Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Cereb Cortex ; 33(5): 2328-2341, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35640648

RESUMO

Brain structural damage is a typical feature of schizophrenia. Investigating such disease phenotype in patients with drug-naive first-episode schizophrenia (DFSZ) may exclude the confounds of antipsychotics and illness chronicity. However, small sample sizes and marked clinical heterogeneity have precluded definitive identification of gray matter volume (GMV) changes in DFSZ as well as their underlying genetic mechanisms. Here, GMV changes in DFSZ were assessed using a neuroimaging meta-analysis of 19 original studies, including 605 patients and 637 controls. Gene expression data were derived from the Allen Human Brain Atlas and processed with a newly proposed standardized pipeline. Then, we used transcriptome-neuroimaging spatial correlations to identify genes associated with GMV changes in DFSZ, followed by a set of gene functional feature analyses. Meta-analysis revealed consistent GMV reduction in the right superior temporal gyrus, right insula and left inferior temporal gyrus in DFSZ. Moreover, we found that these GMV changes were spatially correlated with expression levels of 1,201 genes, which exhibited a wide range of functional features. Our findings may provide important insights into the genetic mechanisms underlying brain morphological abnormality in schizophrenia.


Assuntos
Lesões Encefálicas , Esquizofrenia , Humanos , Substância Cinzenta , Córtex Cerebral , Encéfalo , Imageamento por Ressonância Magnética/métodos
2.
Psychol Med ; : 1-13, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36601814

RESUMO

BACKGROUND: Extensive research has shown abnormal cerebral blood flow (CBF) in patients with major depressive disorder (MDD) that is a heritable disease. The objective of this study was to investigate the genetic mechanisms of CBF abnormalities in MDD. METHODS: To achieve a more thorough characterization of CBF changes in MDD, we performed a comprehensive neuroimaging meta-analysis of previous literature as well as examined group CBF differences in an independent sample of 133 MDD patients and 133 controls. In combination with the Allen Human Brain Atlas, transcriptome-neuroimaging spatial association analyses were conducted to identify genes whose expression correlated with CBF changes in MDD, followed by a set of gene functional feature analyses. RESULTS: We found increased CBF in the reward circuitry and default-mode network and decreased CBF in the visual system in MDD patients. Moreover, these CBF changes were spatially associated with expression of 1532 genes, which were enriched for important molecular functions, biological processes, and cellular components of the cerebral cortex as well as several common mental disorders. Concurrently, these genes were specifically expressed in the brain tissue, in immune cells and neurons, and during nearly all developmental stages. Regarding behavioral relevance, these genes were associated with domains involving emotion and sensation. In addition, these genes could construct a protein-protein interaction network supported by 60 putative hub genes with functional significance. CONCLUSIONS: Our findings suggest a cerebral perfusion redistribution in MDD, which may be a consequence of complex interactions of a wide range of genes with diverse functional features.

3.
J Magn Reson Imaging ; 58(2): 477-485, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36426968

RESUMO

BACKGROUND: T1ρ mapping is a new quantitative MRI technique in recent years. In order to use T1ρ mapping as a noncontrast method to assess myocardial fibrosis, it is necessary to establish a range of normal values. PURPOSE: To establish a potential normal range of cardiac T1ρ values in healthy adults and to explore the influence of slice location and gender on T1ρ values. STUDY TYPE: Prospective. POPULATION: A total of 57 healthy volunteers without cardiovascular risk factors (age 26.7 ± 11.8 years; 29 males). FIELD STRENGTH/SEQUENCE: 1.5 T; modified Look-Locker inversion recovery (MOLLI) (T1 mapping), multiecho gradient-spin-echo (GraSE) (T2 mapping) and T1ρ -prepared steady-state free precession (T1ρ mapping) sequences. ASSESSMENT: Basal, mid, and apical short-axis left ventricular T1 , T2 , and T1ρ maps were acquired. T1ρ maps at spin-locking frequencies of 5 and 400 Hz were subtracted to create myocardial fibrosis index (mFI) maps. Slice-average and global average T1 , T2 , T1ρ , and mFI values were determined. STATISTICAL TESTS: Shapiro-Wilk test, Independent t-test, ANOVA test, Pearson correlation coefficient (r). SIGNIFICANCE: P value < 0.05. RESULTS: The global average values of T1 , T2 , T1ρ, and mFI were 1053 ± 34 msec, 51.9 ± 2.3 msec, 47.9 ± 2.8 msec, and 4.4 ± 1.6 msec. T1ρ values showed a significant gradual increase from the basal slice to the apical slice of the heart (basal 46.5 ± 2.7 msec, mid 48.0 ± 2.9 msec, apical 49.2 ± 3.3 msec). The T1ρ and mFI values of females (49.7 ± 2.4 msec and 5.1 ± 1.2 msec, respectively) were significantly higher than those of males (46.2 ± 1.9 msec and 3.7 ± 1.7 msec, respectively). In addition, there was a moderate positive correlation between global T1ρ values and global T1 values (r = 0.44, P < 0.05) and a moderate positive correlation between global T1ρ values and global T2 values (r = 0.42, P < 0.05). DATA CONCLUSION: In this study, the global T1ρ values of healthy adults' hearts were 47.9 ± 2.8 msec. This study found that gender and slice location of myocardium can affect the T1ρ values. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 1.


Assuntos
Coração , Imageamento por Ressonância Magnética , Masculino , Feminino , Humanos , Adulto , Adolescente , Adulto Jovem , Valores de Referência , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Coração/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , Fibrose , Reprodutibilidade dos Testes
4.
J Psychiatry Neurosci ; 48(6): E421-E430, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37935475

RESUMO

BACKGROUND: Psychosocial interventions have emerged as an important component of a comprehensive therapeutic approach in early-onset schizophrenia, typically representing a more severe form of the disorder. Despite the feasibility and efficacy of Theory of Mind (ToM) psychotherapy for schizophrenia, relatively little is known regarding the neural mechanism underlying its effect on early-onset schizophrenia. METHODS: We performed a randomized, active controlled trial in patients with early-onset schizophrenia, who were randomly allocated into either an intervention (ToM psychotherapy) or an active control (health education) group. Diffusion tensor imaging data were collected to construct brain structural networks, with both global and regional topological properties measured using graph theory. RESULTS: We enrolled 28 patients with early-onset schizophrenia in our study. After 5 weeks of treatment, both the intervention and active control groups showed significant improvement in psychotic symptoms, yet the improvement was greater in the intervention group. Importantly, in contrast with no brain structural network change after treatment in the active control group, the intervention group showed increased nodal centrality of the left insula that was associated with psychotic symptom improvement. LIMITATIONS: We did not collect important information concerning the participants' cognitive abilities, particularly ToM performance. CONCLUSION: These findings suggest a potential neural mechanism by which ToM psychotherapy exerts a beneficial effect on early-onset schizophrenia via strengthening the coordination capacity of the insula in brain structural networks, which may provide a clinically translatable biomarker for monitoring or predicting responses to ToM psychotherapy.Clinical trial registration: NCT05577338; ClinicalTrials.gov.


Assuntos
Esquizofrenia , Teoria da Mente , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/terapia , Esquizofrenia/complicações , Imagem de Tensor de Difusão , Teoria da Mente/fisiologia , Percepção Social , Psicoterapia
5.
Cereb Cortex ; 32(10): 2063-2078, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-34607357

RESUMO

The human visual cortex is a heterogeneous entity that has multiple subregions showing substantial variability in their functions and connections. We aimed to identify genes associated with resting-state functional connectivity (rsFC) of visual subregions using transcriptome-neuroimaging spatial correlations in discovery and validation datasets. Results showed that rsFC of eight visual subregions were associated with expression measures of eight gene sets, which were specifically expressed in brain tissue and showed the strongest correlations with visual behavioral processes. Moreover, there was a significant divergence in these gene sets and their functional features between medial and lateral visual subregions. Relative to those associated with lateral subregions, more genes associated with medial subregions were found to be enriched for neuropsychiatric diseases and more diverse biological functions and pathways, and to be specifically expressed in multiple types of neurons and immune cells and during the middle and late stages of cortical development. In addition to shared behavioral processes, lateral subregion associated genes were uniquely correlated with high-order cognition. These findings of commonalities and differences in the identified rsFC-related genes and their functional features across visual subregions may improve our understanding of the functional heterogeneity of the visual cortex from the perspective of underlying genetic architecture.


Assuntos
Imageamento por Ressonância Magnética , Córtex Visual , Encéfalo , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Neuroimagem , Córtex Visual/diagnóstico por imagem
6.
J Neurosci Res ; 100(12): 2187-2200, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36069656

RESUMO

There is solid evidence for the prominent involvement of the central autonomic and default mode systems in shaping personality. However, whether functional connectivity of these systems can represent neural correlates and predictors of individual variation in personality traits is largely unknown. Resting-state functional magnetic resonance imaging data of 215 healthy young adults were used to construct the sympathetic (SN), parasympathetic (PN), and default mode (DMN) networks, with intra- and internetwork functional connectivity measured. Personality factors were assessed using the five-factor model. We examined the associations between personality factors and functional network connectivity, followed by performance of personality prediction based on functional connectivity using connectome-based predictive modeling (CPM), a recently developed machine learning approach. All personality factors (neuroticism, extraversion, conscientiousness, and agreeableness) other than openness were significantly correlated with intra- and internetwork functional connectivity of the SN, PN, and DMN. Moreover, the CPM models successfully predicted conscientiousness and agreeableness at the individual level using functional network connectivity. Our findings may expand existing knowledge regarding the neural substrates underlying personality.


Assuntos
Conectoma , Rede Nervosa , Adulto Jovem , Humanos , Rede Nervosa/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Personalidade , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico
7.
Neurol Sci ; 43(9): 5323-5331, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35725857

RESUMO

BACKGROUND: Freezing of gait (FOG) have been associated with deficits in the cortico-basal ganglia-thalamic network. However, the resting-state cerebral blood flow (CBF) alterations specific to FOG in Parkinson's disease (PD) remain unknown. METHODS: In total, sixty PD individuals, including 30 PD with FOG (PD-FOG) and 30 PD without FOG (PD-NFOG), and 30 healthy controls (HC) underwent arterial spin labeling magnetic resonance image. The CBF were voxel-wise compared among the three groups and validated in a different cohort of PD-FOG and PD-NFOG. RESULTS: The results revealed that patients with PD-FOG had increased CBF in bilateral thalamus and the left caudate nucleus and decreased CBF in the left inferior parietal cortex compared to patients with PD-NFOG. The inter-group differences of CBF between PD-FOG and PD-NFOG was confirmed in a different cohort in the validation analysis. Moreover, the CBF in left caudate nucleus was positively correlated with severity of FOG in PD-FOG patients. CONCLUSIONS: Perfusion alterations in both cortical and subcortical regions in the cortico-basal ganglia-thalamic network are related to the development of FOG in PD patients.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Circulação Cerebrovascular , Marcha , Transtornos Neurológicos da Marcha/diagnóstico por imagem , Transtornos Neurológicos da Marcha/etiologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia
8.
Hum Brain Mapp ; 42(10): 3088-3101, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33739571

RESUMO

Network neuroscience has broadly conceptualized the functions of the brain as complex communication within and between large-scale neural networks. Nevertheless, whether and how the gut microbiota influence functional network connectivity that in turn impact human behaviors has yet to be determined. We collected fecal samples from 157 healthy young adults and used 16S sequencing to assess gut microbial diversity and enterotypes. Large-scale inter- and intranetwork functional connectivity was measured using a combination of resting-state functional MRI data and independent component analysis. Sleep quality and core executive functions were also evaluated. Then, we tested for potential associations between gut microbiota, functional network connectivity and behaviors. We found significant associations of gut microbial diversity with internetwork functional connectivity between the executive control, default mode and sensorimotor systems, and intranetwork connectivity of the executive control system. Moreover, some internetwork functional connectivity mediated the relations of microbial diversity with sleep quality, working memory, and attention. In addition, there was a significant effect of enterotypes on intranetwork connectivity of the executive control system, which could mediate the link between enterotypes and executive function. Our findings not only may expand existing biological knowledge of the gut microbiota-brain-behavior relationships from the perspective of large-scale functional network organization, but also may ultimately inform a translational conceptualization of how to improve sleep quality and executive functions through the regulation of gut microbiota.


Assuntos
Conectoma , Função Executiva/fisiologia , Microbioma Gastrointestinal/fisiologia , Rede Nervosa/fisiologia , Qualidade do Sono , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
9.
Radiology ; 299(2): E230-E240, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33434112

RESUMO

Background It is unknown if there are cardiac abnormalities in persons who have recovered from coronavirus disease 2019 (COVID-19) without cardiac symptoms or in those who have normal biomarkers and normal electrocardiograms. Purpose To evaluate cardiac involvement in participants who had recovered from COVID-19 without clinical evidence of cardiac involvement by using cardiac MRI. Materials and Methods This prospective observational cohort study included 40 participants who had recovered from COVID-19 with moderate (n = 24) or severe (n = 16) pneumonia and who had no cardiovascular medical history, were without cardiac symptoms, had normal electrocardiograms, had normal serologic cardiac enzyme levels, and had been discharged for more than 90 days between May and September 2020. Demographic characteristics were recorded, serum cardiac enzyme levels were measured, and cardiac MRI was performed. Cardiac function, native T1, extracellular volume fraction (ECV), and two-dimensional (2D) strain were quantitatively evaluated and compared with values in control subjects (n = 25). Comparisons among the three groups were performed by using one-way analysis of variance with Bonferroni-corrected post hoc comparisons (for normal distribution) or Kruskal-Wallis tests with post hoc pairwise comparisons (for nonnormal distribution). Results Forty participants (mean age, 54 years ± 12 [standard deviation]; 24 men) were enrolled; participants had a mean time between admission and cardiac MRI of 158 days ± 18 and between discharge and cardiac MRI examination of 124 days ± 17. There were no left or right ventricular size or functional differences between participants who had recovered from COVID-19 and healthy control subjects. Only one (3%) participant had positive late gadolinium enhancement located at the mid inferior wall. Global ECV values were elevated in participants who had recovered from COVID-19 with moderate or severe pneumonia compared with those in healthy control subjects (median ECV, 29.7% vs 31.4% vs 25.0%, respectively; interquartile range, 28.0%-32.9% vs 29.3%-34.0% vs 23.7%-26.0%, respectively; P < .001 for both). The 2D global left ventricular longitudinal strain was reduced in both groups of participants (moderate COVID-19 group, -12.5% [interquartile range, -15.5% to -10.7%]; severe COVID-19 group, -12.5% [interquartile range, -15.4% to -8.7%]) compared with the healthy control group (-15.4% [interquartile range, -17.6% to -14.6%]) (P = .002 and P = .001, respectively). Conclusion Cardiac MRI myocardial tissue and strain imaging parameters suggest that a proportion of participants who had recovered from COVID-19 had subclinical myocardial abnormalities detectable months after recovery. © RSNA, 2021 Online supplemental material is available for this article.


Assuntos
COVID-19/complicações , COVID-19/fisiopatologia , Cardiopatias/etiologia , Cardiopatias/fisiopatologia , Imageamento por Ressonância Magnética/métodos , SARS-CoV-2 , China , Estudos de Coortes , Feminino , Coração/diagnóstico por imagem , Coração/fisiopatologia , Cardiopatias/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
10.
Neural Plast ; 2020: 8894868, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204252

RESUMO

Previous research has demonstrated that serum lipid profile is associated with cognitive function as well as brain structure and function in middle-aged, elderly, and clinical populations. However, the nature and extent of lipids-brain-cognition relationships in young adulthood are largely unknown. In this study, 157 healthy young adults underwent resting-state functional MRI scans. Functional connectivity between and within 14 functional networks were calculated using independent component analysis. Peripheral venous blood samples were collected to measure serum lipids. Working memory was assessed using a 3-back task. Linear regression, correlation, and mediation analyses were conducted to test for potential associations between serum lipids, inter- and intranetwork functional connectivity, and working memory performance. We found that higher serum triglyceride (TG) level was correlated with stronger connectivity between left frontoparietal and ventral attention networks, between right frontoparietal and dorsal attention networks, between right frontoparietal and dorsal sensorimotor networks, between right frontoparietal and lateral visual networks, and between salience (SN) and ventral sensorimotor (vSMN) networks, as well as lower connectivity between posterior default mode and left frontoparietal networks, between left frontoparietal and medial visual networks, and between ventral attention and dorsal sensorimotor networks. In addition, higher SN-vSMN connectivity was related to lower 3-back accuracy. More importantly, the relationship between serum TG and 3-back accuracy was mediated by SN-vSMN connectivity. Our findings not only may expand existing knowledge regarding serum lipids-brain-cognition relations from the perspective of large-scale functional network organization but also may inform a translational conceptualization of how to improve cognitive function through regulating serum lipids.


Assuntos
Encéfalo/fisiologia , Memória de Curto Prazo/fisiologia , Triglicerídeos/sangue , Adolescente , Adulto , Fatores Etários , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Adulto Jovem
11.
Brain Behav Immun ; 69: 255-263, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29195783

RESUMO

Blood-brain barrier (BBB) disruption, thrombus formation and immune-mediated inflammation are important steps in the pathophysiology of cerebral ischemia-reperfusion injury but are still inaccessible to therapeutic interventions. Recent studies have provided increasing evidence that blocking of platelet glycoprotein (GP) receptor Ib might represent a novel target in treating acute ischemic stroke. This research was conducted to explore the therapeutic efficacy and potential mechanisms of GPIbα inhibitor (anfibatide) in a model of brain ischemia-reperfusion injury in mice. Male mice underwent 90 min of right middle cerebral artery occlusion (MCAO) followed by 24 h of reperfusion. Anfibatide (1, 2, 4 ug/kg) or tirofiban were administered intravenously 1 h after reperfusion. The results showed that anfibatide could significantly reduce infarct volumes, increase the number of intact neuronal cells and improve neurobehavioral function. Moreover, anfibatide could reduce post ischemic BBB damage by attenuating increased paracellular permeability in the ischemia hemisphere significantly. Stroke-induced increases in activity and protein expression of macrophage-1 antigen (MAC-1) and P-selectin were also reduced by anfibatide intervention. Finally, anfibatide exerted antithrombotic effects upon stroke by decreased the number of microthrombi formation. This is the first demonstration of anfibatide's efficacy in protecting the BBB integrity and decreasing neutrophil inflammation response mediated by MAC-1 besides microthrombus formation inhibition in the brain during reperfusion. Anfibatide, as a promising anti-thrombo-inflammation agent, could be beneficial for the treatment of ischemic stroke.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Venenos de Crotalídeos/uso terapêutico , Fibrinolíticos/uso terapêutico , Lectinas Tipo C/uso terapêutico , Complexo Glicoproteico GPIb-IX de Plaquetas/antagonistas & inibidores , Traumatismo por Reperfusão/tratamento farmacológico , Tirofibana/uso terapêutico , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Venenos de Crotalídeos/farmacologia , Fibrinolíticos/farmacologia , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Traumatismo por Reperfusão/metabolismo , Tirofibana/farmacologia
12.
Eur Spine J ; 27(8): 1839-1845, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29619562

RESUMO

PURPOSE: To compare diffusion tensor imaging (DTI) parameters of the spinal cord between patients with cervical spondylotic myelopathy (CSM) and normal subjects, and investigate their significance in the clinical diagnosis, surgical planning and post-operative evaluation of CSM. METHODS: Routine sequence magnetic resonance imaging (MRI) and DTI scans were performed in 50 normal subjects and 60 cases of CSM with 3.0-T MR. DTI images, apparent diffusion coefficient (ADC) and fractional anisotropy (FA) colormaps corresponding to spinal cord cross-sections were obtained. The spinal cord function of CSM patients was measured using modified Japanese Orthopaedic Association (mJOA) scoring and Nurick grade at different times. The changes in DTI parameters and their correlation with spinal cord function scores were analysed by SPSS 19. RESULTS: There were significant differences in DTI parameters of the spinal cord between normal subjects and patients with CSM (ADC: 1.119 ± 0.087 vs. 1.395 ± 0.091, P < 0.01; FA: 0.661 ± 0.057 vs. 0.420 ± 0.080, P < 0.01). The FA values at the maximal compression level of the spinal cord in the patients with CSM were significantly associated with the mJOA score pre-operatively, 1 week, and 1, 3 and 6 months post-operatively, with Pearson's correlation coefficients of 0.58 (P < 0.01), 0.53 (P < 0.05), and 0.51 (P < 0.05), 0.54 (P < 0.05) and 0.55 (P < 0.05), respectively. However, the FA values were significantly negatively associated with the Nurick grade, with Pearson's correlation coefficients of - 0.40 (P < 0.05), - 0.39 (P < 0.05), and -0.41 (P < 0.05), - 0.45 (P < 0.05) and - 0.44 (P < 0.05), respectively. CONCLUSIONS: DTI may play a significant role in diagnosing and predicting the development of CSM. These slides can be retrieved under Electronic Supplementary Material.


Assuntos
Vértebras Cervicais/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Doenças da Medula Espinal/diagnóstico por imagem , Espondilose/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Anisotropia , Vértebras Cervicais/patologia , Vértebras Cervicais/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medula Espinal/diagnóstico por imagem , Doenças da Medula Espinal/etiologia , Doenças da Medula Espinal/cirurgia , Espondilose/complicações , Espondilose/cirurgia
13.
Metab Brain Dis ; 32(3): 685-692, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28116563

RESUMO

To investigate the frequency-dependent changes in the amplitude of low-frequency fluctuations (ALFF) in patients with Wilson's disease (WD). Resting-state function magnetic resonance imaging (R-fMRI) were employed to measure the amplitude of ALFF in 28 patients with WD and 27 matched normal controls. Slow-5 (0.01-0.027 Hz) and slow-4 (0.027-0.073 Hz) frequency bands were analyzed. Apart from the observation of atrophy in the cerebellum, basal ganglia, occipital gyrus, frontal gyrus, precentral gyrus, and paracentral lobule, we also found widespread differences in ALFF of the two bands in the medial frontal gyrus, inferior temporal gyrus, insula, basal ganglia, hippocampus/parahippocampal gyrus, and thalamus bilaterally. Compared to normal controls, WD patients had increased ALFF in the posterior lobe of the cerebellum, inferior temporal gyrus, brain stem, basal ganglia, and decreased ALFF in the anterior lobe of the cerebellum and medial frontal gyrus. Specifically, we observed that the ALFF abnormalities in the cerebellum and middle frontal gyrus were greater in the slow-5 than in the slow-4 band. Correlation analysis showed consistently positive correlations between urinary copper excretion (Cu), serum ceruloplasmin (CP) and ALFFs in the cerebellum. Our study suggests the accumulation of copper profoundly impaired intrinsic brain activity and the impairments seem to be frequency-dependent. These results provide further insights into the understanding of the pathophysiology of WD.


Assuntos
Degeneração Hepatolenticular/diagnóstico por imagem , Degeneração Hepatolenticular/fisiopatologia , Imageamento por Ressonância Magnética , Descanso/fisiologia , Adolescente , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
14.
J Am Chem Soc ; 138(33): 10452-66, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27485779

RESUMO

Reactive oxygen species (ROS) and oxidative stress are implicated in various physiological and pathological processes, and this feature provides a vital biochemical basis for designing novel therapeutic and diagnostic nanomedicines. Among them, oxidation-responsive micelles and vesicles (polymersomes) of amphiphilic block copolymers have been extensively explored; however, in previous works, oxidation by ROS including H2O2 exclusively leads to microstructural destruction of polymeric assemblies. For oxidation-responsive polymersomes, fast release of encapsulated hydrophilic drugs and bioactive macromolecules will occur upon microstructural disintegration. Under certain application circumstances, this does not meet design requirements for sustained-release drug nanocarriers and long-acting in vivo nanoreactors. Also note that conventional polymersomes possess thick hydrophobic bilayers and compromised membrane permeability, rendering them as ineffective nanocarriers and nanoreactors. We herein report the fabrication of oxidation-responsive multifunctional polymersomes exhibiting intracellular milieu-triggered vesicle bilayer cross-linking, permeability switching, and enhanced imaging/drug release features. Mitochondria-targeted H2O2 reactive polymersomes were obtained through the self-assembly of amphiphilic block copolymers containing arylboronate ester-capped self-immolative side linkages in the hydrophobic block, followed by surface functionalization with targeting peptides. Upon cellular uptake, intracellular H2O2 triggers cascade decaging reactions and generates primary amine moieties; prominent amidation reaction then occurs within hydrophobic bilayer membranes, resulting in concurrent cross-linking and hydrophobic-to-hydrophilic transition of polymersome bilayers inside live cells. This process was further utilized to achieve integrated functions such as sustained drug release, (combination) chemotherapy monitored by fluorescence and magnetic resonance (MR) imaging turn-on, and to construct intracellular fluorogenic nanoreactors for cytosolic thiol-containing bioactive molecules.


Assuntos
Portadores de Fármacos/química , Espaço Intracelular/metabolismo , Nanotecnologia , Polímeros/química , Liberação Controlada de Fármacos , Células HeLa , Humanos , Peróxido de Hidrogênio/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Oxirredução , Permeabilidade , Compostos de Sulfidrila/química
16.
Mol Neurobiol ; 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308665

RESUMO

Previous neuroimaging research has established associations between urban exposure during early life and alterations in brain function and structure. However, the molecular mechanisms and behavioral relevance of these associations remain largely unknown. Here, we aimed to address this question using a combined analysis of multimodal data. Initially, we calculated amplitude of low-frequency fluctuations (ALFF) and gray matter volume (GMV) using resting-state functional and structural MRI to investigate their associations with early-life urbanization in a large sample of 511 healthy young adults. Then, we examined the spatial relationships of the identified neural correlates of early-life urbanization with gene expression, neurotransmitter, and behavioral domain atlases. Results showed that higher early-life urbanization scores were correlated with increased ALFF of the right fusiform gyrus and decreased GMV of the left dorsal medial prefrontal cortex and left precuneus. Remarkably, the identified neural correlates of early-life urbanization were spatially correlated with expression of gene categories primarily involving immune system process, signal transduction, and cellular metabolic process. Concurrently, there were significant associations between the neural correlates and specific neurotransmitter systems including dopamine, acetylcholine, and serotonin. Finally, we found that the ALFF correlates were associated with behavioral terms including "perception," "sensory," "cognitive control," and "reasoning." Apart from expanding existing knowledge of early-life urban environmental risk for mental disorders and health in general, our findings may contribute to an emerging framework for integrating social science, neuroscience, genetics, and public policy to respond to the major health challenge of world urbanization.

17.
Biol Psychiatry ; 95(12): 1091-1099, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38215816

RESUMO

BACKGROUND: Extensive neuroimaging research on brain structural and functional correlates of suicide has produced inconsistent results. Despite increasing recognition that damage in multiple different brain locations that causes the same symptom can map to a common brain network, there is still a paucity of research investigating network localization of suicide. METHODS: To clarify this issue, we initially identified brain structural and functional damage locations in relation to suicide from 63 published studies with 2135 suicidal and 2606 nonsuicidal individuals. By applying novel functional connectivity network mapping to large-scale discovery and validation resting-state functional magnetic resonance imaging datasets, we mapped these affected brain locations to 3 suicide brain damage networks corresponding to different imaging modalities. RESULTS: The suicide gray matter volume damage network comprised widely distributed brain areas primarily involving the dorsal default mode, basal ganglia, and anterior salience networks. The suicide task-induced activation damage network was similar to but less extensive than the gray matter volume damage network, predominantly implicating the same canonical networks. The suicide resting-state activity damage network manifested as a localized set of brain regions encompassing the orbitofrontal cortex and middle cingulate cortex. CONCLUSIONS: Our findings not only may help reconcile prior heterogeneous neuroimaging results, but also may provide insights into the neurobiological mechanisms of suicide from a network perspective, which may ultimately inform more targeted and effective strategies to prevent suicide.


Assuntos
Encéfalo , Substância Cinzenta , Imageamento por Ressonância Magnética , Suicídio , Humanos , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Substância Cinzenta/patologia , Substância Cinzenta/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/patologia , Rede Nervosa/fisiopatologia , Mapeamento Encefálico , Masculino , Feminino , Adulto , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem
18.
ACS Med Chem Lett ; 15(7): 1080-1087, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39015273

RESUMO

The bradykinin B2 receptor (B2R) is overexpressed in a wide variety of tumors and is a well-defined target for tumor imaging and therapy. The hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) scanner is considered a noninvasive and advanced instrument for precise tumor imaging. In this work, we developed a novel B2R-targeting radiotracer, 68Ga-DOTA-icatibant, for quantifying B2R expression. 68Ga-DOTA-icatibant showed high stability, fast clearance and specific binding to B2R. PET/MR imaging revealed excellent tumor accumulation, and the uptake in tumors could be blocked by DOTA-icatibant. Icatibant-mediated anti-B2R therapy downregulated B2R expression in tumor cells and inhibited the growth of HepG2 tumors, and the decrease in tumor uptake was monitored by timely PET/MR imaging. Hematoxylin and eosin (H&E) and immunohistochemical staining results further demonstrated that the efficacy of anti-B2R could be accurately monitored with the developed PET/MR imaging radiotracer. 68Ga-DOTA-icatibant can be utilized to noninvasively determine B2R expression and dynamically and sensitively monitor the efficacy of anti-B2R therapy.

19.
World Neurosurg ; 188: e312-e319, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38796145

RESUMO

BACKGROUND: Malignant cerebral edema (MCE) is associated with both net water uptake (NWU) and infarct volume. We hypothesized that NWU weighted by the affected Alberta Stroke Program Early Computed Tomography Score (ASPECTS) regions could serve as a quantitative imaging biomarker of aggravated edema development in acute ischemic stroke with large vessel occlusion (LVO). The aim of this study was to evaluate the performance of weighted NWU (wNWU) to predict MCE in patients with mechanical thrombectomy (MT). METHODS: We retrospectively analyzed consecutive patients who underwent MT due to LVO. NWU was computed from nonenhanced computed tomography scans upon admission using automated ASPECTS software. wNWU was derived by multiplying NWU with the number of affected ASPECTS regions in the ischemic hemisphere. Predictors of MCE were assessed through multivariate logistic regression analysis and receiver operating characteristic curves. RESULTS: NWU and wNWU were significantly higher in MCE patients than in non-MCE patients. Vessel recanalization status influenced the performance of wNWU in predicting MCE. In patients with successful recanalization, wNWU was an independent predictor of MCE (adjusted odds ratio 1.61; 95% confidence interval [CI] 1.24-2.09; P < 0.001). The model integrating wNWU, National Institutes of Health Stroke Scale, and collateral score exhibited an excellent performance in predicting MCE (area under the curve 0.80; 95% CI 0.75-0.84). Among patients with unsuccessful recanalization, wNWU did not influence the development of MCE (adjusted odds ratio 0.99; 95% CI 0.60-1.62; P = 0.953). CONCLUSIONS: This study revealed that wNWU at admission can serve as a quantitative predictor of MCE in LVO with successful recanalization after MT and may contribute to the decision for early intervention.


Assuntos
Edema Encefálico , Humanos , Edema Encefálico/diagnóstico por imagem , Edema Encefálico/etiologia , Masculino , Feminino , Idoso , Estudos Retrospectivos , Pessoa de Meia-Idade , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/cirurgia , Idoso de 80 Anos ou mais , Trombectomia/métodos , Tomografia Computadorizada por Raios X , Resultado do Tratamento
20.
Schizophrenia (Heidelb) ; 9(1): 13, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841861

RESUMO

Extensive research has established the presence of resting-state brain functional damage in psychosis. However, the genetic mechanisms of such disease phenotype are yet to be unveiled. We investigated resting-state brain functional alterations in patients with drug-naive first-episode psychosis (DFP) by performing a neuroimaging meta-analysis of 8 original studies comprising 500 patients and 469 controls. Combined with the Allen Human Brain Atlas, we further conducted transcriptome-neuroimaging spatial correlations to identify genes whose expression levels were linked to brain functional alterations in DFP, followed by a range of gene functional characteristic analyses. Meta-analysis revealed a mixture of increased and decreased brain function in widespread areas including the default-mode, visual, motor, striatal, and cerebellar systems in DFP. Moreover, these brain functional alterations were spatially associated with the expression of 1662 genes, which were enriched for molecular functions, cellular components, and biological processes of the cerebral cortex, as well as psychiatric disorders including schizophrenia. Specific expression analyses demonstrated that these genes were specifically expressed in the brain tissue, in cortical neurons and immune cells, and during nearly all developmental periods. Concurrently, the genes could construct a protein-protein interaction network supported by hub genes and were linked to multiple behavioral domains including emotion, attention, perception, and motor. Our findings provide empirical evidence for the notion that brain functional damage in DFP involves a complex interaction of polygenes with various functional characteristics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA