. Our study expands the mammalian RBP repertoire, and identifies macrophage RBPs that respond to LPS. These RBPs are prime candidates for the post-transcriptional regulation and execution of LPS-induced signaling pathways and the innate immune response. Macrophage RBP data have been deposited to ProteomeXchange with identifier PXD002890.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação a DNA/metabolismo , Macrófagos/metabolismo , Prostaglandina-E Sintases/metabolismo , Proteômica/métodos , Proteínas de Ligação a RNA/análise , Animais , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Mapas de Interação de Proteínas/efeitos dos fármacos , Células RAW 264.7 , RNA/metabolismo , Análise de Sequência de RNA/métodos
20.
J Law Med ; 26(1): 208-213, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30302983

RESUMO

Recent technological breakthroughs in ribonucleic acid (RNA) research and the creation of synthetic gene drives using CRISPR/Cas9 have increased attention on the ethical and legal regulation of this field. RNA is now perceived as not merely a passive carrier of DNA information but especially through its propensity to mutate as a computation engine of cell biology, developmental biology and evolution. Synthetic Gene drives have been hailed as a potential strategy to reduce climate-change-mediated biosecurity threats such as spreading malaria and have attracted significant investment, with the Gates Foundation pledging US$75 million and the Defense Advanced Research Projects Agency awarding US$65 million. Calls for a global moratorium on RNA-mediated genetic engineering may overstate the potential risks of the developing technology, but form a background to the contest between "process"- and "product" -based approaches to regulation, the former purportedly favoured by the public and regulatory agencies and the latter favoured by the broad scientific community and corporate investors. At stake may be the democratic legitimacy of and equitable access to a technology that could be important to reduce the incidence of biosecurity threats both globally and in Australia.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Tecnologia de Impulso Genético , RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA