RESUMO
Current catalogs of regulatory sequences in the human genome are still incomplete and lack cell type resolution. To profile the activity of gene regulatory elements in diverse cell types and tissues in the human body, we applied single-cell chromatin accessibility assays to 30 adult human tissue types from multiple donors. We integrated these datasets with previous single-cell chromatin accessibility data from 15 fetal tissue types to reveal the status of open chromatin for â¼1.2 million candidate cis-regulatory elements (cCREs) in 222 distinct cell types comprised of >1.3 million nuclei. We used these chromatin accessibility maps to delineate cell-type-specificity of fetal and adult human cCREs and to systematically interpret the noncoding variants associated with complex human traits and diseases. This rich resource provides a foundation for the analysis of gene regulatory programs in human cell types across tissues, life stages, and organ systems.
Assuntos
Cromatina/metabolismo , Genoma Humano , Análise de Célula Única , Adulto , Análise por Conglomerados , Feto/metabolismo , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Especificidade de Órgãos , Filogenia , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de RiscoRESUMO
Many sequence variants have been linked to complex human traits and diseases1, but deciphering their biological functions remains challenging, as most of them reside in noncoding DNA. Here we have systematically assessed the binding of 270 human transcription factors to 95,886 noncoding variants in the human genome using an ultra-high-throughput multiplex protein-DNA binding assay, termed single-nucleotide polymorphism evaluation by systematic evolution of ligands by exponential enrichment (SNP-SELEX). The resulting 828 million measurements of transcription factor-DNA interactions enable estimation of the relative affinity of these transcription factors to each variant in vitro and evaluation of the current methods to predict the effects of noncoding variants on transcription factor binding. We show that the position weight matrices of most transcription factors lack sufficient predictive power, whereas the support vector machine combined with the gapped k-mer representation show much improved performance, when assessed on results from independent SNP-SELEX experiments involving a new set of 61,020 sequence variants. We report highly predictive models for 94 human transcription factors and demonstrate their utility in genome-wide association studies and understanding of the molecular pathways involved in diverse human traits and diseases.
Assuntos
Polimorfismo de Nucleotídeo Único/genética , Técnica de Seleção de Aptâmeros , Máquina de Vetores de Suporte , Fatores de Transcrição/metabolismo , Sítios de Ligação/genética , Doença/genética , Genoma Humano/genética , Humanos , Ligantes , Ligação ProteicaRESUMO
The mammalian cerebrum performs high-level sensory perception, motor control and cognitive functions through highly specialized cortical and subcortical structures1. Recent surveys of mouse and human brains with single-cell transcriptomics2-6 and high-throughput imaging technologies7,8 have uncovered hundreds of neural cell types distributed in different brain regions, but the transcriptional regulatory programs that are responsible for the unique identity and function of each cell type remain unknown. Here we probe the accessible chromatin in more than 800,000 individual nuclei from 45 regions that span the adult mouse isocortex, olfactory bulb, hippocampus and cerebral nuclei, and use the resulting data to map the state of 491,818 candidate cis-regulatory DNA elements in 160 distinct cell types. We find high specificity of spatial distribution for not only excitatory neurons, but also most classes of inhibitory neurons and a subset of glial cell types. We characterize the gene regulatory sequences associated with the regional specificity within these cell types. We further link a considerable fraction of the cis-regulatory elements to putative target genes expressed in diverse cerebral cell types and predict transcriptional regulators that are involved in a broad spectrum of molecular and cellular pathways in different neuronal and glial cell populations. Our results provide a foundation for comprehensive analysis of gene regulatory programs of the mammalian brain and assist in the interpretation of noncoding risk variants associated with various neurological diseases and traits in humans.
Assuntos
Cérebro/citologia , Cérebro/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Atlas como Assunto , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica , Predisposição Genética para Doença/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças do Sistema Nervoso/genética , Neuroglia/classificação , Neuroglia/metabolismo , Neurônios/classificação , Neurônios/metabolismo , Análise de Sequência de DNA , Análise de Célula ÚnicaRESUMO
Hi-C data are commonly normalized using single sample processing methods, with focus on comparisons between regions within a given contact map. Here, we aim to compare contact maps across different samples. We demonstrate that unwanted variation, of likely technical origin, is present in Hi-C data with replicates from different individuals, and that properties of this unwanted variation change across the contact map. We present band-wise normalization and batch correction, a method for normalization and batch correction of Hi-C data and show that it substantially improves comparisons across samples, including in a quantitative trait loci analysis as well as differential enrichment across cell types.
Assuntos
Locos de Características Quantitativas , Humanos , Biologia ComputacionalRESUMO
The Encyclopedia of DNA Elements (ENCODE) project has established a genomic resource for mammalian development, profiling a diverse panel of mouse tissues at 8 developmental stages from 10.5 days after conception until birth, including transcriptomes, methylomes and chromatin states. Here we systematically examined the state and accessibility of chromatin in the developing mouse fetus. In total we performed 1,128 chromatin immunoprecipitation with sequencing (ChIP-seq) assays for histone modifications and 132 assay for transposase-accessible chromatin using sequencing (ATAC-seq) assays for chromatin accessibility across 72 distinct tissue-stages. We used integrative analysis to develop a unified set of chromatin state annotations, infer the identities of dynamic enhancers and key transcriptional regulators, and characterize the relationship between chromatin state and accessibility during developmental gene regulation. We also leveraged these data to link enhancers to putative target genes and demonstrate tissue-specific enrichments of sequence variants associated with disease in humans. The mouse ENCODE data sets provide a compendium of resources for biomedical researchers and achieve, to our knowledge, the most comprehensive view of chromatin dynamics during mammalian fetal development to date.
Assuntos
Cromatina/genética , Cromatina/metabolismo , Conjuntos de Dados como Assunto , Desenvolvimento Fetal/genética , Histonas/metabolismo , Anotação de Sequência Molecular , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Cromatina/química , Sequenciamento de Cromatina por Imunoprecipitação , Doença/genética , Elementos Facilitadores Genéticos/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Variação Genética , Histonas/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos/genética , Reprodutibilidade dos Testes , Transposases/metabolismoRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Mammalian cells are surrounded by neighbouring cells and extracellular matrix (ECM), which provide cells with structural support and mechanical cues that influence diverse biological processes1. The Hippo pathway effectors YAP (also known as YAP1) and TAZ (also known as WWTR1) are regulated by mechanical cues and mediate cellular responses to ECM stiffness2,3. Here we identified the Ras-related GTPase RAP2 as a key intracellular signal transducer that relays ECM rigidity signals to control mechanosensitive cellular activities through YAP and TAZ. RAP2 is activated by low ECM stiffness, and deletion of RAP2 blocks the regulation of YAP and TAZ by stiffness signals and promotes aberrant cell growth. Mechanistically, matrix stiffness acts through phospholipase Cγ1 (PLCγ1) to influence levels of phosphatidylinositol 4,5-bisphosphate and phosphatidic acid, which activates RAP2 through PDZGEF1 and PDZGEF2 (also known as RAPGEF2 and RAPGEF6). At low stiffness, active RAP2 binds to and stimulates MAP4K4, MAP4K6, MAP4K7 and ARHGAP29, resulting in activation of LATS1 and LATS2 and inhibition of YAP and TAZ. RAP2, YAP and TAZ have pivotal roles in mechanoregulated transcription, as deletion of YAP and TAZ abolishes the ECM stiffness-responsive transcriptome. Our findings show that RAP2 is a molecular switch in mechanotransduction, thereby defining a mechanosignalling pathway from ECM stiffness to the nucleus.
Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Transformação Celular Neoplásica , Matriz Extracelular/química , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Feminino , Proteínas Ativadoras de GTPase/metabolismo , Quinases do Centro Germinativo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Via de Sinalização Hippo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Proteínas do Tecido Nervoso/metabolismo , Fosfolipase C gama/metabolismo , Fosfoproteínas/metabolismo , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Transcriptoma , Proteínas de Sinalização YAP , Proteínas rap de Ligação ao GTP/genéticaRESUMO
BACKGROUND: Co-localized combinations of histone modifications ("chromatin states") have been shown to correlate with promoter and enhancer activity. Changes in chromatin states over multiple time points ("chromatin state trajectories") have previously been analyzed at promoter and enhancers separately. With the advent of time series Hi-C data it is now possible to connect promoters and enhancers and to analyze chromatin state trajectories at promoter-enhancer pairs. RESULTS: We present TimelessFlex, a framework for investigating chromatin state trajectories at promoters and enhancers and at promoter-enhancer pairs based on Hi-C information. TimelessFlex extends our previous approach Timeless, a Bayesian network for clustering multiple histone modification data sets at promoter and enhancer feature regions. We utilize time series ATAC-seq data measuring open chromatin to define promoters and enhancer candidates. We developed an expectation-maximization algorithm to assign promoters and enhancers to each other based on Hi-C interactions and jointly cluster their feature regions into paired chromatin state trajectories. We find jointly clustered promoter-enhancer pairs showing the same activation patterns on both sides but with a stronger trend at the enhancer side. While the promoter side remains accessible across the time series, the enhancer side becomes dynamically more open towards the gene activation time point. Promoter cluster patterns show strong correlations with gene expression signals, whereas Hi-C signals get only slightly stronger towards activation. The code of the framework is available at https://github.com/henriettemiko/TimelessFlex . CONCLUSIONS: TimelessFlex clusters time series histone modifications at promoter-enhancer pairs based on Hi-C and it can identify distinct chromatin states at promoter and enhancer feature regions and their changes over time.
Assuntos
Cromatina , Elementos Facilitadores Genéticos , Teorema de Bayes , Cromatina/genética , Cromossomos , Regiões Promotoras GenéticasRESUMO
Allelic differences between the two homologous chromosomes can affect the propensity of inheritance in humans; however, the extent of such differences in the human genome has yet to be fully explored. Here we delineate allelic chromatin modifications and transcriptomes among a broad set of human tissues, enabled by a chromosome-spanning haplotype reconstruction strategy. The resulting large collection of haplotype-resolved epigenomic maps reveals extensive allelic biases in both chromatin state and transcription, which show considerable variation across tissues and between individuals, and allow us to investigate cis-regulatory relationships between genes and their control sequences. Analyses of histone modification maps also uncover intriguing characteristics of cis-regulatory elements and tissue-restricted activities of repetitive elements. The rich data sets described here will enhance our understanding of the mechanisms by which cis-regulatory elements control gene expression programs.
Assuntos
Alelos , Epigênese Genética/genética , Epigenômica , Haplótipos/genética , Acetilação , Cromatina/genética , Cromatina/metabolismo , Cromossomos Humanos/genética , Conjuntos de Dados como Assunto , Elementos Facilitadores Genéticos/genética , Variação Genética/genética , Histonas/metabolismo , Humanos , Motivos de Nucleotídeos , Especificidade de Órgãos/genética , Transcrição Gênica/genéticaRESUMO
Millions of cis-regulatory elements are predicted to be present in the human genome, but direct evidence for their biological function is scarce. Here we report a high-throughput method, cis-regulatory element scan by tiling-deletion and sequencing (CREST-seq), for the unbiased discovery and functional assessment of cis-regulatory sequences in the genome. We used it to interrogate the 2-Mb POU5F1 locus in human embryonic stem cells, and identified 45 cis-regulatory elements. A majority of these elements have active chromatin marks, DNase hypersensitivity, and occupancy by multiple transcription factors, which confirms the utility of chromatin signatures in cis-element mapping. Notably, 17 of them are previously annotated promoters of functionally unrelated genes, and like typical enhancers, they form extensive spatial contacts with the POU5F1 promoter. These results point to the commonality of enhancer-like promoters in the human genome.
Assuntos
Mapeamento Cromossômico/métodos , Testes Genéticos/métodos , Sequências Reguladoras de Ácido Nucleico/genética , Algoritmos , Células Cultivadas , Células-Tronco Embrionárias/fisiologia , Regulação da Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA , Análise de Célula ÚnicaRESUMO
Hi-C and chromatin immunoprecipitation (ChIP) have been combined to identify long-range chromatin interactions genome-wide at reduced cost and enhanced resolution, but extracting information from the resulting datasets has been challenging. Here we describe a computational method, MAPS, Model-based Analysis of PLAC-seq and HiChIP, to process the data from such experiments and identify long-range chromatin interactions. MAPS adopts a zero-truncated Poisson regression framework to explicitly remove systematic biases in the PLAC-seq and HiChIP datasets, and then uses the normalized chromatin contact frequencies to identify significant chromatin interactions anchored at genomic regions bound by the protein of interest. MAPS shows superior performance over existing software tools in the analysis of chromatin interactions from multiple PLAC-seq and HiChIP datasets centered on different transcriptional factors and histone marks. MAPS is freely available at https://github.com/ijuric/MAPS.
Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Mapeamento Cromossômico/métodos , Biologia Computacional/métodos , Cromatina/metabolismo , Cromatina/fisiologia , Imunoprecipitação da Cromatina/métodos , Simulação por Computador , Genoma , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Código das Histonas , Humanos , Análise de Sequência de DNA/métodos , SoftwareRESUMO
The Hippo pathway plays an important role in regulating tissue homeostasis, and its effectors, the transcriptional co-activators Yes-associated protein (YAP) and WW domain-containing transcription regulator 1 (WWTR1 or TAZ), are responsible for mediating the vast majority of its physiological functions. Although YAP and TAZ are thought to be largely redundant and similarly regulated by Hippo signaling, they have developmental, structural, and physiological differences that suggest they may differ in their regulation and downstream functions. To better understand the functions of YAP and TAZ in the Hippo pathway, using CRISPR/Cas9, we generated YAP KO, TAZ KO, and YAP/TAZ KO cell lines in HEK293A cells. We evaluated them in response to many environmental conditions and stimuli and used RNA-Seq to compare their transcriptional profiles. We found that YAP inactivation has a greater effect on cellular physiology (namely, cell spreading, volume, granularity, glucose uptake, proliferation, and migration) than TAZ inactivation. However, functional redundancy between YAP and TAZ was also observed. In summary, our findings confirm that the Hippo pathway effectors YAP and TAZ are master regulators for multiple cellular processes but also reveal that YAP has a stronger influence than TAZ.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fenômenos Fisiológicos Celulares , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Sistemas CRISPR-Cas , Perfilação da Expressão Gênica , Células HEK293 , Via de Sinalização Hippo , Homeostase , Humanos , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética , Proteínas de Sinalização YAPRESUMO
To find signature features shared by various ncRNA sub-types and characterize novel ncRNAs, we have developed a method, RNAfeature, to investigate >600 sets of genomic and epigenomic data with various evolutionary and biophysical scores. RNAfeature utilizes a fine-tuned intra-species wrapper algorithm that is followed by a novel feature selection strategy across species. It considers long distance effect of certain features (e.g. histone modification at the promoter region). We finally narrow down on 10 informative features (including sequences, structures, expression profiles and epigenetic signals). These features are complementary to each other and as a whole can accurately distinguish canonical ncRNAs from CDSs and UTRs (accuracies: >92% in human, mouse, worm and fly). Moreover, the feature pattern is conserved across multiple species. For instance, the supervised 10-feature model derived from animal species can predict ncRNAs in Arabidopsis (accuracy: 82%). Subsequently, we integrate the 10 features to define a set of noncoding potential scores, which can identify, evaluate and characterize novel noncoding RNAs. The score covers all transcribed regions (including unconserved ncRNAs), without requiring assembly of the full-length transcripts. Importantly, the noncoding potential allows us to identify and characterize potential functional domains with feature patterns similar to canonical ncRNAs (e.g. tRNA, snRNA, miRNA, etc) on â¼70% of human long ncRNAs (lncRNAs).
Assuntos
Genômica/métodos , RNA não Traduzido/química , RNA não Traduzido/genética , Algoritmos , Animais , Humanos , Camundongos , Conformação de Ácido Nucleico , RNA Longo não Codificante/química , RNA não Traduzido/metabolismoRESUMO
Tandem repeats (TRs) represent one of the largest sources of genetic variation in humans and are implicated in a range of phenotypes. Here we present a deep characterization of TR variation based on high coverage whole genome sequencing from 3550 diverse individuals from the 1000 Genomes Project and H3Africa cohorts. We develop a method, EnsembleTR, to integrate genotypes from four separate methods resulting in high-quality genotypes at more than 1.7 million TR loci. Our catalog reveals novel sequence features influencing TR heterozygosity, identifies population-specific trinucleotide expansions, and finds hundreds of novel eQTL signals. Finally, we generate a phased haplotype panel which can be used to impute most TRs from nearby single nucleotide polymorphisms (SNPs) with high accuracy. Overall, the TR genotypes and reference haplotype panel generated here will serve as valuable resources for future genome-wide and population-wide studies of TRs and their role in human phenotypes.
Assuntos
Polimorfismo de Nucleotídeo Único , Sequências de Repetição em Tandem , Humanos , Genótipo , Sequenciamento Completo do GenomaRESUMO
Tandem repeats (TRs) represent one of the largest sources of genetic variation in humans and are implicated in a range of phenotypes. Here we present a deep characterization of TR variation based on high coverage whole genome sequencing from 3,550 diverse individuals from the 1000 Genomes Project and H3Africa cohorts. We develop a method, EnsembleTR, to integrate genotypes from four separate methods resulting in high-quality genotypes at more than 1.7 million TR loci. Our catalog reveals novel sequence features influencing TR heterozygosity, identifies population-specific trinucleotide expansions, and finds hundreds of novel eQTL signals. Finally, we generate a phased haplotype panel which can be used to impute most TRs from nearby single nucleotide polymorphisms (SNPs) with high accuracy. Overall, the TR genotypes and reference haplotype panel generated here will serve as valuable resources for future genome-wide and population-wide studies of TRs and their role in human phenotypes.
RESUMO
Semaphorins were originally identified as axonal guidance molecules, but they also control processes such as vascular development and tumorigenesis. The downstream signaling cascades of Semaphorins in these biological processes remain unclear. Here, we show that the class 3 Semaphorins (SEMA3s) activate the Hippo pathway to attenuate tissue growth, angiogenesis, and tumorigenesis. SEMA3B restoration in lung cancer cells with SEMA3B loss of heterozygosity suppresses cancer cell growth via activating the core Hippo kinases LATS1/2 (large tumor suppressor kinase 1/2). Furthermore, SEMA3 also acts through LATS1/2 to inhibit angiogenesis. We identified p190RhoGAPs as essential partners of the SEMA3A receptor PlexinA in Hippo regulation. Upon SEMA3 treatment, PlexinA interacts with the pseudo-guanosine triphosphatase (GTPase) domain of p190RhoGAP and simultaneously recruits RND GTPases to activate p190RhoGAP, which then stimulates LATS1/2. Disease-associated etiological factors, such as genetic lesions and oscillatory shear, diminish Hippo pathway regulation by SEMA3. Our study thus discovers a critical role of Hippo signaling in mediating SEMA3 physiological function.
RESUMO
We combined functional genomics and human genetics to investigate processes that affect type 1 diabetes (T1D) risk by mediating beta cell survival in response to proinflammatory cytokines. We mapped 38,931 cytokine-responsive candidate cis-regulatory elements (cCREs) in beta cells using ATAC-seq and snATAC-seq and linked them to target genes using co-accessibility and HiChIP. Using a genome-wide CRISPR screen in EndoC-ßH1 cells, we identified 867 genes affecting cytokine-induced survival, and genes promoting survival and up-regulated in cytokines were enriched at T1D risk loci. Using SNP-SELEX, we identified 2,229 variants in cytokine-responsive cCREs altering transcription factor (TF) binding, and variants altering binding of TFs regulating stress, inflammation, and apoptosis were enriched for T1D risk. At the 16p13 locus, a fine-mapped T1D variant altering TF binding in a cytokine-induced cCRE interacted with SOCS1, which promoted survival in cytokine exposure. Our findings reveal processes and genes acting in beta cells during inflammation that modulate T1D risk.
RESUMO
BACKGROUND: Expansions of short tandem repeats are the cause of many neurogenetic disorders including familial amyotrophic lateral sclerosis, Huntington disease, and many others. Multiple methods have been recently developed that can identify repeat expansions in whole genome or exome sequencing data. Despite the widely recognized need for visual assessment of variant calls in clinical settings, current computational tools lack the ability to produce such visualizations for repeat expansions. Expanded repeats are difficult to visualize because they correspond to large insertions relative to the reference genome and involve many misaligning and ambiguously aligning reads. RESULTS: We implemented REViewer, a computational method for visualization of sequencing data in genomic regions containing long repeat expansions and FlipBook, a companion image viewer designed for manual curation of large collections of REViewer images. To generate a read pileup, REViewer reconstructs local haplotype sequences and distributes reads to these haplotypes in a way that is most consistent with the fragment lengths and evenness of read coverage. To create appropriate training materials for onboarding new users, we performed a concordance study involving 12 scientists involved in short tandem repeat research. We used the results of this study to create a user guide that describes the basic principles of using REViewer as well as a guide to the typical features of read pileups that correspond to low confidence repeat genotype calls. Additionally, we demonstrated that REViewer can be used to annotate clinically relevant repeat interruptions by comparing visual assessment results of 44 FMR1 repeat alleles with the results of triplet repeat primed PCR. For 38 of these alleles, the results of visual assessment were consistent with triplet repeat primed PCR. CONCLUSIONS: Read pileup plots generated by REViewer offer an intuitive way to visualize sequencing data in regions containing long repeat expansions. Laboratories can use REViewer and FlipBook to assess the quality of repeat genotype calls as well as to visually detect interruptions or other imperfections in the repeat sequence and the surrounding flanking regions. REViewer and FlipBook are available under open-source licenses at https://github.com/illumina/REViewer and https://github.com/broadinstitute/flipbook respectively.
Assuntos
Esclerose Lateral Amiotrófica , Sequências de Repetição em Tandem , Alelos , Esclerose Lateral Amiotrófica/genética , Exoma , Proteína do X Frágil da Deficiência Intelectual/genética , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , HumanosRESUMO
Hi-C experiments have been widely adopted to study chromatin spatial organization, which plays an essential role in genome function. We have recently identified frequently interacting regions (FIREs) and found that they are closely associated with cell-type-specific gene regulation. However, computational tools for detecting FIREs from Hi-C data are still lacking. In this work, we present FIREcaller, a stand-alone, user-friendly R package for detecting FIREs from Hi-C data. FIREcaller takes raw Hi-C contact matrices as input, performs within-sample and cross-sample normalization, and outputs continuous FIRE scores, dichotomous FIREs, and super-FIREs. Applying FIREcaller to Hi-C data from various human tissues, we demonstrate that FIREs and super-FIREs identified, in a tissue-specific manner, are closely related to gene regulation, are enriched for enhancer-promoter (E-P) interactions, tend to overlap with regions exhibiting epigenomic signatures of cis-regulatory roles, and aid the interpretation or GWAS variants. The FIREcaller package is implemented in R and freely available at https://yunliweb.its.unc.edu/FIREcaller.