Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Biol Chem ; 298(12): 102692, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36372230

RESUMO

Triple-negative breast cancer (TNBC) poses significant challenges for treatment given the lack of targeted therapies and increased probability of relapse. It is pertinent to identify vulnerabilities in TNBC and develop newer treatments. Our prior research demonstrated that transcription factor EB (TFEB) is necessary for TNBC survival by regulating DNA repair, apoptosis signaling, and the cell cycle. However, specific mechanisms by which TFEB targets DNA repair and cell cycle pathways are unclear, and whether these effects dictate TNBC survival is yet to be determined. Here, we show that TFEB knockdown decreased the expression of genes and proteins involved in DNA replication and cell cycle progression in MDA-MB-231 TNBC cells. DNA replication was decreased in cells lacking TFEB, as measured by EdU incorporation. TFEB silencing in MDA-MB-231 and noncancerous MCF10A cells impaired progression through the S-phase following G1/S synchronization; however, this proliferation defect could not be rescued by co-knockdown of suppressor RB1. Instead, TFEB knockdown reduced origin licensing in G1 and early S-phase MDA-MB-231 cells. TFEB silencing was associated with replication stress in MCF10A but not in TNBC cells. Lastly, we identified that TFEB knockdown renders TNBC cells more sensitive to inhibitors of Aurora Kinase A, a protein facilitating mitosis. Thus, inhibition of TFEB impairs cell cycle progress by decreasing origin licensing, leading to delayed entry into the S-phase, while rendering TNBC cells sensitive to Aurora kinase A inhibitors and decreasing cell viability. In contrast, TFEB silencing in noncancerous cells is associated with replication stress and leads to G1/S arrest.


Assuntos
Aurora Quinase A , Ciclo Celular , Células Epiteliais , Fatores de Transcrição , Neoplasias de Mama Triplo Negativas , Humanos , Apoptose/genética , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/metabolismo , Linhagem Celular Tumoral , Replicação do DNA/genética , Células Epiteliais/metabolismo , Fatores de Transcrição/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Técnicas de Silenciamento de Genes , Transdução de Sinais/genética , Ciclo Celular/genética
2.
J Biol Chem ; 295(46): 15597-15621, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32878988

RESUMO

Branched-chain α-keto acids (BCKAs) are catabolites of branched-chain amino acids (BCAAs). Intracellular BCKAs are cleared by branched-chain ketoacid dehydrogenase (BCKDH), which is sensitive to inhibitory phosphorylation by BCKD kinase (BCKDK). Accumulation of BCKAs is an indicator of defective BCAA catabolism and has been correlated with glucose intolerance and cardiac dysfunction. However, it is unclear whether BCKAs directly alter insulin signaling and function in the skeletal and cardiac muscle cell. Furthermore, the role of excess fatty acids (FAs) in perturbing BCAA catabolism and BCKA availability merits investigation. By using immunoblotting and ultra-performance liquid chromatography MS/MS to analyze the hearts of fasted mice, we observed decreased BCAA-catabolizing enzyme expression and increased circulating BCKAs, but not BCAAs. In mice subjected to diet-induced obesity (DIO), we observed similar increases in circulating BCKAs with concomitant changes in BCAA-catabolizing enzyme expression only in the skeletal muscle. Effects of DIO were recapitulated by simulating lipotoxicity in skeletal muscle cells treated with saturated FA, palmitate. Exposure of muscle cells to high concentrations of BCKAs resulted in inhibition of insulin-induced AKT phosphorylation, decreased glucose uptake, and mitochondrial oxygen consumption. Altering intracellular clearance of BCKAs by genetic modulation of BCKDK and BCKDHA expression showed similar effects on AKT phosphorylation. BCKAs increased protein translation and mTORC1 activation. Pretreating cells with mTORC1 inhibitor rapamycin restored BCKA's effect on insulin-induced AKT phosphorylation. This study provides evidence for FA-mediated regulation of BCAA-catabolizing enzymes and BCKA content and highlights the biological role of BCKAs in regulating muscle insulin signaling and function.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/antagonistas & inibidores , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/genética , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Aminoácidos de Cadeia Ramificada/sangue , Animais , Linhagem Celular , Dieta Hiperlipídica , Regulação para Baixo/efeitos dos fármacos , Insulina/farmacologia , Cetoácidos/sangue , Cetoácidos/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/citologia , Miocárdio/metabolismo , Palmitatos/farmacologia , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Biochem J ; 477(1): 137-160, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31820786

RESUMO

Transcription factor EB (TFEB) is a master regulator of lysosomal biogenesis and autophagy with critical roles in several cancers. Lysosomal autophagy promotes cancer survival through the degradation of toxic molecules and the maintenance of adequate nutrient supply. Doxorubicin (DOX) is the standard of care treatment for triple-negative breast cancer (TNBC); however, chemoresistance at lower doses and toxicity at higher doses limit its usefulness. By targeting pathways of survival, DOX can become an effective antitumor agent. In this study, we examined the role of TFEB in TNBC and its relationship with autophagy and DNA damage induced by DOX. In TNBC cells, TFEB was hypo-phosphorylated and localized to the nucleus upon DOX treatment. TFEB knockdown decreased the viability of TNBC cells while increasing caspase-3 dependent apoptosis. Additionally, inhibition of the TFEB-phosphatase calcineurin sensitized cells to DOX-induced apoptosis in a TFEB dependent fashion. Regulation of apoptosis by TFEB was not a consequence of altered lysosomal function, as TFEB continued to protect against apoptosis in the presence of lysosomal inhibitors. RNA-Seq analysis of MDA-MB-231 cells with TFEB silencing identified a down-regulation in cell cycle and homologous recombination genes while interferon-γ and death receptor signaling genes were up-regulated. In consequence, TFEB knockdown disrupted DNA repair following DOX, as evidenced by persistent γH2A.X detection. Together, these findings describe in TNBC a novel lysosomal independent function for TFEB in responding to DNA damage.


Assuntos
Apoptose , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Reparo do DNA , Lisossomos/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Doxorrubicina/farmacologia , Técnicas de Silenciamento de Genes , Humanos
4.
J Card Fail ; 26(11): 998-1005, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32442517

RESUMO

Ketone bodies can become a major source of adenosine triphosphate production during stress to maintain bioenergetic homeostasis in the brain, heart, and skeletal muscles. In the normal heart, ketone bodies contribute from 10% to 15% of the cardiac adenosine triphosphate production, although their contribution during pathologic stress is still not well-characterized and currently represents an exciting area of cardiovascular research. This review focuses on the mechanisms that regulate circulating ketone levels under physiologic and pathologic conditions and how this impacts cardiac ketone metabolism. We also review the current understanding of the role of augmented ketone metabolism as an adaptive response in different types and stages of heart failure. This analysis includes the emerging experimental and clinical evidence of the potential favorable effects of boosting ketone metabolism in the failing heart and the possible mechanisms of action through which these interventions may mediate their cardioprotective effects. We also critically appraise the emerging data from animal and human studies which characterize the role of ketones in mediating the cardioprotection established by the new class of antidiabetic drugs, namely sodium-glucose co-transporter inhibitors.


Assuntos
Insuficiência Cardíaca , Animais , Metabolismo Energético , Coração , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Corpos Cetônicos , Cetonas
5.
FASEB J ; 33(8): 8711-8731, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31084571

RESUMO

Beyond their contribution as fundamental building blocks of life, branched-chain amino acids (BCAAs) play a critical role in physiologic and pathologic processes. Importantly, BCAAs are associated with insulin resistance, obesity, cardiovascular disease, and genetic disorders. However, several metabolome-wide studies in recent years could not attribute alterations in systemic BCAAs as the sole driver of endocrine perturbations, suggesting that a snapshot of global BCAA changes does not always reveal the underlying modifications. Because enzymes catabolizing BCAAs have a unique distribution, it is plausible that the tissue-specific roles of BCAA-catabolic enzymes could precipitate changes in systemic BCAA levels, flux, and action. We review the genetic and pharmacological approaches dissecting the role of BCAA-catabolic enzyme dysfunctions. We summarized emerging evidence on BCAA metabolic intermediates, tissue specificity of BCAA-catabolizing enzymes, and crosstalk between different metabolites in driving metabolic maladaptation in health and pathology. This review substantiates the understanding that tissue-specific dysfunction of the BCAA-catabolic enzymes and accumulating intermediary metabolites could act as better surrogates of metabolic imbalances, highlighting the biochemical communication among the nutrient triad of BCAAs, glucose, and fatty acid.-Biswas, D., Duffley, L., Pulinilkunnil, T. Role of branched-chain amino acid-catabolizing enzymes in intertissue signaling, metabolic remodeling, and energy homeostasis.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Metabolismo Energético , Homeostase , Transdução de Sinais , Animais , Ácidos Graxos/metabolismo , Glucose/metabolismo , Humanos , Mitocôndrias/metabolismo
6.
Nature ; 508(7495): 258-62, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24717514

RESUMO

In obesity and type 2 diabetes, Glut4 glucose transporter expression is decreased selectively in adipocytes. Adipose-specific knockout or overexpression of Glut4 alters systemic insulin sensitivity. Here we show, using DNA array analyses, that nicotinamide N-methyltransferase (Nnmt) is the most strongly reciprocally regulated gene when comparing gene expression in white adipose tissue (WAT) from adipose-specific Glut4-knockout or adipose-specific Glut4-overexpressing mice with their respective controls. NNMT methylates nicotinamide (vitamin B3) using S-adenosylmethionine (SAM) as a methyl donor. Nicotinamide is a precursor of NAD(+), an important cofactor linking cellular redox states with energy metabolism. SAM provides propylamine for polyamine biosynthesis and donates a methyl group for histone methylation. Polyamine flux including synthesis, catabolism and excretion, is controlled by the rate-limiting enzymes ornithine decarboxylase (ODC) and spermidine-spermine N(1)-acetyltransferase (SSAT; encoded by Sat1) and by polyamine oxidase (PAO), and has a major role in energy metabolism. We report that NNMT expression is increased in WAT and liver of obese and diabetic mice. Nnmt knockdown in WAT and liver protects against diet-induced obesity by augmenting cellular energy expenditure. NNMT inhibition increases adipose SAM and NAD(+) levels and upregulates ODC and SSAT activity as well as expression, owing to the effects of NNMT on histone H3 lysine 4 methylation in adipose tissue. Direct evidence for increased polyamine flux resulting from NNMT inhibition includes elevated urinary excretion and adipocyte secretion of diacetylspermine, a product of polyamine metabolism. NNMT inhibition in adipocytes increases oxygen consumption in an ODC-, SSAT- and PAO-dependent manner. Thus, NNMT is a novel regulator of histone methylation, polyamine flux and NAD(+)-dependent SIRT1 signalling, and is a unique and attractive target for treating obesity and type 2 diabetes.


Assuntos
Dieta , Nicotinamida N-Metiltransferase/deficiência , Nicotinamida N-Metiltransferase/metabolismo , Obesidade/enzimologia , Obesidade/prevenção & controle , Acetiltransferases/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/enzimologia , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/enzimologia , Tecido Adiposo Branco/metabolismo , Animais , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético , Fígado Gorduroso , Técnicas de Silenciamento de Genes , Intolerância à Glucose , Transportador de Glucose Tipo 4/deficiência , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NAD/metabolismo , Niacinamida/metabolismo , Nicotinamida N-Metiltransferase/genética , Obesidade/etiologia , Obesidade/genética , Ornitina Descarboxilase/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , S-Adenosilmetionina/metabolismo , Sirtuína 1/metabolismo , Espermina/análogos & derivados , Espermina/metabolismo , Magreza/enzimologia , Magreza/metabolismo , Poliamina Oxidase
7.
J Mol Cell Cardiol ; 131: 29-40, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31004678

RESUMO

Although cancer cells use heparanase for tumor metastasis, favourable effects of heparanase have been reported in the management of Alzheimer's disease and diabetes. Indeed, we previously established a protective function for heparanase in the acutely diabetic heart, where it conferred cardiomyocyte resistance to oxidative stress and apoptosis by provoking changes in gene expression. In this study, we tested if overexpression of heparanase can protect the heart against chemically induced or ischemia/reperfusion (I/R) injury. Transcriptomic analysis of Hep-tg hearts reveal that 240 genes related to the stress response, immune response, cell death, and development were altered in a pro-survival direction encompassing genes promoting the unfolded protein response (UPR) and autophagy, as well as those protecting against oxidative stress. The observed UPR activation was adaptive and not apoptotic, was mediated by activation of ATF6α, and when combined with mTOR inhibition, induced autophagy. Subjecting wild type (WT) mice to increasing concentrations of the ER stress inducer thapsigargin evoked a transition from adaptive to apoptotic UPR, an effect that was attenuated in Hep-tg mouse hearts. Consistent with these observations, when exposed to I/R, the infarct size and markers of apoptosis were significantly lower in the Hep-tg heart compared to WT. Finally, UPR and autophagy inhibitors reduced the protective effects of heparanase overexpression during I/R. Our data suggest that the mechanisms that underlie the role of heparanase in promoting cell survival could be uniquely beneficial to the heart by providing protection against cellular stresses, and could be useful for exploitation as a therapeutic target for the treatment of heart disease.


Assuntos
Glucuronidase/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Substâncias Protetoras/metabolismo , Animais , Apoptose/fisiologia , Autofagia/fisiologia , Sobrevivência Celular/fisiologia , Coração/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar , Tapsigargina/metabolismo , Resposta a Proteínas não Dobradas/fisiologia
8.
J Transl Med ; 17(1): 413, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822289

RESUMO

BACKGROUND: The objectives of the study were to characterize and quantify cellular inflammation and structural remodeling of human atria and correlate findings with molecular markers of inflammation and patient surrogate outcome. METHODS: Voluntary participants undergoing heart surgery were enrolled in the study and blood samples were collected prior to surgery, and right atrium samples were harvested intraoperatively. Blood samples were analyzed by flow cytometry and complete blood counts. Atrial samples were divided for fixed fibrosis analysis, homogenized for cytokine analysis and digested for single cell suspension flow cytometry. RESULTS: A total of 18 patients were enrolled and samples assessed. Isolated cells from the atria revealed a CD45+ population of ~ 20%, confirming a large number of leukocytes. Further characterization revealed this population as 57% lymphocytes and 26% monocyte/macrophages (MoΦ), with the majority of the latter cells being classical (CD14++/CD16-). Interstitial fibrosis was present in 87% of samples and correlated significantly with patient age. Older patients (> 65) had significantly more atrial fibrosis and cellular inflammation. AFib patients had no distinguishing feature of atrial fibrosis and had significantly greater CD45+ MoΦ, increased expression of MMP9 and presented with a significant correlation in length of stay to CCL-2/MCP-1 and NLR (neutrophil-to-lymphocyte ratio). CONCLUSION: Atrial fibrosis is correlated with age and not determinate to AFib. However, severity of atrial leukocyte infiltration and markers of matrix degradation are determinant to AFib. This also correlated with CCL2 (or MCP-1) and NLR-indicative of marked inflammation. These data show the potential importance of diagnostic and prognostic assessments that could inform clinical decision making in regard to the intensity of AFib patient management.


Assuntos
Fibrilação Atrial/patologia , Fibrilação Atrial/cirurgia , Procedimentos Cirúrgicos Cardíacos , Leucócitos/patologia , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Fibrilação Atrial/sangue , Plaquetas/patologia , Contagem de Células , Estudos de Coortes , Feminino , Fibrose , Átrios do Coração/patologia , Humanos , Tempo de Internação , Antígenos Comuns de Leucócito/metabolismo , Linfócitos/patologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Pessoa de Meia-Idade , Neutrófilos/patologia , Prognóstico , Nó Sinoatrial/patologia
9.
J Lipid Res ; 59(10): 1805-1817, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30072447

RESUMO

Autotaxin (ATX) is an adipokine that generates the bioactive lipid, lysophosphatidic acid (LPA). ATX-LPA signaling has been implicated in diet-induced obesity and systemic insulin resistance. However, it remains unclear whether the ATX-LPA pathway influences insulin function and energy metabolism in target tissues, particularly skeletal muscle, the major site of insulin-stimulated glucose disposal. The objective of this study was to test whether the ATX-LPA pathway impacts tissue insulin signaling and mitochondrial metabolism in skeletal muscle during obesity. Male mice with heterozygous ATX deficiency (ATX+/-) were protected from obesity, systemic insulin resistance, and cardiomyocyte dysfunction following high-fat high-sucrose (HFHS) feeding. HFHS-fed ATX+/- mice also had improved insulin-stimulated AKT phosphorylation in white adipose tissue, liver, heart, and skeletal muscle. Preserved insulin-stimulated glucose transport in muscle from HFHS-fed ATX+/- mice was associated with improved mitochondrial pyruvate oxidation in the absence of changes in fat oxidation and ectopic lipid accumulation. Similarly, incubation with LPA decreased insulin-stimulated AKT phosphorylation and mitochondrial energy metabolism in C2C12 myotubes at baseline and following palmitate-induced insulin resistance. Taken together, our results suggest that the ATX-LPA pathway contributes to obesity-induced insulin resistance in metabolically relevant tissues. Our data also suggest that LPA directly impairs skeletal muscle insulin signaling and mitochondrial function.


Assuntos
Resistência à Insulina , Lisofosfolipídeos/metabolismo , Mitocôndrias/patologia , Obesidade/metabolismo , Obesidade/patologia , Diester Fosfórico Hidrolases/metabolismo , Transdução de Sinais , Animais , Glucose/metabolismo , Homeostase , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Especificidade de Órgãos
10.
J Mol Cell Cardiol ; 104: 1-8, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28108310

RESUMO

Doxorubicin (DOX)-induced cardiotoxicity has been a well-known phenomenon to clinicians and scientists for decades; however, molecular mechanisms underlying DOX cardiotoxicity are still being uncovered. Although the majority of prior research have implicated nuclear and mitochondrial events to be an important etiological aspects of DOX cardiomyopathy, recent discoveries in autophagy have highlighted the renewed interest in the role of lysosome in DOX cardiomyopathy. Indeed, dysregulation of lysosomal autophagy is observed in pre-clinical models of DOX cardiotoxicity. In this review, we provide a comprehensive overview on mechanisms describing regulation of the autophagy pathway by DOX and its influence on cardiotoxic outcomes. We have put specific emphasis on experimental models, dosing and treatment duration with DOX, and methods to monitor autophagy, all of which contribute to inconsistencies observed in the literature. We have clarified processes by which DOX dysregulates macroautophagy in the heart by primarily focusing on the contribution of LC3, p62, Beclin, mTOR and AMPK pathways. We have also highlighted the impact of DOX on mitochondrial reactive oxygen species (ROS) and its contribution to the process of mitophagy. We have presented mechanisms by which DOX compromises lysosomal acidification, integrity and chaperone-mediated autophagy through its effect on lysosome-associated and resident proteins such as LAMP, vATPase, Hsp90, Hsc70 and cathepsins. Furthermore, we have discussed novel pathways in DOX cardiotoxicity, the most prominent being DOX-induced loss of TFEB, a member of the MITF family of transcription factors, which governs lysosomal biogenesis and function. This review summarizes that in the myocardium, DOX dysregulates autophagy by impairing transcriptional factors regulating lysosomal function, thereby, precipitating proteotoxicity, mitochondrial dysfunction and cell death, thus rendering the heart susceptible to cardiomyopathic failure.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Autofagia/efeitos dos fármacos , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Doxorrubicina/efeitos adversos , Animais , Cardiotoxicidade , Humanos , Lisossomos/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitofagia/efeitos dos fármacos , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo
11.
Biochim Biophys Acta ; 1861(12 Pt A): 1893-1910, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27620487

RESUMO

Impaired cardiac metabolism in the obese and diabetic heart leads to glucolipotoxicity and ensuing cardiomyopathy. Glucolipotoxicity causes cardiomyocyte injury by increasing energy insufficiency, impairing proteasomal-mediated protein degradation and inducing apoptosis. Proteasome-evading proteins are degraded by autophagy in the lysosome, whose metabolism and function are regulated by master regulator transcription factor EB (TFEB). Limited studies have examined the impact of glucolipotoxicity on intra-lysosomal signaling proteins and their regulators. By utilizing a mouse model of diet-induced obesity, type-1 diabetes (Akita) and ex-vivo model of glucolipotoxicity (H9C2 cells and NRCM, neonatal rat cardiomyocyte), we examined whether glucolipotoxicity negatively targets TFEB and lysosomal proteins to dysregulate autophagy and cause cardiac injury. Despite differential effects of obesity and diabetes on LC3B-II, expression of proteins facilitating autophagosomal clearance such as TFEB, LAMP-2A, Hsc70 and Hsp90 were decreased in the obese and diabetic heart. In-vivo data was recapitulated in H9C2 and NRCM cells, which exhibited impaired autophagic flux and reduced TFEB content when exposed to a glucolipotoxic milieu. Notably, overloading myocytes with a saturated fatty acid (palmitate) but not an unsaturated fatty acid (oleate) depleted cellular TFEB and suppressed autophagy, suggesting a fatty acid specific regulation of TFEB and autophagy in the cardiomyocyte. The effect of glucolipotoxicity to reduce TFEB content was also confirmed in heart tissue from patients with Class-I obesity. Therefore, during glucolipotoxicity, suppression of lysosomal autophagy was associated with reduced lysosomal content, decreased cathepsin-B activity and diminished cellular TFEB content likely rendering myocytes susceptible to cardiac injury.


Assuntos
Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Diabetes Mellitus/metabolismo , Lisossomos/metabolismo , Miócitos Cardíacos/metabolismo , Obesidade/metabolismo , Animais , Apoptose/fisiologia , Autofagossomos/metabolismo , Linhagem Celular , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ácido Oleico/metabolismo , Palmitatos/metabolismo , Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
12.
J Pharmacol Exp Ther ; 361(3): 375-385, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28385952

RESUMO

Dieldrin is a legacy organochlorine pesticide that is persistent in the environment, despite being discontinued from use in North America since the 1970s. Some epidemiologic studies suggest that exposure to dieldrin is associated with increased risks of neurodegenerative disease and breast cancer by inducing inflammatory responses in tissues as well as oxidative stress. However, the direct effects of organochlorine pesticides on the heart have not been adequately addressed to date given that these chemicals are detectable in human serum and are environmentally persistent; thus, individuals may show latent adverse effects in the cardiovascular system due to long-term, low-dose exposure over time. Our objective was to determine whether low-level exposure to dieldrin at an environmentally relevant dose results in aberrant molecular signaling in the vertebrate heart. Using transcriptomic profiling and immunoblotting, we determined the global gene and targeted protein expression response to dieldrin treatment and show that dieldrin affects gene networks in the heart that are associated with processes related to cardiovascular disease, specifically cardiac arrest and ventricular fibrillation. We report that genes regulating inflammatory responses, a significant risk factor for cardiovascular disease, are upregulated by dieldrin whereas transcripts related to lysosomal function are significantly downregulated. To verify these findings, proteins in these pathways were examined with immunoblotting, and our results demonstrate that dieldrin constitutively activates Akt/mTOR signaling and downregulates lysosomal genes, participating in autophagy. Our data demonstrate that dieldrin induces genes associated with cardiovascular dysfunction and compromised lysosomal physiology, thereby identifying a novel mechanism for pesticide-induced cardiotoxicity.


Assuntos
Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Dieldrin/farmacologia , Coração/efeitos dos fármacos , Inseticidas/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Relação Dose-Resposta a Droga , Feminino , Redes Reguladoras de Genes/efeitos dos fármacos , Redes Reguladoras de Genes/genética , Masculino , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Peixe-Zebra
13.
Biochem J ; 473(21): 3769-3789, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27487838

RESUMO

Doxorubicin (DOX) is an effective anti-cancer agent. However, DOX treatment increases patient susceptibility to dilated cardiomyopathy. DOX predisposes cardiomyocytes to insult by suppressing mitochondrial energy metabolism, altering calcium flux, and disrupting proteolysis and proteostasis. Prior studies have assessed the role of macroautophagy in DOX cardiotoxicity; however, limited studies have examined whether DOX mediates cardiac injury through dysfunctions in inter- and/or intra-lysosomal signaling events. Lysosomal signaling and function is governed by transcription factor EB (TFEB). In the present study, we hypothesized that DOX caused myocyte injury by impairing lysosomal function and signaling through negative regulation of TFEB. Indeed, we found that DOX repressed cellular TFEB expression, which was associated with impaired cathepsin proteolytic activity across in vivo, ex vivo, and in vitro models of DOX cardiotoxicity. Furthermore, we observed that loss of TFEB was associated with reduction in macroautophagy protein expression, inhibition of autophagic flux, impairments in lysosomal cathepsin B activity, and activation of cell death. Restoration and/or activation of TFEB in DOX-treated cardiomyocytes prevented DOX-induced suppression of cathepsin B activity, reduced DOX-mediated reactive oxygen species (ROS) overproduction, attenuated activation of caspase-3, and improved cellular viability. Collectively, loss of TFEB inhibits lysosomal autophagy, rendering cardiomyocytes susceptible to DOX-induced proteotoxicity and injury. Our data reveal a novel mechanism wherein DOX primes cardiomyocytes for cell death by depleting cellular TFEB.


Assuntos
Autofagia/efeitos dos fármacos , Doxorrubicina/farmacologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Immunoblotting , Marcação In Situ das Extremidades Cortadas , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Proteólise/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Circ Res ; 115(5): 518-24, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25001074

RESUMO

RATIONALE: The energy sensor AMP-activated protein kinases (AMPK) is thought to play an important role in regulating myocardial fatty acid oxidation (FAO) via its phosphorylation and inactivation of acetyl coenzyme A carboxylase (ACC). However, studies supporting this have not directly assessed whether the maintenance of FAO rates and subsequent cardiac function requires AMPK-dependent inhibitory phosphorylation of ACC. OBJECTIVE: To determine whether preventing AMPK-mediated inactivation of ACC influences myocardial FAO or function. METHODS AND RESULTS: A double knock-in (DKI) mouse (ACC-DKI) model was generated in which the AMPK phosphorylation sites Ser79 on ACC1 and Ser221 (Ser212 mouse) on ACC2 were mutated to prevent AMPK-dependent inhibitory phosphorylation of ACC. Hearts from ACC-DKI mice displayed a complete loss of ACC phosphorylation at the AMPK phosphorylation sites. Despite the inability of AMPK to regulate ACC activity, hearts from ACC-DKI mice displayed normal basal AMPK activation and cardiac function at both standard and elevated workloads. In agreement with the inability of AMPK in hearts from ACC-DKI mice to phosphorylate and inhibit ACC, there was a significant increase in cardiac malonyl-CoA content compared with wild-type mice. However, cardiac FAO rates were comparable between wild-type and ACC-DKI mice at baseline, during elevated workloads, and after a more stressful condition of myocardial ischemia that is known to robustly activate AMPK. CONCLUSIONS: Our findings show AMPK-dependent inactivation of ACC is not essential for the control of myocardial FAO and subsequent cardiac function during a variety of conditions involving AMPK-independent and AMPK-dependent metabolic adaptations.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/metabolismo , Metabolismo Energético , Ácidos Graxos/metabolismo , Contração Miocárdica , Miocárdio/enzimologia , Acetil-CoA Carboxilase/genética , Animais , Feminino , Técnicas de Introdução de Genes , Masculino , Malonil Coenzima A/metabolismo , Camundongos Mutantes , Camundongos Transgênicos , Mutação , Oxirredução , Fosforilação , Serina , Fatores de Tempo , Função Ventricular Esquerda
16.
Am J Physiol Endocrinol Metab ; 308(10): E879-90, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25783895

RESUMO

Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme mediating triacylglycerol hydrolysis in virtually all cells, including adipocytes and skeletal myocytes, and hence, plays a critical role in mobilizing fatty acids. Global ATGL deficiency promotes skeletal myopathy and exercise intolerance in mice and humans, and yet the tissue-specific contributions to these phenotypes remain unknown. The goal of this study was to determine the relative contribution of ATGL-mediated triacylglycerol hydrolysis in adipocytes vs. skeletal myocytes to acute exercise performance. To achieve this goal, we generated murine models with adipocyte- and skeletal myocyte-specific targeted deletion of ATGL. We then subjected untrained mice to acute peak and submaximal exercise interventions and assessed exercise performance and energy substrate metabolism. Impaired ATGL-mediated lipolysis within adipocytes reduced peak and submaximal exercise performance, reduced peripheral energy substrate availability, shifted energy substrate preference toward carbohydrate oxidation, and decreased HSL Ser(660) phosphorylation and mitochondrial respiration within skeletal muscle. In contrast, impaired ATGL-mediated lipolysis within skeletal myocytes was not sufficient to reduce peak and submaximal exercise performance or peripheral energy substrate availability and instead tended to enhance metabolic flexibility during peak exercise. Furthermore, the expanded intramyocellular triacylglycerol pool in these mice was reduced following exercise in association with preserved HSL phosphorylation, suggesting that HSL may compensate for impaired ATGL action in skeletal muscle during exercise. These data suggest that adipocyte rather than skeletal myocyte ATGL-mediated lipolysis plays a greater role during acute exercise in part because of compensatory mechanisms that maintain lipolysis in muscle, but not adipose tissue, when ATGL is absent.


Assuntos
Adipócitos/metabolismo , Lipase/genética , Fibras Musculares Esqueléticas/metabolismo , Condicionamento Físico Animal/fisiologia , Esforço Físico/genética , Animais , Desempenho Atlético , Tolerância ao Exercício/genética , Feminino , Deleção de Genes , Lipase/metabolismo , Lipólise/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
17.
J Mol Cell Cardiol ; 71: 43-53, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24262338

RESUMO

Rigorous surveillance of protein quality control is essential for the maintenance of normal cardiac function, while the dysregulation of protein turnover is present in a diverse array of common cardiac diseases. Central to the protein quality control found in all cells is the ubiquitin proteasome system (UPS). The UPS plays a critical role in protein trafficking, cellular signaling, and most prominently, protein degradation. As ubiquitin ligases (E3s) control the specificity of the UPS, their description in the cardiomyocyte has highlighted how ubiquitin ligases are critical to the turnover and function of the sarcomere complex, responsible for the heart's required continuous contraction. In this review, we provide an overview of the UPS, highlighting a comprehensive overview of the cardiac ubiquitin ligases identified to date. We then focus on recent studies of new cardiac ubiquitin ligases outlining their novel roles in protein turnover, cellular signaling, and the regulation of mitochondrial dynamics and receptor turnover in the pathophysiology of cardiac hypertrophy, cardiac atrophy, myocardial infarction, and heart failure. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy".


Assuntos
Cardiopatias/enzimologia , Miócitos Cardíacos/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Animais , Cardiopatias/metabolismo , Humanos , Miócitos Cardíacos/metabolismo
18.
Diabetologia ; 57(8): 1693-702, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24913514

RESUMO

AIMS/HYPOTHESIS: Obesity is characterised by lipid accumulation in skeletal muscle, which increases the risk of developing insulin resistance and type 2 diabetes. AMP-activated protein kinase (AMPK) is a sensor of cellular energy status and is activated in skeletal muscle by exercise, hormones (leptin, adiponectin, IL-6) and pharmacological agents (5-amino-4-imidazolecarboxamide ribonucleoside [AICAR] and metformin). Phosphorylation of acetyl-CoA carboxylase 2 (ACC2) at S221 (S212 in mice) by AMPK reduces ACC activity and malonyl-CoA content but the importance of the AMPK-ACC2-malonyl-CoA pathway in controlling fatty acid metabolism and insulin sensitivity is not understood; therefore, we characterised Acc2 S212A knock-in (ACC2 KI) mice. METHODS: Whole-body and skeletal muscle fatty acid oxidation and insulin sensitivity were assessed in ACC2 KI mice and wild-type littermates. RESULTS: ACC2 KI mice were resistant to increases in skeletal muscle fatty acid oxidation elicited by AICAR. These mice had normal adiposity and liver lipids but elevated contents of triacylglycerol and ceramide in skeletal muscle, which were associated with hyperinsulinaemia, glucose intolerance and skeletal muscle insulin resistance. CONCLUSIONS/INTERPRETATION: These findings indicate that the phosphorylation of ACC2 S212 is required for the maintenance of skeletal muscle lipid and glucose homeostasis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/metabolismo , Resistência à Insulina/fisiologia , Insulina/farmacologia , Músculo Esquelético/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Hipoglicemiantes/farmacologia , Leptina/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Malonil Coenzima A/metabolismo , Camundongos , Músculo Esquelético/efeitos dos fármacos , Obesidade/metabolismo , Oxirredução , Fosforilação/efeitos dos fármacos , Ribonucleotídeos/farmacologia
19.
J Mol Cell Cardiol ; 55: 101-10, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22789525

RESUMO

Myocardial triacylglycerol (TAG) constitutes a highly dynamic fatty acid (FA) storage pool that can be used for an energy reserve in the cardiomyocyte. However, derangements in myocardial TAG metabolism and accumulation are commonly associated with cardiac disease, suggesting an important role of intramyocardial TAG turnover in the regulation of cardiac function. In cardiomyocytes, TAG is synthesized by acyltransferases and phosphatases at the sarcoplasmic reticulum and mitochondrial membrane and then packaged into cytosolic lipid droplets for temporary storage or into lipoproteins for secretion. A complex interplay among lipases, lipase regulatory proteins, and lipid droplet scaffold proteins leads to the controlled release of FAs from the cardiac TAG pool for subsequent mitochondrial ß-oxidation and energy production. With the identification and characterization of proteins involved in myocardial TAG metabolism as well as the identification of the importance of cardiac TAG turnover, it is now evident that adequate regulation of myocardial TAG metabolism is critical for both cardiac energy metabolism and function. In this article, we review the current understanding of myocardial TAG metabolism and discuss the potential role of myocardial TAG turnover in cardiac health and disease. This article is part of a Special Issue entitled "Focus on Cardiac Metabolism".


Assuntos
Miocárdio/metabolismo , Triglicerídeos/metabolismo , Animais , Metabolismo Energético , Humanos , Metabolismo dos Lipídeos , Lipoproteínas/metabolismo , Miocárdio/enzimologia , Triglicerídeos/biossíntese
20.
J Mol Cell Cardiol ; 63: 180-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23948483

RESUMO

Although pre-clinical evidence has suggested that partial inhibition of myocardial fatty acid oxidation (FAO) and subsequent switch to greater glucose oxidation for ATP production can prevent ischemia/reperfusion injury, controversy about this approach persists. For example, mice with germline deletion of the FA transporter CD36, exhibited either impaired or unchanged post-ischemic functional recovery despite a 40-60% reduction in FAO rates. Because there are limitations to cardiac studies utilizing whole body CD36 knockout (totalCD36KO) mice, we have now generated an inducible and cardiomyocyte-specific CD36 KO (icCD36KO) mouse to better address the role of cardiomyocyte CD36 and its regulation of FAO and post-ischemic functional recovery. Four to six weeks following CD36 ablation, hearts from icCD36KO mice had significantly decreased FA uptake compared to controls, which was paralleled by significant reductions in intramyocardial triacylglycerol content. Analysis of cardiac energy metabolism using ex vivo working heart perfusions showed that reduced FAO rates were compensated by enhanced glucose oxidation in the hearts from icCD36KO mice. In contrast to the totalCD36KO mice, hearts from icCD36KO mice exhibited significantly improved functional recovery following ischemia/reperfusion (18min of global no-flow ischemia followed by 40min of aerobic reperfusion). This improved recovery was associated with lower calculated proton production prior to and following ischemia compared to controls. Moreover, the amount of ATP generated relative to cardiac work was significantly lower in the hearts from icCD36KO mice compared to controls, indicating significantly increased cardiac efficiency in the hearts from icCD36KO mice. These data provide genetic evidence that reduced FAO as a result of diminished CD36-mediated FA uptake improves post-ischemic cardiac efficiency and functional recovery. As such, targeting cardiomyocyte FA uptake and FAO via inhibition of CD36 in the adult myocardium may provide therapeutic benefit during ischemia-reperfusion.


Assuntos
Antígenos CD36/genética , Isquemia Miocárdica/genética , Isquemia Miocárdica/fisiopatologia , Miócitos Cardíacos/metabolismo , Animais , Modelos Animais de Doenças , Metabolismo Energético , Ácidos Graxos/metabolismo , Ordem dos Genes , Marcação de Genes , Recombinação Homóloga , Masculino , Camundongos , Camundongos Knockout , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA