Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003652

RESUMO

Proteus mirabilis, an opportunistic pathogen of the urinary tract, is known for its dimorphism and mobility. A connection of lipid alterations, induced by the rods elongation process, with enhanced pathogenicity of long-form morphotype for the development of urinary tract infections, seems highly probable. Therefore, research on the adjustment in the composition and organization of P. mirabilis lipids forming elongated rods was undertaken. The analyses performed using the ultra-high performance liquid chromatography with tandem mass spectrometry showed that drastic modifications in the morphology of P. mirabilis rods that occur during the swarming process are directly related to deprivation of the long-form cells of PE 33:1 and PG 31:2 and their enrichment with PE 32:1, PE 34:1, PE 34:2, PG 30:2, PG 32:1, and PG 34:1. The analyses conducted by the gas chromatography-mass spectrometry showed negligible effects of the swarming process on fatty acids synthesis. However, the constant proportions between unsaturated and saturated fatty acids confirmed that phenotypic modifications in the P. mirabilis rods induced by motility were independent of the saturation of the phospholipid tails. The method of the Förster resonance energy transfer revealed the influence of the swarming process on the melting of ordered lipid rafts present in the short-form rods, corresponding to the homogeneity of lipid bilayers in the long-form rods of P. mirabilis. Confocal microscope photographs visualized strong Rhod-PE fluorescence of the whole area of swarmer cells, in contrast to weak membrane fluorescence of non-swarmer cells. It suggested an increased permeability of the P. mirabilis bilayers in long-form rods morphologically adapted to the swarming process. These studies clearly demonstrate that swarming motility regulates the lipid composition and organization in P. mirabilis rods.


Assuntos
Infecções por Proteus , Infecções Urinárias , Sistema Urinário , Humanos , Proteus mirabilis , Fenômenos Químicos , Lipídeos/farmacologia
2.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139094

RESUMO

Biofilms are composed of multicellular communities of microbial cells and their self-secreted extracellular polymeric substances (EPS). The viruses named bacteriophages can infect and lyze bacterial cells, leading to efficient biofilm eradication. The aim of this study was to analyze how bacteriophages disrupt the biofilm structure by killing bacterial cells and/or by damaging extracellular polysaccharides, proteins, and DNA. The use of colorimetric and spectrofluorimetric methods and confocal laser scanning microscopy (CLSM) enabled a comprehensive assessment of phage activity against E. faecalis biofilms. The impact of the phages vB_Efa29212_2e and vB_Efa29212_3e was investigated. They were applied separately or in combination on 1-day and 7-day-old biofilms. Phages 2e effectively inhibited the growth of planktonic cells with a limited effect on the biofilm. They did not notably affect extracellular polysaccharides and proteins; however, they increased DNA levels. Phages 3e demonstrated a potent and dispersing impact on E. faecalis biofilms, despite being slightly less effective than bacteriophages 2e against planktonic cells. Phages 3e reduced the amount of extracellular polysaccharides and increased eDNA levels in both 1-day-old and 7-day-old biofilm cultures. Phage cocktails had a strong antimicrobial effect on both planktonic and biofilm-associated bacteria. A significant reduction in the levels of polysaccharides, proteins, and eDNA in 1-day-old biofilm samples was noted, which confirms that phages interfere with the structure of E. faecalis biofilm by killing bacterial cells and affecting extracellular polymer levels.


Assuntos
Bacteriófagos , Enterococcus faecalis , Bacteriófagos/genética , Biofilmes , Polissacarídeos/farmacologia , DNA/farmacologia
3.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361855

RESUMO

Proteus mirabilis is a common cause of catheter-associated urinary tract infections (CAUTIs). In this study, we verified the effectiveness of amikacin or gentamicin and ascorbic acid (AA) co-therapy in eliminating uropathogenic cells, as well as searched for the molecular basis of AA activity by applying chromatographic and fluorescent techniques. Under simulated physiological conditions, a combined activity of the antibiotic and AA supported the growth (threefold) of the P. mirabilis C12 strain, but reduced catheter colonization (≤30%) in comparison to the drug monotherapy. Slight modifications in the phospholipid and fatty acid profiles, as well as limited (≤62%) 2',7'-dichlorofluorescein fluorescence, corresponding to the hydroxyl radical level, allowed for the exclusion of the hypothesis that the anti-biofilm effect of AA was related to membrane perturbations of the C12 strain. However, the reduced (≤20%) fluorescence intensity of propidium iodide, as a result of a decrease in membrane permeability, may be evidence of P. mirabilis cell defense against AA activity. Quantitative analyses of ascorbic acid over time with a simultaneous measurement of the pH values proved that AA can be an effective urine acidifier, provided that it is devoid of the presence of urease-positive cells. Therefore, it could be useful in a prevention of recurrent CAUTIs, rather than in their treatment.


Assuntos
Infecções por Proteus , Infecções Urinárias , Humanos , Proteus mirabilis/metabolismo , Aminoglicosídeos/metabolismo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/prevenção & controle , Infecções Urinárias/patologia , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/metabolismo , Catéteres , Infecções por Proteus/tratamento farmacológico
4.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445157

RESUMO

Proteus mirabilis-mediated CAUTIs are usually initiated by the adherence of bacteria to a urinary catheter surface. In this paper, three isolates of different origin and exhibiting different adhesion abilities were investigated in search of any changes in lipidome components which might contribute to P. mirabilis adhesion to catheters. Using GC-MS and LC-MS/MS techniques, 21 fatty acids and 27 phospholipids were identified in the examined cells. The comparison of the profiles of phospholipids and fatty acids obtained for catheter-attached cells and planktonic cells of the pathogens indicated C11:0 and PE 37:2 levels as values which could be related to P. mirabilis adhesion to a catheter, as well as cis C16:1, PE 32:0, PE 33:0, PE 38:2, PG 33:1, PG 34:0, PE 30:1, PE 32:1 and PG 30:2 levels as values which could be associated with cell hydrophobicity. Based on DiBAC4 (3) fluorescence intensity and an affinity to p-xylene, it was found that the inner membrane depolarization, as well as strong cell-surface hydrophobicity, were important for P. mirabilis adhesion to a silicone catheter. A generalized polarization of Laurdan showed lower values for P. mirabilis cells attached to the catheter surface than for planktonic cells, suggesting lower packing density of membrane components of the adherent cells compared with tightly packed, stiffened membranes of the planktonic cells. Taken together, these data indicate that high surface hydrophobicity, fluidization and depolarization of P. mirabilis cell membranes enable colonization of a silicone urinary catheter surface.


Assuntos
Ácidos Graxos/metabolismo , Fosfolipídeos/metabolismo , Infecções por Proteus/microbiologia , Proteus mirabilis/fisiologia , Cateteres Urinários/microbiologia , Aderência Bacteriana , Humanos
5.
Mol Cell Proteomics ; 17(3): 482-494, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298837

RESUMO

Lysine 2-hydroxyisobutyrylation (Khib) is a novel post-translational modification (PTM), which was thought to play a role in active gene transcription and cellular proliferation. Here we report a comprehensive identification of Khib in Proteus mirabilis (P. mirabilis). By combining affinity enrichment with two-dimensional liquid chromatography and high-resolution mass spectrometry, 4735 2-hydroxyisobutyrylation sites were identified on 1051 proteins in P. mirabilis. These proteins bearing modifications were further characterized in abundance, distribution and functions. The interaction networks and domain architectures of these proteins with high confidence were revealed using bioinformatic tools. Our data demonstrate that many 2-hydroxyisobutyrylated proteins are involved in metabolic pathways, such as purine metabolism, pentose phosphate pathway and glycolysis/gluconeogenesis. The extensive distribution of Khib also indicates that the modification may play important influence to bacterial metabolism. The speculation is further supported by the observation that carbon sources can influence the occurrence of Khib Furthermore, we demonstrate that 2-hydroxyisobutyrylation on K343 was a negative regulatory modification on Enolase (ENO) activity, and molecular docking results indicate the regulatory mechanism that Khib may change the binding formation of ENO and its substrate 2-phospho-d-glycerate (2PG) and cause the substrate far from the active sites of enzyme. We hope this first comprehensive analysis of nonhistone Khib in prokaryotes is valuable for further functional investigation of this modification.


Assuntos
Proteínas de Bactérias/metabolismo , Lisina/análogos & derivados , Proteus mirabilis/metabolismo , Lisina/metabolismo , Fosfopiruvato Hidratase/metabolismo , Processamento de Proteína Pós-Traducional
6.
Med Microbiol Immunol ; 207(2): 129-139, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29330591

RESUMO

The impact of planktonic and biofilm lifestyles of the clinical isolate Proteus mirabilis 9B-m on its lipopolysaccharide (O-polysaccharide, core region, and lipid A) was evaluated. Proteus mirabilis bacteria are able to form biofilm and lipopolysaccharide is one of the factors involved in the biofilm formation. Lipopolysaccharide was isolated from planktonic and biofilm cells of the investigated strain and analyzed by SDS-PAGE with silver staining, Western blotting and ELISA, as well as NMR and matrix-assisted laser desorption ionization time-of-flight mass spectrometry techniques. Chemical and NMR spectroscopic analyses revealed that the structure of the O-polysaccharide of P. mirabilis 9B-m strain did not depend on the form of cell growth, but the full-length chains of the O-antigen were reduced when bacteria grew in biofilm. The study also revealed structural modifications of the core region in the lipopolysaccharide of biofilm-associated cells-peaks assigned to compounds absent in cells from the planktonic culture and not previously detected in any of the known Proteus core oligosaccharides. No differences in the lipid A structure were observed. In summary, our study demonstrated for the first time that changes in the lifestyle of P. mirabilis bacteria leads to the modifications of their important virulence factor-lipopolysaccharide.


Assuntos
Biofilmes/crescimento & desenvolvimento , Lipopolissacarídeos/análise , Proteus mirabilis/química , Proteus mirabilis/crescimento & desenvolvimento , Western Blotting , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Humanos , Lipopolissacarídeos/isolamento & purificação , Espectroscopia de Ressonância Magnética , Infecções por Proteus/microbiologia , Proteus mirabilis/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Coloração e Rotulagem
7.
Int J Mol Sci ; 19(3)2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29495556

RESUMO

The new type of core oligosaccharide in Proteus penneri 40A and 41 lipopolysaccharides has been investigated by ¹H and 13C NMR spectroscopy, electrospray ionization mass spectrometry and chemical methods. Core oligosaccharides of both strains were chosen for structural analysis based on the reactivity of LPSs with serum against P. penneri 40A core oligosaccharide-diphtheria toxoid conjugate. Structural analyses revealed that P. penneri 40A and 41 LPSs possess an identical core oligosaccharide.


Assuntos
Antígenos de Bactérias/química , Lipopolissacarídeos/química , Oligossacarídeos/química , Proteus penneri/química , Antígenos de Bactérias/imunologia , Soros Imunes/imunologia , Lipopolissacarídeos/imunologia , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Oligossacarídeos/imunologia , Proteus penneri/imunologia , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade
8.
Tumour Biol ; 39(3): 1010428317695011, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28351316

RESUMO

Lung cancer is still the leading cause of cancer-related death worldwide, indicating a necessity to develop more effective therapy. Acridine derivatives are potential anticancer agents due to their ability to intercalate DNA as well as inhibit enzymes involved in replication and transcription. Recently, we have evaluated anticancer activity of 32 novel acridine-based compounds. We found that the most effective were tetrahydroacridine and cyclopentaquinoline derivatives with fluorobenzoic acid containing eight and nine carbon atoms in the aliphatic chain. The aim of this study was to determine the molecular mechanisms of compounds-induced cell cycle arrest and apoptosis in human lung adenocarcinoma cells. All compounds activated Ataxia telangiectasia mutated kinase and phosphorylated histone H2A.X at Ser139 indicating DNA damage. Treatment of cells with the compounds increased phosphorylation and accumulation of p53 that regulate cell cycle as well as apoptosis. All compounds induced G0/1 cell cycle arrest by phosphorylation of cyclin-dependent kinase 2 at Tyr15 resulting in attenuation of the kinase activity. In addition, cyclopentaquinoline derivatives induced expression of cyclin-dependent kinase 2 inhibitor, p21; however, tetrahydroacridine derivatives had no significant effect on p21. Moreover, all compounds decreased the mitochondrial membrane potential accompanied by increased expression of Bax and down-regulation of Bcl-2, suggesting activation of the mitochondrial pathway. All compounds also significantly attenuated the migration rates of lung cancer cells. Collectively, our findings suggest a central role of activation of DNA damage signaling in response to new acridine derivatives treatment to induce cell cycle arrest and apoptosis in cancer cells and provide support for their further development as potential drug candidates.


Assuntos
Acridinas/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Quinolinas/administração & dosagem , Proteína Supressora de Tumor p53/biossíntese , Acridinas/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Proteínas de Neoplasias/biossíntese , Fosforilação , Quinolinas/química , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética
9.
Microb Pathog ; 71-72: 25-31, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24803200

RESUMO

Infectious urinary stones account for about 10% of all urinary stones. In 50% of cases urolithiasis is a recurrent illness, which can lead to the loss of a kidney if not properly treated. One of the reasons for recurrence of the disease may be the ability of bacteria to invade urothelial cells, persist in the host cells and serve as potential reservoirs for infection. Various uropathogens are associated with the formation of bacteria-induced urinary stones but Proteus mirabilis is the most commonly isolated (70%). An in vitro model was used in this study to analyze intracellular growth and crystallization in the presence of P. mirabilis, Klebsiella pneumoniae and Escherichia coli. Human ureter (Hu 609) and bladder (HCV 29) epithelial cell lines were infected with bacteria and incubated (3-72 h) in the presence of synthetic urine and amikacin to prevent extracellular bacterial growth. During the incubation the number of bacteria (CFU/ml) inside epithelial cells and the intensity of crystallization were established. Crystallization was determined as an amount of a calcium radioisotope. The chosen strains of uropathogens were able to invade both types of epithelial cells but the Hu 609 cells were invaded to a higher extent. However, crystallization occurred only in the presence of P. mirabilis strains which were invasive and urease-positive. The highest intensity of cell-associated crystallization was observed when the number of bacteria within the urothelium remained stable during the time of incubation. These results show that P. mirabilis has an ability to form crystals inside the host cells. Under these conditions bacteria are protected from antibiotic killing, which leads to persistent and recurrent infections. We also suspect that this phenomenon may be an important stage of kidney stones formation.


Assuntos
Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Proteus mirabilis/metabolismo , Cálculos Urinários/metabolismo , Cálculos Urinários/microbiologia , Linhagem Celular , Cristalização , Endocitose , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Feminino , Humanos , Klebsiella pneumoniae/crescimento & desenvolvimento , Klebsiella pneumoniae/metabolismo , Masculino , Proteus mirabilis/crescimento & desenvolvimento
10.
Pol J Microbiol ; 63(4): 423-31, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25804062

RESUMO

Over the last decade, the growing number of multidrug resistant strains limits the use of many of the currently available chemotherapeutic agents. Furthermore, bacterial biofilm, due to its complex structure, constitutes an effective barrier to conventional antibiotics. The in vitro activities of naturally occurring peptide (Citropin 1.1), chemically engineered analogue (Pexiganan), newly-designed, short amino-acid derivatives (Pal-KK-NH2, Pal-KKK-NH2, Pal-RRR-NH2) and six clinically used antimicrobial agents (Gatifloxacin, Ampicilin, Cefotaxime, Ceftriaxone, Cefuroxime and Cefalexin) were investigated against planktonic cells and mature biofilm of multidrug-resistant Providencia stuartii strains, isolated from urological catheters. The MICs, MBCs values were determined by broth microdilution technique. Inhibition of biofilm formation by antimicrobial agents as well as biofilm susceptibility assay were tested using a surrogate model based on the Crystal Violet method. The antimicrobial activity of amino-acids derivatives and synthetic peptides was compared to that of clinically used antibiotics. For planktonic cells, MICs of peptides and antibiotics ranged between 1 and 256 µg/ml and 256 and ≥ 2048 µg/ml, respectively. The MBCs values of Pexiganan, Citropin 1.1 and amino-acids derivatives were between 16 and 256 µg/ml, 64 and 256 µg/ml and 16 and 512 µg/ml, respectively. For clinically used antibiotics the MBCs values were above 2048 µg/ml. All of the tested peptides and amino-acids derivatives, showed inhibitory activity against P. stuartii biofilm formation, in relation to their concentrations. Pexiganan and Citropin 1.1 in concentration range 32 and 256 µg/ml caused both strong and complete suppression of biofilm formation. None of the antibiotics caused complete inhibition of biofilm formation process. The biofilm susceptibility assay verified the extremely poor antibiofilm activity of conventional antibiotics compared to synthetic peptides. The obtained results showed that synthetic peptides are generally more potent and effective than clinically used antibiotics.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Infecções por Enterobacteriaceae/microbiologia , Peptídeos/farmacologia , Providencia/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Anfíbios , Animais , Antibacterianos/síntese química , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Dados de Sequência Molecular , Peptídeos/síntese química , Providencia/isolamento & purificação , Providencia/fisiologia
11.
Pol J Microbiol ; 62(4): 377-84, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24730132

RESUMO

The objectives of the investigation presented in this paper were: to examine the frequency of P. mirabilis isolation from catheters and assess the complexity of multi-species biofilms which these bacteria form, as well as to determine the vulnerability of planktonic and sessile P. mirabilis populations to popular antibiotics and compare it to the susceptibility of other Gram-negative bacteria isolated as associated flora from multi-species biofilm. 88 urological catheters, collected from long-term catheterized patients were examined. Uropathogens were recovered from the catheter surface by sonication, and identified on standard diagnostic media. The broth-microdilution method and the MBEC High-throughput Screening assay were used to determine the bacterial resistance to antibiotics. 279 microorganisms were isolated from 88 urinary catheter biofilms. The Enterobacteriaceae family were the most frequently detected bacteria (53.2% of isolates), whereas Proteus spp. isolation accounted for 17.9%, which placed these bacilli on the third position in the Enterobacteraceae family. Among all the tested drugs, amikacin and cephalosporins (ceftriaxone, cefotaxime and cefaclor) exhibited the highest activity against P. mirabilis planktonic cells, 86% and 73% of strains were susceptible to these antibiotics, respectively. 100% of P. mirabilis sessile forms were resistant to cefepime, ciprofloxacin, gatifloxacin, and norfloxacin. Amikacin and ceftriaxone affected only 5% of sessile forms. The planktonic cells of the other studied uropathogens were mostly vulnerable to the all tested drugs (exception P. aeruginosa strains), the most effective of which occurred to be amikacin and cefepime. Obtained MBECs values were 2-512-fold higher than MICs assessed for planktonic forms.


Assuntos
Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Proteus mirabilis/fisiologia , Cateteres Urinários/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Farmacorresistência Bacteriana , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Especificidade da Espécie , Infecções Urinárias/microbiologia
12.
Postepy Hig Med Dosw (Online) ; 67: 1027-33, 2013 Oct 25.
Artigo em Polonês | MEDLINE | ID: mdl-24184954

RESUMO

Urinary tract infections (UTI) are one of the common chronic and recurrent bacterial infections. Uropathogens which are able to form biofilm constitute a major etiological factor in UTI, especially among elder patients who are subject to long-term catheterization. It is caused by the capacity of the microorganisms for efficient and permanent colonization of tissues and also adhesion to diverse polymers used for urological catheter production such as propylene, polystyrene, silicone, polyvinyl chloride or silicone coated latex. Antibiotic therapy is the most common treatment for UTI. Fluoroquinolones, nitrofurans, beta-lactams, aminoglycosides, trimethoprim and sulfonamides are used predominantly. However, the biofilm due to its complex structure constitutes an effective barrier to the antibiotics used in the treatment of urinary tract infections. In addition, the growing number of multidrug resistant strains limits the usage of many of the currently available chemotherapeutic agents. Therefore, it seems important to search for new methods of treatment such as coating of catheters with non-pathogenic E. coli strains, the design of vaccines against fimbrial adhesive proteins of the bacterial cells or the use of bacteriophages.


Assuntos
Biofilmes , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Escherichia coli/fisiologia , Cateterismo Urinário/efeitos adversos , Infecções Urinárias/microbiologia , Infecções Urinárias/prevenção & controle , Idoso , Antibacterianos/uso terapêutico , Catéteres , Doença Crônica , Materiais Revestidos Biocompatíveis , Resistência Microbiana a Medicamentos , Resistência a Múltiplos Medicamentos , Desenho de Equipamento , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Recidiva , Infecções Urinárias/tratamento farmacológico
13.
Glycobiology ; 22(9): 1236-44, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22661447

RESUMO

O-Antigen is a component of the outer membrane of Gram-negative bacteria and one of the most variable cell surface constituents, giving rise to major antigenic variability. The diversity of O-antigen is almost entirely attributed to genetic variations in O-antigen gene clusters. Bacteria of the genus Providencia are facultative pathogens, which can cause urinary tract infections, wound infections and enteric diseases. Recently, the O-antigen gene cluster of Providencia was localized between the cpxA and yibK genes in the genome. However, few genes involved in the synthesis of Providencia O-antigens have been functionally identified. In this study, the putative O-antigen gene cluster of Providencia alcalifaciens O30 was sequenced and analyzed. Almost all putative genes for the O-antigen synthesis were found, including a novel formyltransferase gene vioF that was proposed to be responsible for the conversion of dTDP-4-amino-4,6- dideoxy-D-glucose (dTDP-D-Qui4N) to dTDP-4,6-dideoxy-4-formamido-D-glucose (dTDP-D-Qui4NFo). vioF was cloned, and the enzyme product was expressed as a His-tagged fusion protein, purified and assayed for its activity. High-performance liquid chromatography was used to monitor the enzyme-substrate reaction, and the structure of the product dTDP-D-Qui4NFo was established by electrospray ionization tandem mass spectrometry and nuclear magnetic resonance spectroscopy. Kinetic parameters of VioF were determined, and effects of temperature and cations on its activity were also examined. Together, the functional analyses support the identification of the O-antigen gene cluster of P. alcalifaciens O30.


Assuntos
Proteínas de Bactérias/genética , Glucosamina/análogos & derivados , Hidroximetil e Formil Transferases/genética , Antígenos O/metabolismo , Providencia/metabolismo , Variação Antigênica , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sequência de Carboidratos , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Desoxiaçúcares/metabolismo , Escherichia coli/genética , Glucosamina/biossíntese , Hidroximetil e Formil Transferases/química , Hidroximetil e Formil Transferases/metabolismo , Cinética , Dados de Sequência Molecular , Família Multigênica , Antígenos O/química , Antígenos O/genética , Providencia/química , Providencia/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sequência de DNA , Espectrometria de Massas por Ionização por Electrospray , Temperatura , Nucleotídeos de Timina/metabolismo
14.
Microbiology (Reading) ; 158(Pt 4): 1024-1036, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22282517

RESUMO

Enterobacteria of the genus Providencia are opportunistic human pathogens associated with urinary tract and wound infections, as well as enteric diseases. The lipopolysaccharide (LPS) O antigen confers major antigenic variability upon the cell surface and is used for serotyping of Gram-negative bacteria. Recently, Providencia O antigen structures have been extensively studied, but no data on the location and organization of the O antigen gene cluster have been reported. In this study, the four Providencia genome sequences available were analysed, and the putative O antigen gene cluster was identified in the polymorphic locus between the cpxA and yibK genes. This finding provided the necessary information for designing primers, and cloning and sequencing the O antigen gene clusters from five more Providencia alcalifaciens strains. The gene functions predicted in silico were in agreement with the known O antigen structures; furthermore, annotation of the genes involved in the three-step synthesis of GDP-colitose (gmd, colD and colC) was supported by cloning and biochemical characterization of the corresponding enzymes. In one strain (P. alcalifaciens O39), no polysaccharide product of the gene cluster in the cpxA-yibK locus was found, and hence genes for synthesis of the existing O antigen are located elsewhere in the genome. In addition to the putative O antigen synthesis genes, homologues of wza, wzb, wzc and (in three strains) wzi, required for the surface expression of capsular polysaccharides, were found upstream of yibK in all species except Providencia rustigianii, suggesting that the LPS of these species may be attributed to the so-called K LPS (K(LPS)). The data obtained open a way for development of a PCR-based typing method for identification of Providencia isolates.


Assuntos
Família Multigênica , Antígenos O/genética , Providencia/genética , Clonagem Molecular , DNA Bacteriano/genética , Loci Gênicos , Açúcares de Guanosina Difosfato/biossíntese , Dados de Sequência Molecular , Análise de Sequência de DNA
15.
J Clin Med ; 11(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362722

RESUMO

Bacteriophage therapy has emerged as a strategy supplementing traditional disinfection protocols to fight biofilms. The aim of the study was to isolate the phages against E. faecalis and to characterize its biological features, morphology, and lytic activity in a formed biofilm model. METHODS: E. faecalis ATCC 29212 strain was used for the trial. Two novel vB_Efa29212_2e and vB_Efa29212_3e virulent phages were isolated from urban wastewater and characterized. The E. faecalis biofilm was established in 15 bovine teeth for 21 days. Transmission (TEM) and scanning electron (SEM) microscopes with the colony-forming unit (CFU) counting were used for assessment. RESULTS: Isolated phages differed in morphology. Taxonomy for vB_Efa29212_2e (Siphoviridae, Efquatovirus) and for vB_Efa29212_3e (Herelleviridae, Kochikohdavirus) was confirmed. Both phages were stable at a temperature range of 4-50 °C and showed a different tolerance to chemicals: 15% EDTA, 1-3% sodium hypochlorite, and chlorhexidine. SEM analysis showed distortion of bacteria cells after phage inoculation, which proved the lytic activity against E. faecalis. A 54.6% reduction in the E. faecalis biofilm confirmed bacteriophage efficacy against isolates in the ex vivo model. CONCLUSIONS: Results strongly support the concept that phage therapy has a real therapeutic potential for the prevention and treatment of E. faecalis-associated infections.

16.
Probiotics Antimicrob Proteins ; 13(2): 441-452, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32754854

RESUMO

Proteus mirabilis is a common cause of infectious urolithiasis. The first stage in the formation of urinary stones is the crystallization of mineral salts in the urine induced by urease activity of this microorganism. Lactobacillus spp. are an important component of the human microbiota and in large quantities occur in foods. Regardless of their origin, those with probiotic properties are proposed as an alternative to antibiotic therapy in the treatment of urinary tract infections. The aim of the study was to check the effect of selected Lactobacillus plantarum and Lactobacillus brevis strains on crystallization caused by P. mirabilis in an in vitro experiment. It has been confirmed that selected Lactobacillus strains have antibacterial properties and colonize the urinary tract epithelium. During 24-h incubation of bacterial cultures, containing P. mirabilis and individual Lactobacillus strains, in synthetic urine, bacterial viability (CFU/mL), pH, and crystallization were determined. Crystallization was assessed quantitatively and qualitatively using AAS and XRD techniques as well as phase-contrast microscopy. It has been shown that in the presence of selected Lactobacillus strains, the culture pH increases faster, especially after 8 h of incubation, compared with the pure P. mirabilis culture. An increase in pH reduces the viability of P. mirabilis; however, in the presence of some lactobacilli, the uropathogen grows more intensively. The presence of Lactobacillus also affected crystallization by increasing its intensity, and the resulting crystals were larger in size. Tested L. plantarum and L. brevis strains could therefore accelerate the formation of urinary stones and development of infection.


Assuntos
Lactobacillus , Probióticos , Proteus mirabilis/patogenicidade , Cálculos Urinários/microbiologia , Cristalização , Humanos
17.
Sci Rep ; 11(1): 1522, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452316

RESUMO

Modification of outer membrane proteins (OMPs) is the first line of Gram-negative bacteria defence against antimicrobials. Here we point to Proteus mirabilis OMPs and their role in antibiotic and phage resistance. Protein profiles of amikacin (AMKrsv), phage (Brsv) and amikacin/phage (AMK/Brsv) resistant variants of P. mirabilis were compared to that obtained for a wild strain. In resistant variants there were identified 14, 1, 5 overexpressed and 13, 5, 1 downregulated proteins for AMKrsv, Brsv and AMK/Brsv, respectively. Application of phages with amikacin led to reducing the number of up- and downregulated proteins compared to single antibiotic treatment. Proteins isolated in AMKrsv are involved in protein biosynthesis, transcription and signal transduction, which correspond to well-known mechanisms of bacteria resistance to aminoglycosides. In isolated OMPs several cytoplasmic proteins, important in antibiotic resistance, were identified, probably as a result of environmental stress, e.g. elongation factor Tu, asparaginyl-tRNA and aspartyl-tRNA synthetases. In Brsv there were identified: NusA and dynamin superfamily protein which could play a role in bacteriophage resistance. In the resistant variants proteins associated with resistance mechanisms occurring in biofilm, e.g. polyphosphate kinase, flagella basal body rod protein were detected. These results indicate proteins important in the development of P. mirabilis antibiofilm therapies.


Assuntos
Amicacina/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Proteus mirabilis/metabolismo , Amicacina/metabolismo , Antibacterianos/farmacologia , Infecções Bacterianas , Proteínas da Membrana Bacteriana Externa/efeitos dos fármacos , Proteínas da Membrana Bacteriana Externa/metabolismo , Bacteriófagos/patogenicidade , Bacteriófagos/fisiologia , Biofilmes/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteus mirabilis/efeitos dos fármacos , Proteus mirabilis/virologia
18.
Appl Environ Microbiol ; 76(16): 5471-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20581173

RESUMO

Proteus species are well-characterized opportunistic pathogens primarily associated with urinary tract infections (UTI) of humans. The Proteus O antigen is one of the most variable constituents of the cell surface, and O antigen heterogeneity is used for serological classification of Proteus isolates. Even though most Proteus O antigen structures have been identified, the O antigen locus has not been well characterized. In this study, we identified the putative Proteus O antigen locus and demonstrated this region's high degree of heterogeneity by comparing sequences of 40 Proteus isolates using PCR-restriction fragment length polymorphism (RFLP). This analysis identified five putative Proteus O antigen gene clusters, and the probable functions of these O antigen-related genes were proposed, based on their similarity to genes in the available databases. Finally, Proteus-specific genes from these five serogroups were identified by screening 79 strains belonging to the 68 Proteus O antigen serogroups. To our knowledge, this is the first molecular characterization of the putative Proteus O antigen locus, and we describe a novel molecular classification method for the identification of different Proteus serogroups.


Assuntos
DNA Bacteriano/genética , Genes Bacterianos , Antígenos O/química , Antígenos O/genética , Polimorfismo Genético , Proteus/química , Proteus/genética , Análise por Conglomerados , Impressões Digitais de DNA , DNA Bacteriano/química , Humanos , Dados de Sequência Molecular , Família Multigênica , Filogenia , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA , Homologia de Sequência
19.
Microb Pathog ; 49(5): 285-93, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20600792

RESUMO

The entry of Providencia alcalifaciens into the enterocyte-like cell line Caco-2 compared to HEp-2 was studied. Of the 22 P. alcalifaciens strains, 13 and 21 were invasive for Caco-2 and HEp-2 cells, respectively. In contrast to HEp-2 cells, P. alcalifaciens was internalised by Caco-2 cells via receptor-mediated endocytosis. Tyrosine kinases play an important role in P. alcalifaciens uptake, also microfilaments and microtubules are engaged in this process. Inhibition of endosome acidification by ammonium chloride did not seem to have any significant effect on P. alcalifaciens invasion. Similarly to Shigella flexnerii, the invasion of Caco-2 cells by these bacteria occurred more effectively through the basolateral pole than through the apical surface of these cells. Plasmid DNA analysis showed the presence of plasmids of 5-172 kb in 13 strains regardless of their invasive ability. The presence of extracellular bacterial protein, most likely a kind of an invasin, is required for the invasion of Caco-2 and HEp-2 cells.


Assuntos
Enterócitos/microbiologia , Hepatócitos/microbiologia , Providencia/patogenicidade , Células CACO-2 , Proteínas do Citoesqueleto/metabolismo , DNA Bacteriano/análise , Endocitose , Endossomos/química , Endossomos/microbiologia , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Plasmídeos/análise , Providencia/genética
20.
Int J Biol Macromol ; 163: 1168-1174, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32652158

RESUMO

The serological classification scheme of the opportunistic Proteus bacilli includes a number of Proteus penneri strains. The tested P. penneri 4034-85 strain turned out to be serologically distinguished in ELISA and Western blotting. The O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of this strain and studied by sugar and methylation analyses and dephosphorylation along with 1H and 13C NMR spectroscopy, including 2D 1H,1H COSY, TOCSY, ROESY, 1H,13C HSQC, HMBC, and HSQC-TOCSY experiments, The O-polysaccharide was found to have a linear repeating unit containing glycerol 1-phosphate and two residues each of Gal and GlcNAc. The following O-polysaccharide structure was established, which, to our knowledge, is unique among known bacterial polysaccharide structures.


Assuntos
Antígenos O/química , Polissacarídeos Bacterianos/química , Proteus penneri/química , Proteus penneri/classificação , Sorogrupo , Ensaio de Imunoadsorção Enzimática , Humanos , Espectrometria de Massas , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Antígenos O/imunologia , Fosforilação , Proteus penneri/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA