RESUMO
Epidemiological data suggest that moderate hyperoxemia may be associated with an improved outcome after traumatic brain injury. In a prospective, randomized investigation of long-term, resuscitated acute subdural hematoma plus hemorrhagic shock (ASDH + HS) in 14 adult, human-sized pigs, targeted hyperoxemia (200 < PaO2 < 250 mmHg vs. normoxemia 80 < PaO2 < 120 mmHg) coincided with improved neurological function. Since brain perfusion, oxygenation and metabolism did not differ, this post hoc study analyzed the available material for the effects of targeted hyperoxemia on cerebral tissue markers of oxidative/nitrosative stress (nitrotyrosine expression), blood-brain barrier integrity (extravascular albumin accumulation) and fluid homeostasis (oxytocin, its receptor and the H2S-producing enzymes cystathionine-ß-synthase and cystathionine-γ-lyase). After 2 h of ASDH + HS (0.1 mL/kgBW autologous blood injected into the subdural space and passive removal of 30% of the blood volume), animals were resuscitated for up to 53 h by re-transfusion of shed blood, noradrenaline infusion to maintain cerebral perfusion pressure at baseline levels and hyper-/normoxemia during the first 24 h. Immediate postmortem, bi-hemispheric (i.e., blood-injected and contra-lateral) prefrontal cortex specimens from the base of the sulci underwent immunohistochemistry (% positive tissue staining) analysis of oxidative/nitrosative stress, blood-brain barrier integrity and fluid homeostasis. None of these tissue markers explained any differences in hyperoxemia-related neurological function. Likewise, hyperoxemia exerted no deleterious effects.
Assuntos
Encéfalo , Hematoma Subdural Agudo , Choque Hemorrágico , Animais , Suínos , Hematoma Subdural Agudo/metabolismo , Hematoma Subdural Agudo/etiologia , Hematoma Subdural Agudo/patologia , Choque Hemorrágico/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Barreira Hematoencefálica/metabolismo , Imuno-Histoquímica , Estresse Oxidativo , Ressuscitação/métodos , Modelos Animais de Doenças , Oxigênio/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismoRESUMO
OBJECTIVES: Balancing the risks of hypotension and vasopressor-associated adverse effects is a daily challenge in ICUs. We conducted a systematic review with meta-analysis to examine the effect of lower versus higher exposure to vasopressor therapy on mortality among adult ICU patients with vasodilatory hypotension. DATA SOURCES: We searched Ovid Medline, Embase, and the Cochrane Central Register of Controlled Trials for studies published from inception to October 15, 2021. STUDY SELECTION: We included randomized controlled trials of lower versus higher exposure to vasopressor therapy in adult ICU patients with vasodilatory hypotension without language or publication status limits. DATA EXTRACTION: The primary outcome was 90-day all-cause mortality, with seven prespecified subgroups. Secondary outcomes included shorter- and longer-term mortality, use of life-sustaining therapies, vasopressor-related complications, neurologic outcome, and quality of life at longest reported follow-up. We conducted random-effects meta-analyses to calculate summary effect measures across individual studies (risk ratio [RR] for dichotomous variables, mean difference for continuous variables, both with 95% CIs). The certainty of the evidence was assessed using Grading of Recommendations, Assessment, Development, and Evaluation. We registered this review on the International Prospective Register of Systematic Reviews (CRD42021224434). DATA SYNTHESIS: Of 3,403 records retrieved, 68 full-text articles were reviewed and three eligible studies included. Lower exposure to vasopressors probably lowers 90-day mortality but this is based on moderate-certainty evidence, lowered for imprecision (RR, 0.94; 95% CI, 0.87-1.02). There was no credible subgroup effect. Lower vasopressor exposure may also decrease the risk of supraventricular arrhythmia (odds ratio, 0.55; 95% CI, 0.36-0.86; low certainty). CONCLUSIONS: In patients with vasodilatory hypotension who are started on vasopressors, moderate-certainty evidence from three randomized trials showed that lower vasopressor exposure probably lowers mortality. However, additional trial data are needed to reach an optimal information size to detect a clinically important 10% relative reduction in mortality with this approach.
Assuntos
Hipotensão , Qualidade de Vida , Adulto , Humanos , Hipotensão/induzido quimicamente , Hipotensão/tratamento farmacológicoRESUMO
BACKGROUND: Childhood maltreatment (CM) exerts various long-lasting psychological and biological changes in affected individuals, with inflammation being an interconnecting element. Besides chronic low-grade inflammation, CM might also affect the energy production of cells by altering the function and density of mitochondria, i.e. the body's main energy suppliers. Here, we compared mitochondrial respiration and density in intact peripheral blood mononuclear cells (PBMC), from women with and without CM between two time points, i.e. at the highly inflammatory phase within 1 week after parturition (t0) and again after 1 year (t2). METHODS: CM exposure was assessed with the Childhood Trauma Questionnaire. Whole blood was collected from n = 52 healthy women within the study 'My Childhood - Your Childhood' at both time points to isolate and cryopreserve PBMC. Thawed PBMC were used to measure mitochondrial respiration and density by high-resolution respirometry followed by spectrophotometric analyses of citrate-synthase activity. RESULTS: Over time, quantitative respiratory parameters increased, while qualitative flux control ratios decreased, independently of CM. Women with CM showed higher mitochondrial respiration and density at t0, but not at t2. We found significant CM group × time interaction effects for ATP-turnover-related respiration and mitochondrial density. CONCLUSIONS: This is the first study to longitudinally investigate mitochondrial bioenergetics in postpartum women with and without CM. Our results indicate that CM-related mitochondrial alterations reflect allostatic load, probably due to higher inflammatory states during parturition, which normalize later. However, later inflammatory states might moderate the vulnerability for a second-hit on the level of mitochondrial bioenergetics, at least in immune cells.
Assuntos
Maus-Tratos Infantis , Leucócitos Mononucleares , Gravidez , Humanos , Feminino , Criança , Leucócitos Mononucleares/metabolismo , Seguimentos , Mitocôndrias/metabolismo , Metabolismo Energético , Parto , Inflamação/metabolismoRESUMO
During hemorrhagic shock, blood loss causes a fall in blood pressure, decreases cardiac output, and, consequently, O2 transport. The current guidelines recommend the administration of vasopressors in addition to fluids to maintain arterial pressure when life-threatening hypotension occurs in order to prevent the risk of organ failure, especially acute kidney injury. However, different vasopressors exert variable effects on the kidney, depending on the nature and dose of the substance chosen as follows: Norepinephrine increases mean arterial pressure both via its α-1-mediated vasoconstriction leading to increased systemic vascular resistance and its ß1-related increase in cardiac output. Vasopressin, through activation of V1-a receptors, induces vasoconstriction, thus increasing mean arterial pressure. In addition, these vasopressors have the following different effects on renal hemodynamics: Norepinephrine constricts both the afferent and efferent arterioles, whereas vasopressin exerts its vasoconstrictor properties mainly on the efferent arteriole. Therefore, this narrative review discusses the current knowledge of the renal hemodynamic effects of norepinephrine and vasopressin during hemorrhagic shock.
Assuntos
Choque Hemorrágico , Choque Séptico , Humanos , Norepinefrina/farmacologia , Choque Séptico/tratamento farmacológico , Hemodinâmica , Vasopressinas/farmacologia , Vasoconstritores/farmacologia , RimRESUMO
Chronic heart failure is associated with reduced myocardial ß-adrenergic receptor expression and mitochondrial function. Since these data coincide with increased plasma catecholamine levels, we investigated the relation between myocardial ß-receptor expression and mitochondrial respiratory activity under conditions of physiological catecholamine concentrations. This post hoc analysis used material of a prospective randomized, controlled study on 12 sexually mature (age 20-24 weeks) Early Life Stress or control pigs (weaning at day 21 and 28-35 after birth, respectively) of either sex. Measurements in anesthetized, mechanically ventilated, and instrumented animals comprised serum catecholamine (liquid-chromatography/tandem-mass-spectrometry) and 8-isoprostane levels, whole blood superoxide anion concentrations (electron spin resonance), oxidative DNA strand breaks (tail moment in the "comet assay"), post mortem cardiac tissue mitochondrial respiration, and immunohistochemistry (ß2-adrenoreceptor, mitochondrial respiration complex, and nitrotyrosine expression). Catecholamine concentrations were inversely related to myocardial mitochondrial respiratory activity and ß2-adrenoceptor expression, whereas there was no relation to mitochondrial respiratory complex expression. Except for a significant, direct, non-linear relation between DNA damage and noradrenaline levels, catecholamine concentrations were unrelated to markers of oxidative stress. The present study suggests that physiological variations of the plasma catecholamine concentrations, e.g., due to physical and/or psychological stress, may affect cardiac ß2-adrenoceptor expression and mitochondrial respiration.
Assuntos
Catecolaminas , Respiração Artificial , Animais , Mitocôndrias Cardíacas/metabolismo , Estudos Prospectivos , Receptores Adrenérgicos beta/metabolismo , SuínosRESUMO
Abdominal trauma (AT) is of major global importance, particularly with the increased potential for civil, terroristic, and military trauma. The injury pattern and systemic consequences of blunt abdominal injuries are highly variable and frequently underestimated or even missed, and the pathomechanisms remain still poorly understood. Therefore, we investigated the temporal-spatial organ and immune response after a standardized blast-induced blunt AT. Anesthetized mice were exposed to a single blast wave centered on the epigastrium. At 2, 6, or 24 h after trauma, abdominal organ damage was assessed macroscopically, microscopically, and biochemically. A higher degree of trauma severity, determined by a reduction of the distance between the epigastrium and blast inductor, was reflected by a reduced survival rate. The hemodynamic monitoring during the first 120 min after AT revealed a decline in the mean arterial pressure within the first 80 min, whereas the heart rate remained quite stable. AT induced a systemic damage and inflammatory response, evidenced by elevated HMGB-1 and IL-6 plasma levels. The macroscopic injury pattern of the abdominal organs (while complex) was consistent, with the following frequency: liver > pancreas > spleen > left kidney > intestine > right kidney > others > lungs and was reflected by microscopic liver and pancreas damages. Plasma levels of organ dysfunction markers increased during the first 6 h after AT and subsequently declined, indicating an early, temporal impairment of the function on a multi-organ level. The established highly reproducible murine blunt AT, with time- and trauma-severity-dependent organ injury patterns, systemic inflammatory response, and impairment of various organ functions, reflects characteristics of human AT. In the future, this model may help to study the complex immuno-pathophysiological consequences and innovative therapeutic approaches after blunt AT.
Assuntos
Traumatismos Abdominais/complicações , Injúria Renal Aguda/patologia , Traumatismos por Explosões/complicações , Fígado/patologia , Traumatismo Múltiplo/complicações , Pâncreas/patologia , Injúria Renal Aguda/etiologia , Animais , Fígado/lesões , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/lesões , Pâncreas/metabolismoRESUMO
Older patients with severe physical trauma are at high risk of developing neuropsychiatric syndromes with global impairment of cognition, attention, and consciousness. We employed a thoracic trauma (TxT) mouse model and thoroughly analyzed age-dependent spatial and temporal posttraumatic alterations in the central nervous system. Up to 5 days after trauma, we observed a transient 50% decrease in the number of excitatory synapses specifically in hippocampal pyramidal neurons accompanied by alterations in attention and motor activity and disruption of contextual memory consolidation. In parallel, hippocampal corticotropin-releasing hormone (CRH) expression was highly upregulated, and brain-derived neurotrophic factor (BDNF) levels were significantly reduced. In vitro experiments revealed that CRH application induced neuronal autophagy with rapid lysosomal degradation of BDNF via the NF-κB pathway. The subsequent synaptic loss was rescued by BDNF as well as by specific NF-κB and CRH receptor 1 (CRHR1) antagonists. In vivo, the chronic application of a CRHR1 antagonist after TxT resulted in reversal of the observed histological, molecular, and behavioral alterations. The data suggest that neuropsychiatric syndromes (i.e., delirium) after peripheral trauma might be at least in part due to the activation of the hippocampal CRH/NF-κB/BDNF pathway, which results in a dramatic loss of synaptic contacts. The successful rescue by stress hormone receptor antagonists should encourage clinical trials focusing on trauma-induced delirium and/or other posttraumatic syndromes.
Assuntos
Delírio , Neurônios , Animais , Hormônio Liberador da Corticotropina , Humanos , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Camundongos , Receptores de Hormônio Liberador da Corticotropina , SíndromeRESUMO
BACKGROUND: Calcitonin gene-related peptide (CGRP) and procalcitonin, which are overexpressed in sepsis, exert distinct immunomodulatory effects mediated through the CGRP receptor. The CGRP receptor antagonist olcegepant improves survival in murine sepsis. This study evaluated whether CGRP receptor antagonism is similarly beneficial in a porcine model of polymicrobial sepsis. METHODS: We conducted a prospective randomised, controlled, investigator-blinded trial in adult pigs of either sex, that were anaesthetised and ventilated before sepsis was induced by polymicrobial (autologous) faecal peritonitis. After the onset of early septic shock (systolic blood pressure <90 mm Hg or >10% decline from baseline MAP), pigs were resuscitated (i.v. fluid/antibiotics/vasopressors) and randomised to receive either i.v. olcegepant (n=8) or vehicle control (n=8). The primary outcome was time to death, euthanasia required up to 72 h after surgery (according to predefined severe cardiorespiratory failure), or both. Secondary outcomes included haemodynamic changes, and systemic as well as organ inflammation (mRNA expression). RESULTS: Septic shock developed 8.7 h (inter-quartile range, 5.8-11.1 h) after the onset of faecal peritonitis. Olcegepant worsened survival, with 6/8 pigs randomised to the control group surviving 72.0 h (50.9-72.0 h), compared with 3/8 pigs receiving olcegepant surviving 51.3 h (12.5-72.0 h; P=0.01). At 48 h, lower MAP and higher cardiac output occurred in pigs receiving olcegepant. Cardiac, hepatic, and renal injury was not different between pigs randomised to receive olcegepant or vehicle. Olcegepant reduced mRNA expression of several inflammation-related cytokines and CD68+ macrophages in liver but not in lung tissue. CONCLUSIONS: CGRP receptor antagonism with olcegepant was not beneficial in this porcine model of polymicrobial sepsis, which closely mimics human sepsis.
Assuntos
Peritonite , Sepse , Choque Séptico , Animais , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina , Humanos , Camundongos , Peritonite/tratamento farmacológico , Estudos Prospectivos , RNA Mensageiro , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Sepse/tratamento farmacológico , Choque Séptico/tratamento farmacológico , SuínosRESUMO
OBJECTIVES: Individualizing a target mean arterial pressure is challenging during the initial resuscitation of patients with septic shock. The Sepsis and Mean Arterial Pressure (SEPSISPAM) trial suggested that targeting high mean arterial pressure might reduce the occurrence of acute kidney injury among those included patients with a past history of chronic hypertension. We investigated whether the class of antihypertensive medications used before the ICU stay in chronic hypertensive patients was associated with the severity of acute kidney injury occurring after inclusion, according to mean arterial pressure target. DESIGN: Post hoc analysis of the SEPSISPAM trial. SETTING: The primary outcome was the occurrence of severe acute kidney injury during the ICU stay defined as kidney disease improving global outcome stage 2 or higher. Secondary outcomes were mortality at day 28 and mortality at day 90. PATIENTS: All patients with chronic hypertension included in SEPSISPAM with available antihypertensive medications data in the hospitalization report were included. MEASUREMENTS AND MAIN RESULTS: We analyzed 297 patients. Severe acute kidney injury occurred in 184 patients, without difference according to pre-ICU exposure to antihypertensive medications. Patients with pre-ICU exposure to angiotensin II receptor blockers had significantly less severe acute kidney injury in the high mean arterial pressure target group (adjusted odd ratio 0.24 with 95% CI [0.09-0.66]; p = 0.006). No statistically significant association was found after adjustment for pre-ICU exposure to antihypertensive medications and survival. CONCLUSIONS: Our results suggest that patients with septic shock and chronic hypertension treated with angiotensin II receptor blocker may benefit from a high mean arterial pressure target to reduce the risk of acute kidney injury occurrence.
Assuntos
Injúria Renal Aguda/prevenção & controle , Antagonistas de Receptores de Angiotensina/uso terapêutico , Anti-Hipertensivos/uso terapêutico , Choque Séptico/tratamento farmacológico , Injúria Renal Aguda/etiologia , Pressão Arterial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Consumo de Oxigênio , Ensaios Clínicos Controlados Aleatórios como Assunto , Choque Séptico/complicações , Resultado do TratamentoRESUMO
Oxygen (O2) toxicity remains a concern, particularly to the lung. This is mainly related to excessive production of reactive oxygen species (ROS). Supplemental O2, i.e. inspiratory O2 concentrations (FIO2) > 0.21 may cause hyperoxaemia (i.e. arterial (a) PO2 > 100 mmHg) and, subsequently, hyperoxia (increased tissue O2 concentration), thereby enhancing ROS formation. Here, we review the pathophysiology of O2 toxicity and the potential harms of supplemental O2 in various ICU conditions. The current evidence base suggests that PaO2 > 300 mmHg (40 kPa) should be avoided, but it remains uncertain whether there is an "optimal level" which may vary for given clinical conditions. Since even moderately supra-physiological PaO2 may be associated with deleterious side effects, it seems advisable at present to titrate O2 to maintain PaO2 within the normal range, avoiding both hypoxaemia and excess hyperoxaemia.
Assuntos
Hiperóxia , Humanos , Hiperóxia/complicações , Pulmão , Oxigênio , Espécies Reativas de OxigênioRESUMO
BACKGROUND: Medical simulation trainings lead to an improvement in patient care by increasing technical and non-technical skills, procedural confidence and medical knowledge. For structured simulation-based trainings, objective assessment tools are needed to evaluate the performance during simulation and the learning progress. In surgical education, objective structured assessment of technical skills (OSATS) are widely used and validated. However, in emergency medicine and anesthesia there is a lack of validated assessment tools for technical skills. Thus, the aim of the present study was to develop and validate a novel Global Rating Scale (GRS) for emergency medical simulation trainings. METHODS: Following the development of the GRS, 12 teams of different experience in emergency medicine (4th year medical students, paramedics, emergency physicians) were involved in a pre-hospital emergency medicine simulation scenario and assessed by four independent raters. Subsequently, interrater reliability and construct validity of the GRS were analyzed. Moreover, the results of the GRS were cross-checked with a task specific check list. Data are presented as median (minimum; maximum). RESULTS: The GRS consists of ten items each scored on a 5-point Likert scale yielding a maximum of 50 points. The median score achieved by novice teams was 22.75 points (17;30), while experts scored 39.00 points (32;47). The GRS overall scores significantly discriminated between student-guided teams and expert teams of emergency physicians (p = 0.005). Interrater reliability for the GRS was high with a Kendall's coefficient of concordance W ranging from 0.64 to 0.90 in 9 of 10 items and 0.88 in the overall score. CONCLUSION: The GRS represents a promising novel tool to objectively assess technical skills in simulation training with high construct validity and interrater reliability in this pilot study.
Assuntos
Internato e Residência , Treinamento por Simulação , Estudantes de Medicina , Competência Clínica , Humanos , Projetos Piloto , Reprodutibilidade dos TestesRESUMO
This paper explored the potential mediating role of hydrogen sulfide (H2S) and the oxytocin (OT) systems in hemorrhagic shock (HS) and/or traumatic brain injury (TBI). Morbidity and mortality after trauma mainly depend on the presence of HS and/or TBI. Rapid "repayment of the O2 debt" and prevention of brain tissue hypoxia are cornerstones of the management of both HS and TBI. Restoring tissue perfusion, however, generates an ischemia/reperfusion (I/R) injury due to the formation of reactive oxygen (ROS) and nitrogen (RNS) species. Moreover, pre-existing-medical-conditions (PEMC's) can aggravate the occurrence and severity of complications after trauma. In addition to the "classic" chronic diseases (of cardiovascular or metabolic origin), there is growing awareness of psychological PEMC's, e.g., early life stress (ELS) increases the predisposition to develop post-traumatic-stress-disorder (PTSD) and trauma patients with TBI show a significantly higher incidence of PTSD than patients without TBI. In fact, ELS is known to contribute to the developmental origins of cardiovascular disease. The neurotransmitter H2S is not only essential for the neuroendocrine stress response, but is also a promising therapeutic target in the prevention of chronic diseases induced by ELS. The neuroendocrine hormone OT has fundamental importance for brain development and social behavior, and, thus, is implicated in resilience or vulnerability to traumatic events. OT and H2S have been shown to interact in physical and psychological trauma and could, thus, be therapeutic targets to mitigate the acute post-traumatic effects of chronic PEMC's. OT and H2S both share anti-inflammatory, anti-oxidant, and vasoactive properties; through the reperfusion injury salvage kinase (RISK) pathway, where their signaling mechanisms converge, they act via the regulation of nitric oxide (NO).
Assuntos
Lesões Encefálicas/metabolismo , Cuidados Críticos/métodos , Traumatismo Múltiplo/metabolismo , Ocitocina/metabolismo , Transtornos de Estresse Pós-Traumáticos/metabolismo , Sulfitos/metabolismo , Animais , Lesões Encefálicas/psicologia , Lesões Encefálicas/terapia , Humanos , Traumatismo Múltiplo/psicologia , Traumatismo Múltiplo/terapia , Transtornos de Estresse Pós-Traumáticos/epidemiologia , Transtornos de Estresse Pós-Traumáticos/etiologiaRESUMO
Growing clinical evidence has implicated complement as a pivotal driver of COVID-19 immunopathology. Deregulated complement activation may fuel cytokine-driven hyper-inflammation, thrombotic microangiopathy and NET-driven immunothrombosis, thereby leading to multi-organ failure. Complement therapeutics have gained traction as candidate drugs for countering the detrimental consequences of SARS-CoV-2 infection. Whether blockade of terminal complement effectors (C5, C5a, or C5aR1) may elicit similar outcomes to upstream intervention at the level of C3 remains debated. Here we compare the efficacy of the C5-targeting monoclonal antibody eculizumab with that of the compstatin-based C3-targeted drug candidate AMY-101 in small independent cohorts of severe COVID-19 patients. Our exploratory study indicates that therapeutic complement inhibition abrogates COVID-19 hyper-inflammation. Both C3 and C5 inhibitors elicit a robust anti-inflammatory response, reflected by a steep decline in C-reactive protein and IL-6 levels, marked lung function improvement, and resolution of SARS-CoV-2-associated acute respiratory distress syndrome (ARDS). C3 inhibition afforded broader therapeutic control in COVID-19 patients by attenuating both C3a and sC5b-9 generation and preventing FB consumption. This broader inhibitory profile was associated with a more robust decline of neutrophil counts, attenuated neutrophil extracellular trap (NET) release, faster serum LDH decline, and more prominent lymphocyte recovery. These early clinical results offer important insights into the differential mechanistic basis and underlying biology of C3 and C5 inhibition in COVID-19 and point to a broader pathogenic involvement of C3-mediated pathways in thromboinflammation. They also support the evaluation of these complement-targeting agents as COVID-19 therapeutics in large prospective trials.
Assuntos
Betacoronavirus/patogenicidade , Complemento C3/antagonistas & inibidores , Complemento C5/antagonistas & inibidores , Inativadores do Complemento/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Fatores Imunológicos/uso terapêutico , Pneumonia Viral/tratamento farmacológico , Síndrome do Desconforto Respiratório/tratamento farmacológico , Anticorpos Monoclonais Humanizados/uso terapêutico , Biomarcadores/sangue , Proteína C-Reativa/metabolismo , COVID-19 , Estudos de Coortes , Ativação do Complemento/efeitos dos fármacos , Complemento C3/genética , Complemento C3/imunologia , Complemento C5/genética , Complemento C5/imunologia , Infecções por Coronavirus/complicações , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Armadilhas Extracelulares/efeitos dos fármacos , Feminino , Expressão Gênica , Humanos , Interleucina-6/metabolismo , Masculino , Pessoa de Meia-Idade , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/virologia , Pandemias , Peptídeos Cíclicos/uso terapêutico , Pneumonia Viral/complicações , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/virologia , SARS-CoV-2 , Índice de Gravidade de DoençaRESUMO
Immunological functions of mast cells remain poorly understood. Studies in Kit mutant mice suggest key roles for mast cells in certain antibody- and T cell-mediated autoimmune diseases. However, Kit mutations affect multiple cell types of both immune and nonimmune origin. Here, we show that targeted insertion of Cre-recombinase into the mast cell carboxypeptidase A3 locus deleted mast cells in connective and mucosal tissues by a genotoxic Trp53-dependent mechanism. Cre-mediated mast cell eradication (Cre-Master) mice had, with the exception of a lack of mast cells and reduced basophils, a normal immune system. Cre-Master mice were refractory to IgE-mediated anaphylaxis, and this defect was rescued by mast cell reconstitution. This mast cell-deficient strain was fully susceptible to antibody-induced autoimmune arthritis and to experimental autoimmune encephalomyelitis. Differences comparing Kit mutant mast cell deficiency models to selectively mast cell-deficient mice call for a systematic re-evaluation of immunological functions of mast cells beyond allergy.
Assuntos
Autoanticorpos/imunologia , Autoimunidade/imunologia , Integrases/metabolismo , Mastócitos/imunologia , Linfócitos T/imunologia , Anafilaxia/genética , Anafilaxia/imunologia , Animais , Artrite Experimental/genética , Artrite Experimental/imunologia , Carboxipeptidases A/genética , Carboxipeptidases A/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Perfilação da Expressão Gênica , Marcação de Genes , Predisposição Genética para Doença , Imunoglobulina E/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Células-Tronco/deficiência , Linfócitos T/metabolismo , Células Th2/imunologia , Proteína Supressora de Tumor p53/metabolismoRESUMO
Controversial data are available on hydrogen sulfide (H2S) during hemorrhage and resuscitation, depending on timing, dosing, mode of application, and the H2S donor used. Sodium thiosulfate (Na2S2O3) is a recognized drug devoid of major side effects, which attenuated murine acute lung injury and cerebral ischemia/reperfusion injury. Therefore, we tested the hypothesis whether Na2S2O3 would mitigate organ dysfunction in porcine hemorrhage-and-resuscitation. We studied animals with pre-existing coronary artery disease because of the reduced coronary arterial expression of the H2S producing enzyme cystathionine-γ-lyase (CSE) in this prospective, randomized, controlled, blinded experimental study. 20 anesthetized and instrumented pigs underwent 3 h of hemorrhage (removal of 30 % of the blood volume and subsequent titration of mean arterial pressure to 40 mmHg). Resuscitation (72 h) comprised re-transfusion of shed blood, crystalloids, and continuous i.v. norepinephrine. Animals randomly received vehicle or Na2S2O3 (0.1 g·kg-1 h-1) for 24 h. Before, at the end of and every 24 h after shock, hemodynamics, metabolism, blood gases, lung, heart, kidney, and liver function and injury were evaluated together with cytokines and parameters of oxidative and nitrosative stress. Immediate post mortem lung, kidney, heart, and liver specimen were analyzed for marker proteins of inflammation and oxidative and nitrosative stress and mitochondrial respiratory activity in the heart, kidney, and liver. Immuno-histochemical analysis comprised lung extra-vascular albumin accumulation, nitrotyrosine formation, and CSE and glucocorticoid receptor (GCR) expression. Na2S2O3 significantly attenuated shock-induced impairment of lung mechanics and gas exchange (plateau and positive end-expiratory pressure at 72 h p = 0.0006/p = 0.0264; Horovitz index at 48 h p = 0.0261), which coincided with a higher tissue GCR expression (p = 0.0415). During resuscitation from hemorrhagic shock Na2S2O3 attenuated shock-induced acute lung injury in co-morbid swine, most likely due to a GCR expression related mechanism.
Assuntos
Antioxidantes/uso terapêutico , Aterosclerose/complicações , Choque Hemorrágico/complicações , Choque Hemorrágico/tratamento farmacológico , Tiossulfatos/uso terapêutico , Animais , Antioxidantes/administração & dosagem , Aterosclerose/patologia , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/patologia , Feminino , Masculino , Distribuição Aleatória , Ressuscitação , Choque Hemorrágico/patologia , Suínos , Tiossulfatos/administração & dosagemRESUMO
During sepsis, excessive activation of the complement system with generation of the anaphylatoxin C5a results in profound disturbances in crucial neutrophil functions. Moreover, because neutrophil activity is highly dependent on intracellular pH (pHi), we propose a direct mechanistic link between complement activation and neutrophil pHi In this article, we demonstrate that in vitro exposure of human neutrophils to C5a significantly increased pHi by selective activation of the sodium/hydrogen exchanger. Upstream signaling of C5a-mediated intracellular alkalinization was dependent on C5aR1, intracellular calcium, protein kinase C, and calmodulin, and downstream signaling regulated the release of antibacterial myeloperoxidase and lactoferrin. Notably, the pH shift caused by C5a increased the glucose uptake and activated glycolytic flux in neutrophils, resulting in a significant release of lactate. Furthermore, C5a induced acidification of the extracellular micromilieu. In experimental murine sepsis, pHi of blood neutrophils was analogously alkalinized, which could be normalized by C5aR1 inhibition. In the clinical setting of sepsis, neutrophils from patients with septic shock likewise exhibited a significantly increased pHi These data suggest a novel role for the anaphylatoxin C5a as a master switch of the delicate pHi balance in neutrophils resulting in profound inflammatory and metabolic changes that contribute to hyperlactatemia during sepsis.
Assuntos
Ativação do Complemento , Complemento C5a/metabolismo , Ativação de Neutrófilo , Neutrófilos/imunologia , Sepse/imunologia , Sepse/metabolismo , Animais , Antiácidos/farmacologia , Cálcio/metabolismo , Calmodulina/metabolismo , Complemento C5a/imunologia , Glucose/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Lactatos/metabolismo , Lactoferrina , Camundongos , Neutrófilos/química , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Peroxidase/metabolismo , Proteína Quinase C/imunologia , Proteína Quinase C/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Transdução de SinaisRESUMO
PURPOSE: Pre-clinical animal studies precede the majority of clinical trials. While the clinical sepsis definitions and recommended treatments are regularly updated, a systematic review of pre-clinical models of sepsis has not been done and clear modeling guidelines are lacking. To address this deficit, a Wiggers-Bernard Conference on pre-clinical sepsis modeling was held in Vienna in May, 2017. The conference goal was to identify limitations of pre-clinical sepsis models and to propose a set of guidelines, defined as the "Minimum Quality Threshold in Pre-Clinical Sepsis Studies" (MQTiPSS), to enhance translational value of these models. METHODS: 31 experts from 13 countries participated and were divided into 6 thematic Working Groups (WG): (1) Study Design, (2) Humane modeling, (3) Infection types, (4) Organ failure/dysfunction, (5) Fluid resuscitation and (6) Antimicrobial therapy endpoints. As basis for the MQTiPSS discussions, the participants conducted a literature review of the 260 most highly cited scientific articles on sepsis models (2002-2013). RESULTS: Overall, the participants reached consensus on 29 points; 20 at "recommendation" (R) and 9 at "consideration" (C) strength. This Executive Summary provides a synopsis of the MQTiPSS consensus (Tables 1, 2 and 3). CONCLUSIONS: We believe that these recommendations and considerations will serve to bring a level of standardization to pre-clinical models of sepsis and ultimately improve translation of pre-clinical findings. These guideline points are proposed as "best practices" that should be implemented for animal sepsis models. In order to encourage its wide dissemination, this article is freely accessible in Shock, Infection and Intensive Care Medicine Experimental.
RESUMO
The original version of this article unfortunately contained mistakes.
RESUMO
Acute respiratory distress syndrome (ARDS) is characterized by severe impairment of gas exchange. Hypoxemia is mainly due to intrapulmonary shunt, whereas increased alveolar dead space explains the alteration of CO2 clearance. Assessment of the severity of gas exchange impairment is a requisite for the characterization of the syndrome and the evaluation of its severity. Confounding factors linked to hemodynamic status can greatly influence the relationship between the severity of lung injury and the degree of hypoxemia and/or the effects of ventilator settings on gas exchange. Apart from situations of rescue treatment, targeting optimal gas exchange in ARDS has become less of a priority compared with prevention of injury. A complex question for clinicians is to understand when improvement in oxygenation and alveolar ventilation is related to a lower degree or risk of injury for the lungs. In this regard, a full understanding of gas exchange mechanism in ARDS is imperative for individualized symptomatic support of patients with ARDS.
Assuntos
Pesquisa Biomédica/história , Troca Gasosa Pulmonar/fisiologia , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/história , Síndrome do Desconforto Respiratório/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , História do Século XX , História do Século XXI , Humanos , Masculino , Pessoa de Meia-Idade , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/terapia , Estados UnidosRESUMO
BACKGROUND: Polymorphonuclear granulocytes (PMN) play a crucial role in host defense. Physiologically, exposure of PMN to the complement activation product C5a results in a protective response against pathogens, whereas in the case of systemic inflammation, excessive C5a substantially impairs neutrophil functions. To further elucidate the inability of PMN to properly respond to C5a, this study investigates the role of the cellular membrane potential of PMN in response to C5a. METHODS: Electrophysiological changes in cellular and mitochondrial membrane potential and intracellular pH of PMN from human healthy volunteers were determined by flow cytometry after exposure to C5a. Furthermore, PMN from male Bretoncelles-Meishan-Willebrand cross-bred pigs before and three hours after severe hemorrhagic shock were analyzed for their electrophysiological response. RESULTS: PMN showed a significant dose- and time-dependent depolarization in response to C5a with a strong response after one minute. The chemotactic peptide fMLP also evoked a significant shift in the membrane potential of PMN. Acidification of the cellular microenvironment significantly enhanced depolarization of PMN. In a clinically relevant model of porcine hemorrhagic shock, the C5a-induced changes in membrane potential of PMN were markedly diminished compared to healthy littermates. Overall, these membrane potential changes may contribute to PMN dysfunction in an inflammatory environment.