Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Diabetes Obes Metab ; 25(10): 2853-2861, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37336721

RESUMO

AIM: To evaluate the efficacy of nutritional hypoglycaemia correction strategies in postbariatric hypoglycaemia (PBH) after Roux-en-Y gastric bypass (RYGB). MATERIALS AND METHODS: In a randomized, controlled, three-arm crossover trial, eight post-RYGB adults (mean [SD] 7.0 [1.4] years since surgery) with PBH ingested a solid mixed meal (584 kcal, 85 g carbohydrates, 21 g fat, 12 g protein) to induce hypoglycaemia on three separate days. Upon reaching plasma glucose of less than 3.0 mmol/L, hypoglycaemia was corrected with 15 g of glucose (G15), 5 g of glucose (G5) or a protein bar (P10, 10 g of protein) in random order. The primary outcome was percentage of time spent in the target plasma glucose range (3.9-5.5 mmol/L) during 40 minutes after correction. RESULTS: Postcorrection time spent in the target glucose range did not differ significantly between the interventions (P = .161). However, postcorrection time with glucose less than 3.9 mmol/L was lower after G15 than P10 (P = .007), whereas time spent with glucose more than 5.5 mmol/L, peak glucose and insulin 15 minutes postcorrection were higher after G15 than G5 and P10 (P < .001). Glucagon 15 minutes postcorrection was higher after P10 than after G15 and G5 (P = .002 and P = .003, respectively). G15 resulted in rebound hypoglycaemia (< 3.0 mmol/L) in three of eight cases (38%), while no rebound hypoglycaemia occurred with G5 and P10. CONCLUSIONS: Correcting hypoglycaemia with 15 g of glucose should be reconsidered in post-RYGB PBH. A lower dose appears to sufficiently increase glucose levels outside the critical range in most cases, and complementary nutrients (e.g. proteins) may provide glycaemia-stabilizing benefits. REGISTRATION NUMBER OF CLINICAL TRIAL: NTC05250271 (ClinicalTrials.gov).


Assuntos
Derivação Gástrica , Hipoglicemia , Adulto , Humanos , Glicemia/metabolismo , Estudos Cross-Over , Hipoglicemia/etiologia , Hipoglicemia/prevenção & controle , Insulina/uso terapêutico , Insulina/metabolismo , Glucose , Derivação Gástrica/efeitos adversos
2.
Sensors (Basel) ; 22(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36433278

RESUMO

Accurate blood glucose (BG) forecasting is key in diabetes management, as it allows preventive actions to mitigate harmful hypoglycemic/hyperglycemic episodes. Considering the encouraging results obtained by seasonal stochastic models in proof-of-concept studies, this work assesses the methodology in two datasets (open-loop and closed-loop) recorded in free-living conditions. First, similar postprandial glycemic profiles are grouped together with fuzzy C-means clustering. Then, a seasonal stochastic model is identified for each cluster. Finally, real-time BG forecasting is performed by weighting each model's prediction. The proposed methodology (named C-SARIMA) is compared to other linear and nonlinear black-box methods: autoregressive integrated moving average (ARIMA), its variant with input (ARIMAX), a feed-forward neural network (NN), and its modified version (NN-X) fed by BG, insulin, and carbohydrates (timing and dosing) information for several prediction horizons (PHs). In the open-loop dataset, C-SARIMA grants a median root-mean-squared error (RMSE) of 20.13 mg/dL (PH = 30) and 27.23 mg/dL (PH = 45), not significantly different from ARIMA and NN. Over a longer PH, C-SARIMA achieves an RMSE = 31.96 mg/dL (PH = 60) and RMSE = 33.91 mg/dL (PH = 75), significantly outperforming the ARIMA and NN, without significant differences from the ARIMAX for PH ≥ 45 and the NN-X for PH ≥ 60. Similar results hold on the closed-loop dataset: for PH = 30 and 45 min, the C-SARIMA achieves an RMSE = 21.63 mg/dL and RMSE = 29.67 mg/dL, not significantly different from the ARIMA and NN. On longer PH, the C-SARIMA outperforms the ARIMA for PH > 45 and the NN for PH > 60 without significant differences from the ARIMAX for PH ≥ 45. Although using less input information, the C-SARIMA achieves similar performance to other prediction methods such as the ARIMAX and NN-X and outperforming the CGM-only approaches on PH > 45min.


Assuntos
Glucose , Hipoglicemia , Humanos , Condições Sociais , Estações do Ano , Refeições , Glicemia
3.
Sensors (Basel) ; 21(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673415

RESUMO

In type 1 diabetes management, the availability of algorithms capable of accurately forecasting future blood glucose (BG) concentrations and hypoglycemic episodes could enable proactive therapeutic actions, e.g., the consumption of carbohydrates to mitigate, or even avoid, an impending critical event. The only input of this kind of algorithm is often continuous glucose monitoring (CGM) sensor data, because other signals (such as injected insulin, ingested carbs, and physical activity) are frequently unavailable. Several predictive algorithms fed by CGM data only have been proposed in the literature, but they were assessed using datasets originated by different experimental protocols, making a comparison of their relative merits difficult. The aim of the present work was to perform a head-to-head comparison of thirty different linear and nonlinear predictive algorithms using the same dataset, given by 124 CGM traces collected over 10 days with the newest Dexcom G6 sensor available on the market and considering a 30-min prediction horizon. We considered the state-of-the art methods, investigating, in particular, linear black-box methods (autoregressive; autoregressive moving-average; and autoregressive integrated moving-average, ARIMA) and nonlinear machine-learning methods (support vector regression, SVR; regression random forest; feed-forward neural network, fNN; and long short-term memory neural network). For each method, the prediction accuracy and hypoglycemia detection capabilities were assessed using either population or individualized model parameters. As far as prediction accuracy is concerned, the results show that the best linear algorithm (individualized ARIMA) provides accuracy comparable to that of the best nonlinear algorithm (individualized fNN), with root mean square errors of 22.15 and 21.52 mg/dL, respectively. As far as hypoglycemia detection is concerned, the best linear algorithm (individualized ARIMA) provided precision = 64%, recall = 82%, and one false alarm/day, comparable to the best nonlinear technique (population SVR): precision = 63%, recall = 69%, and 0.5 false alarms/day. In general, the head-to-head comparison of the thirty algorithms fed by CGM data only made using a wide dataset shows that individualized linear models are more effective than population ones, while no significant advantages seem to emerge when employing nonlinear methodologies.


Assuntos
Automonitorização da Glicemia , Glicemia/análise , Hipoglicemia , Algoritmos , Humanos , Hipoglicemia/diagnóstico
5.
J Diabetes Sci Technol ; 17(5): 1295-1303, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-35611461

RESUMO

BACKGROUND: Advanced decision support systems for type 1 diabetes (T1D) management often embed prediction modules, which allow T1D people to take preventive actions to avoid critical episodes like hypoglycemia. Real-time prediction of blood glucose (BG) concentration relies on a subject-specific model of glucose-insulin dynamics. Model parameter identification is usually based on the mean square error (MSE) cost function, and the model is usually used to predict BG at a single prediction horizon (PH). Finally, a hypo-alarm is raised if the predicted BG crosses a threshold. This work aims to show that real-time hypoglycemia forecasting can be improved by leveraging: a glucose-specific mean square error (gMSE) cost function in model's parameters identification, and a "prediction-funnel," that is, confidence intervals (CIs) for multiple PHs, within the hypo-alarm-raising strategy. METHODS: Autoregressive integrated moving average with exogenous input (ARIMAX) models are selected to illustrate the proposed solution (use of gMSE and prediction-funnel) and its assessment against the conventional approach (MSE and single PH). The gMSE penalizes the model misfit in unsafe BG ranges (e.g., hypoglycemia), and the prediction-funnel allows raising an alarm by monitoring if the CIs cross a suitable threshold. The algorithms were evaluated by measuring precision (P), recall (R), F1-score (F1), false positive per day (FP/day), and time gain (TG) on a real dataset collected in 11 T1D individuals. RESULTS: The best performance is achieved exploiting both the gMSE and the prediction-funnel: P = 65%, R = 88%, F1 = 75%, FP/day = 0.29, and mean TG = 15 minutes. CONCLUSIONS: The combined use of a glucose-specific metric and an alarm-raising strategy based on the prediction-funnel allows achieving a more effective and reliable hypoglycemia prediction algorithm.


Assuntos
Diabetes Mellitus Tipo 1 , Hipoglicemia , Humanos , Hipoglicemiantes , Glucose , Glicemia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemia/diagnóstico , Hipoglicemia/prevenção & controle , Algoritmos
6.
IEEE Trans Biomed Eng ; 70(11): 3105-3115, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37195837

RESUMO

OBJECTIVE: Accurate blood glucose (BG) prediction are key in next-generation tools for type 1 diabetes (T1D) management, such as improved decision support systems and advanced closed-loop control. Glucose prediction algorithms commonly rely on black-box models. Large physiological models, successfully adopted for simulation, were little explored for glucose prediction, mostly because their parameters are hard to individualize. In this work, we develop a BG prediction algorithm based on a personalized physiological model inspired by the UVA/Padova T1D Simulator. Then we compare white-box and advanced black-box personalized prediction techniques. METHODS: A personalized nonlinear physiological model is identified from patient data through a Bayesian approach based on Markov Chain Monte Carlo technique. The individualized model was integrated within a particle filter (PF) to predict future BG concentrations. The black-box methodologies considered are non-parametric models estimated via gaussian regression (NP), three deep learning methods: long-short-term-memory (LSTM), gated recurrent unit (GRU), temporal convolutional networks (TCN), and a recursive autoregressive with exogenous input model (rARX). BG forecasting performances are assessed for several prediction horizons (PH) on 12 individuals with T1D, monitored in free-living conditions under open-loop therapy for 10 weeks. RESULTS: NP models provide the most effective BG predictions by achieving a root mean square error (RMSE), RMSE = 18.99 mg/dL, RMSE = 25.72 mg/dL and RMSE = 31.60 mg/dL, significantly outperforming: LSTM, GRU (for PH = 30 minutes), TCN, rARX, and the proposed physiological model for PH=30, 45 and 60 minutes. CONCLUSIONS: Black-box strategies remain preferable for glucose prediction even when compared to a white-box model with sound physiological structure and individualized parameters.

7.
J Diabetes Sci Technol ; : 19322968231221768, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38158565

RESUMO

BACKGROUND: In type 1 diabetes therapy, precise tuning of postprandial corrective insulin boluses (CIBs) is crucial to mitigate hyperglycemia without inducing dangerous hypoglycemic events. Several heuristic formulas accounting for continuous glucose monitoring (CGM) trend have been proposed in the literature. However, these formulas suggest a lot of quantized CIB adjustments, and they lack personalization. METHOD: drCORRECT algorithm proposed in this work employs a patient-specific time parameter and the "dynamic risk" (DR) measure to determine postprandial CIB suggestion. The expected benefits include the reduction of time in hyperglycemia, thanks to the preventive action exploited through DR. drCORRECT has been assessed retrospectively vs the literature methods proposed by Aleppo et al (AL), Bruttomesso et al (BR), and Ziegler et al (ZI) using a data set of 49 CGM daily traces recorded in free-living conditions. Retrospective evaluation of the algorithms is made possible by the use of ReplayBG, a digital twin-based tool that allows assessing alternative insulin therapies on already collected glucose data. Efficacy in terms of glucose control was measured by temporal, risk indicators, and dedicated hyperglycemic/hypoglycemic events metrics. RESULTS: drCORRECT significantly reduces time spent in hyperglycemia when compared with AL and BR (33.52 [24.16, 39.89]% vs 39.76 [22.54, 48.15]% and 36.32 [26.91, 45.93]%, respectively); significantly reduces daily injected insulin (5.97 [3.80, 8.06] U vs 7.5 [5.21, 10.34] U), glycemia risk index (38.78 [26.58, 55.39] vs 40.78 [27.95, 70.30]), and time spent in hypoglycemia (0.00 [0.00, 1.74]% vs 0.00 [0.00, 10.23]%) when compared with ZI, resulting overall in a safer strategy. CONCLUSIONS: The proposed drCORRECT algorithm allows preventive actions thanks to the personalized timing configuration and the introduction of the innovative DR-based CIB threshold, proving to be a valid alternative to the available heuristic literature methods.

8.
Sci Rep ; 13(1): 16865, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803177

RESUMO

Machine learning has become a popular tool for learning models of complex dynamics from biomedical data. In Type 1 Diabetes (T1D) management, these models are increasingly been integrated in decision support systems (DSS) to forecast glucose levels and provide preventive therapeutic suggestions, like corrective insulin boluses (CIB), accordingly. Typically, models are chosen based on their prediction accuracy. However, since patient safety is a concern in this application, the algorithm should also be physiologically sound and its outcome should be explainable. This paper aims to discuss the importance of using tools to interpret the output of black-box models in T1D management by presenting a case-of-study on the selection of the best prediction algorithm to integrate in a DSS for CIB suggestion. By retrospectively "replaying" real patient data, we show that two long-short term memory neural networks (LSTM) (named p-LSTM and np-LSTM) with similar prediction accuracy could lead to different therapeutic decisions. An analysis with SHAP-a tool for explaining black-box models' output-unambiguously shows that only p-LSTM learnt the physiological relationship between inputs and glucose prediction, and should therefore be preferred. This is verified by showing that, when embedded in the DSS, only p-LSTM can improve patients' glycemic control.


Assuntos
Glicemia , Diabetes Mellitus Tipo 1 , Humanos , Glicemia/análise , Estudos Retrospectivos , Aprendizado de Máquina , Redes Neurais de Computação , Insulina/uso terapêutico
9.
Diabetes Care ; 46(10): 1792-1798, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37499048

RESUMO

OBJECTIVE: Post-bariatric surgery hypoglycemia (PBH) is a metabolic complication of Roux-en-Y gastric bypass (RYGB). Since symptoms are a key component of the Whipple's triad to diagnose nondiabetic hypoglycemia, we evaluated the relationship between self-reported symptoms and postprandial sensor glucose profiles. RESEARCH DESIGN AND METHODS: Thirty patients with PBH after RYGB (age: 50.1 [41.6-60.6] years, 86.7% female, BMI: 26.5 [23.5-31.2] kg/m2; median [interquartile range]) wore a blinded Dexcom G6 sensor while recording autonomic, neuroglycopenic, and gastrointestinal symptoms over 50 days. Symptoms (overall and each type) were categorized into those occurring in postprandial periods (PPPs) without hypoglycemia, or in the preceding dynamic or hypoglycemic phase of PPPs with hypoglycemia (nadir sensor glucose <3.9 mmol/L). We further explored the relationship between symptoms and the maximum negative rate of sensor glucose change and nadir sensor glucose levels. RESULTS: In 5,851 PPPs, 775 symptoms were reported, of which 30.6 (0.0-59.9)% were perceived in PPPs without hypoglycemia, 16.7 (0.0-30.1)% in the preceding dynamic phase and 45.0 (13.7-84.7)% in the hypoglycemic phase of PPPs with hypoglycemia. Per symptom type, 53.6 (23.8-100.0)% of the autonomic, 30.0 (5.6-80.0)% of the neuroglycopenic, and 10.4 (0.0-50.0)% of the gastrointestinal symptoms occurred in the hypoglycemic phase of PPPs with hypoglycemia. Both faster glucose dynamics and lower nadir sensor glucose levels were related with symptom perception. CONCLUSIONS: The relationship between symptom perception and PBH is complex, challenging clinical judgement and decision-making in this population.


Assuntos
Derivação Gástrica , Hipoglicemia , Obesidade Mórbida , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Derivação Gástrica/efeitos adversos , Período Pós-Prandial , Complicações Pós-Operatórias/etiologia , Hipoglicemia/diagnóstico , Hipoglicemia/etiologia , Hipoglicemia/metabolismo , Glucose/metabolismo , Hipoglicemiantes , Percepção , Obesidade Mórbida/cirurgia , Obesidade Mórbida/complicações , Glicemia/metabolismo
10.
Front Nutr ; 9: 855223, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464035

RESUMO

Postbariatric hypoglycemia (PBH) is an increasingly recognized late metabolic complication of bariatric surgery, characterized by low blood glucose levels 1-3 h after a meal, particularly if the meal contains rapid-acting carbohydrates. PBH can often be effectively managed through appropriate nutritional measures, which remain the cornerstone treatment today. However, their implementation in daily life continues to challenge both patients and health care providers. Emerging digital technologies may allow for more informed and improved decision-making through better access to relevant data to manage glucose levels in PBH. Examples include applications for automated food analysis from meal images, digital receipts of purchased food items or integrated platforms allowing the connection of continuously measured glucose with food and other health-related data. The resulting multi-dimensional data can be processed with artificial intelligence systems to develop prediction algorithms and decision support systems with the aim of improving glucose control, safety, and quality of life of PBH patients. Digital innovations, however, face trade-offs between user burden vs. amount and quality of data. Further challenges to their development are regulatory non-compliance regarding data ownership of the platforms acquiring the required data, as well as user privacy concerns and compliance with regulatory requirements. Through navigating these trade-offs, digital solutions could significantly contribute to improving the management of PBH.

11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 1832-1835, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891643

RESUMO

Management of type 1 diabetes (T1D) requires affected individuals to perform multiple daily actions to keep their blood glucose levels within the safe rage and avoid adverse hypo-/hyperglycemic episodes. Decision support systems (DSS) for T1D are composite tools that implement multiple software modules aiming to ease such a burden and to improve glucose control. At the University of Padova, we are developing a new DSS that currently integrate a smart insulin bolus calculator for optimal insulin dosing and a rescue carbohydrate intake advisor to tackle hypoglycemia. However, a module specifically targeting hyperglycemia, that suggests the administration of corrective insulin boluses (CIB), is still missing. For such a scope, this work aims to assess a recent literature methodology, proposed by Aleppo et al., which provides a simple strategy for dealing with hyperglycemia. The methodology is tested retrospectively on clinical data of individuals with T1D. In particular, here we leveraged a novel in silico tool that first identifies a non-linear model of glucose-insulin dynamics on data, then uses such model to simulate and compare the glucose trace obtained by "replaying" the recorded scenario and the glucose trace obtained using the CIB delivery strategy under evaluation. Results show that the CIB delivery strategy significantly reduce the percentage of time spent in hyperglycemia (-15.63%) without inducing any hypoglycemic episode, demonstrating both safety and efficacy of its use. These preliminary results suggest that the CIB delivery strategy proposed by Aleppo et al. is a promising candidate to be included in our system to counteract hyperglycemia. Future work will extensively evaluate the methodology and will compare it against other competing approaches.


Assuntos
Diabetes Mellitus Tipo 1 , Glicemia , Automonitorização da Glicemia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Sistemas de Infusão de Insulina , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA