Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Biol Chem ; 292(8): 3420-3432, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28069811

RESUMO

Maintenance of glucose homeostasis is essential for normal physiology. Deviation from normal glucose levels, in either direction, increases susceptibility to serious medical complications such as hypoglycemia and diabetes. Maintenance of glucose homeostasis is achieved via functional interactions among various organs: liver, skeletal muscle, adipose tissue, brain, and the endocrine pancreas. The liver is the primary site of endogenous glucose production, especially during states of prolonged fasting. However, enhanced gluconeogenesis is also a signature feature of type 2 diabetes (T2D). Thus, elucidating the signaling pathways that regulate hepatic gluconeogenesis would allow better insight into the process of normal endogenous glucose production as well as how this process is impaired in T2D. Here we demonstrate that the TGF-ß1/Smad3 signaling pathway promotes hepatic gluconeogenesis, both upon prolonged fasting and during T2D. In contrast, genetic and pharmacological inhibition of TGF-ß1/Smad3 signals suppressed endogenous glucose production. TGF-ß1 and Smad3 signals achieved this effect via the targeting of key regulators of hepatic gluconeogenesis, protein phosphatase 2A (PP2A), AMP-activated protein kinase (AMPK), and FoxO1 proteins. Specifically, TGF-ß1 signaling suppressed the LKB1-AMPK axis, thereby facilitating the nuclear translocation of FoxO1 and activation of key gluconeogenic genes, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. These findings underscore an important role of TGF-ß1/Smad3 signaling in hepatic gluconeogenesis, both in normal physiology and in the pathophysiology of metabolic diseases such as diabetes, and are thus of significant medical relevance.


Assuntos
Gluconeogênese , Fígado/metabolismo , Transdução de Sinais , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Proteína Forkhead Box O1/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Proteína Fosfatase 2/metabolismo
2.
J Biol Chem ; 292(9): 3841-3853, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28100774

RESUMO

The failure of pancreatic islet ß-cells is a major contributor to the etiology of type 2 diabetes. ß-Cell dysfunction and declining ß-cell mass are two mechanisms that contribute to this failure, although it is unclear whether they are molecularly linked. Here, we show that the cell cycle regulator, cyclin-dependent kinase 2 (CDK2), couples primary ß-cell dysfunction to the progressive deterioration of ß-cell mass in diabetes. Mice with pancreas-specific deletion of Cdk2 are glucose-intolerant, primarily due to defects in glucose-stimulated insulin secretion. Accompanying this loss of secretion are defects in ß-cell metabolism and perturbed mitochondrial structure. Persistent insulin secretion defects culminate in progressive deficits in ß-cell proliferation, reduced ß-cell mass, and diabetes. These outcomes may be mediated directly by the loss of CDK2, which binds to and phosphorylates the transcription factor FOXO1 in a glucose-dependent manner. Further, we identified a requirement for CDK2 in the compensatory increases in ß-cell mass that occur in response to age- and diet-induced stress. Thus, CDK2 serves as an important nexus linking primary ß-cell dysfunction to progressive ß-cell mass deterioration in diabetes.


Assuntos
Quinase 2 Dependente de Ciclina/metabolismo , Diabetes Mellitus Experimental/patologia , Células Secretoras de Insulina/patologia , Pâncreas/patologia , Animais , Peso Corporal , Proliferação de Células , Quinase 2 Dependente de Ciclina/genética , Dieta Hiperlipídica , Progressão da Doença , Feminino , Genótipo , Glucose/química , Teste de Tolerância a Glucose , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/citologia , Masculino , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Fenótipo , Fosforilação
3.
J Biol Chem ; 290(12): 7671-84, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25648888

RESUMO

Beige adipose cells are a distinct and inducible type of thermogenic fat cell that express the mitochondrial uncoupling protein-1 and thus represent a powerful target for treating obesity. Mice lacking the TGF-ß effector protein SMAD3 are protected against diet-induced obesity because of browning of their white adipose tissue (WAT), leading to increased whole body energy expenditure. However, the role SMAD3 plays in WAT browning is not clearly understood. Irisin is an exercise-induced skeletal muscle hormone that induces WAT browning similar to that observed in SMAD3-deficient mice. Together, these observations suggested that SMAD3 may negatively regulate irisin production and/or secretion from skeletal muscle. To address this question, we used wild-type and SMAD3 knock-out (Smad3(-/-)) mice subjected to an exercise regime and C2C12 myotubes treated with TGF-ß, a TGF-ß receptor 1 pharmacological inhibitor, adenovirus expressing constitutively active SMAD3, or siRNA against SMAD3. We find that in Smad3(-/-) mice, exercise increases serum irisin and skeletal muscle FNDC5 (irisin precursor) and its upstream activator peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) to a greater extent than in wild-type mice. In C2C12 myotubes, TGF-ß suppresses FNDC5 and PGC-1α mRNA and protein levels via SMAD3 and promotes SMAD3 binding to the FNDC5 and PGC-1α promoters. These data establish that SMAD3 suppresses FNDC5 and PGC-1α in skeletal muscle cells. These findings shed light on the poorly understood regulation of irisin/FNDC5 by demonstrating a novel association between irisin and SMAD3 signaling in skeletal muscle.


Assuntos
Fibronectinas/sangue , Fibronectinas/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Proteína Smad3/fisiologia , Fatores de Transcrição/metabolismo , Animais , Western Blotting , Linhagem Celular , Eletroforese em Gel de Poliacrilamida , Fibronectinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/citologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/fisiologia
4.
EMBO J ; 30(8): 1563-76, 2011 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-21399612

RESUMO

RB is a key substrate of Cdks and an important regulator of the mammalian cell cycle. RB either represses E2Fs that promote cell proliferation or enhances the activity of cell-specific factors that promote differentiation, although the mechanism that facilitates this dual interaction is unclear. Here, we demonstrate that RB associates with and stabilizes pancreatic duodenal homeobox-1 (Pdx-1) that is essential for embryonic pancreas development and adult ß-cell function. Interestingly, Pdx-1 utilizes a conserved RB-interaction motif (RIM) that is also present in E2Fs. Point mutations within the RIM reduce RB-Pdx-1 complex formation, destabilize Pdx-1 and promote its proteasomal degradation. Glucose regulates RB and Pdx-1 levels, RB/Pdx-1 complex formation and Pdx-1 degradation. RB occupies the promoters of ß-cell-specific genes, and knockdown of RB results in reduced expression of Pdx-1 and its target genes. Further, RB-deficiency in vivo results in reduced pancreas size due to decreased proliferation of Pdx-1(+) pancreatic progenitors, increased apoptosis and aberrant expression of regulators of pancreatic development. These results demonstrate an unanticipated regulatory mechanism for pancreatic development and ß-cell function, which involves RB-mediated stabilization of the pancreas-specific transcription factor Pdx-1.


Assuntos
Fatores de Transcrição E2F/metabolismo , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Pâncreas/citologia , Pâncreas/metabolismo , Proteína do Retinoblastoma/metabolismo , Transativadores/química , Transativadores/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Western Blotting , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Imunoprecipitação da Cromatina , Quinase 4 Dependente de Ciclina/fisiologia , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Regulação da Expressão Gênica , Glucose/farmacologia , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Fosforilação , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Proteína do Retinoblastoma/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
J Biol Chem ; 288(35): 25088-25097, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23836895

RESUMO

Obesity and diabetes are associated with excess caloric intake and reduced energy expenditure resulting in a negative energy balance. The incidence of diabetes has reached epidemic proportions, and childhood diabetes and obesity are increasing alarmingly. Therefore, it is important to develop safe, easily deliverable, and economically viable treatment alternatives for these diseases. Here, we provide data supporting the candidacy of probiotics as such a therapeutic modality against obesity and diabetes. Probiotics are live bacteria that colonize the gastrointestinal tract and impart beneficial effects for health. However, their widespread prescription as medical therapies is limited primarily because of the paucity of our understanding of their mechanism of action. Here, we demonstrate that the administration of a probiotic, VSL#3, prevented and treated obesity and diabetes in several mouse models. VSL#3 suppressed body weight gain and insulin resistance via modulation of the gut flora composition. VSL#3 promoted the release of the hormone GLP-1, resulting in reduced food intake and improved glucose tolerance. The VSL#3-induced changes were associated with an increase in the levels of a short chain fatty acid (SCFA), butyrate. Using a cell culture system, we demonstrate that butyrate stimulated the release of GLP-1 from intestinal L-cells, thereby providing a plausible mechanism for VSL#3 action. These findings suggest that probiotics such as VSL#3 can modulate the gut microbiota-SCFA-hormone axis. Moreover, our results indicate that probiotics are of potential therapeutic utility to counter obesity and diabetes.


Assuntos
Regulação do Apetite/efeitos dos fármacos , Butiratos/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Mucosa Intestinal/metabolismo , Probióticos/farmacologia , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Resistência à Insulina , Intestinos/patologia , Intestinos/fisiologia , Masculino , Camundongos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/patologia
6.
J Biol Chem ; 288(44): 32074-92, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24056369

RESUMO

Three homologues of TGF-ß exist in mammals as follows: TGF-ß1, TGF-ß2, and TGF-ß3. All three proteins share high homology in their amino acid sequence, yet each TGF-ß isoform has unique heterologous motifs that are highly conserved during evolution. Although these TGF-ß proteins share similar properties in vitro, isoform-specific properties have been suggested through in vivo studies and by the unique phenotypes for each TGF-ß knock-out mouse. To test our hypothesis that each of these homologues has nonredundant functions, and to identify such isoform-specific roles, we genetically exchanged the coding sequence of the mature TGF-ß1 ligand with a sequence from TGF-ß3 using targeted recombination to create chimeric TGF-ß1/3 knock-in mice (TGF-ß1(Lß3/Lß3)). In the TGF-ß1(Lß3/Lß3) mouse, localization and activation still occur through the TGF-ß1 latent associated peptide, but cell signaling is triggered through the TGF-ß3 ligand that binds to TGF-ß receptors. Unlike TGF-ß1(-/-) mice, the TGF-ß1(Lß3/Lß3) mice show neither embryonic lethality nor signs of multifocal inflammation, demonstrating that knock-in of the TGF-ß3 ligand can prevent the vasculogenesis defects and autoimmunity associated with TGF-ß1 deficiency. However, the TGF-ß1(Lß3/Lß3) mice have a shortened life span and display tooth and bone defects, indicating that the TGF-ß homologues are not completely interchangeable. Remarkably, the TGF-ß1(Lß3/Lß3) mice display an improved metabolic phenotype with reduced body weight gain and enhanced glucose tolerance by induction of beneficial changes to the white adipose tissue compartment. These findings reveal both redundant and unique nonoverlapping functional diversity in TGF-ß isoform signaling that has relevance to the design of therapeutics aimed at targeting the TGF-ß pathway in human disease.


Assuntos
Glucose/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta3/metabolismo , Animais , Células COS , Chlorocebus aethiops , Técnicas de Introdução de Genes , Glucose/genética , Células Hep G2 , Humanos , Inflamação/genética , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Neovascularização Fisiológica/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Suínos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta3/genética
7.
Development ; 138(10): 1903-12, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21490060

RESUMO

Cell division and cell differentiation are intricately regulated processes vital to organ development. Cyclin-dependent kinases (Cdks) are master regulators of the cell cycle that orchestrate the cell division and differentiation programs. Cdk1 is essential to drive cell division and is required for the first embryonic divisions, whereas Cdks 2, 4 and 6 are dispensable for organogenesis but vital for tissue-specific cell development. Here, we illustrate an important role for Cdk4 in regulating early pancreas development. Pancreatic development involves extensive morphogenesis, proliferation and differentiation of the epithelium to give rise to the distinct cell lineages of the adult pancreas. The cell cycle molecules that specify lineage commitment within the early pancreas are unknown. We show that Cdk4 and its downstream transcription factor E2f1 regulate mouse pancreas development prior to and during the secondary transition. Cdk4 deficiency reduces embryonic pancreas size owing to impaired mesenchyme development and fewer Pdx1(+) pancreatic progenitor cells. Expression of activated Cdk4(R24C) kinase leads to increased Nkx2.2(+) and Nkx6.1(+) cells and a rise in the number and proliferation of Ngn3(+) endocrine precursors, resulting in expansion of the ß cell lineage. We show that E2f1 binds and activates the Ngn3 promoter to modulate Ngn3 expression levels in the embryonic pancreas in a Cdk4-dependent manner. These results suggest that Cdk4 promotes ß cell development by directing E2f1-mediated activation of Ngn3 and increasing the pool of endocrine precursors, and identify Cdk4 as an important regulator of early pancreas development that modulates the proliferation potential of pancreatic progenitors and endocrine precursors.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Fator de Transcrição E2F1/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Pâncreas/embriologia , Pâncreas/metabolismo , Transativadores/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Contagem de Células , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Quinase 4 Dependente de Ciclina/genética , Fator de Transcrição E2F1/genética , Células-Tronco Embrionárias/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteína Homeobox Nkx-2.2 , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , Proteínas do Tecido Nervoso/genética , Pâncreas/citologia , Gravidez , Regiões Promotoras Genéticas , Transdução de Sinais
8.
JCI Insight ; 9(3)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329121

RESUMO

Aging-related abnormalities in gut microbiota are associated with cognitive decline, depression, and anxiety, but underlying mechanisms remain unstudied. Here, our study demonstrated that transplanting old gut microbiota to young mice induced inflammation in the gut and brain coupled with cognitive decline, depression, and anxiety. We observed diminished mucin formation and increased gut permeability ("leaky gut") with a reduction in beneficial metabolites like butyrate because of decline in butyrate-producing bacteria in the aged gut microbiota. This led to suppressed expression of butyrate receptors, free fatty acid receptors 2 and 3 (FFAR2/3). Administering butyrate alleviated inflammation, restored mucin expression and gut barriers, and corrected brain dysfunction. Furthermore, young mice with intestine-specific loss of FFAR2/3 exhibited gut and brain abnormalities akin to those in older mice. Our results demonstrate that reduced butyrate-producing bacteria in aged gut microbiota result in low butyrate levels and reduced FFAR2/3 signaling, leading to suppressed mucin formation that increases gut permeability, inflammation, and brain abnormalities. These findings underscore the significance of butyrate-FFAR2/3 agonism as a potential strategy to mitigate aged gut microbiota-induced detrimental effects on gut and brain health in older adults.


Assuntos
Butiratos , Microbioma Gastrointestinal , Camundongos , Animais , Butiratos/metabolismo , Butiratos/farmacologia , Inflamação , Encéfalo/metabolismo , Envelhecimento , Mucinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
9.
J Clin Invest ; 133(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37712417

RESUMO

Expanding ß cell mass is a critical goal in the fight against diabetes. CDK4, an extensively characterized cell cycle activator, is required to establish and maintain ß cell number. ß cell failure in the IRS2-deletion mouse type 2 diabetes model is, in part, due to loss of CDK4 regulator cyclin D2. We set out to determine whether replacement of endogenous CDK4 with the inhibitor-resistant mutant CDK4-R24C rescued the loss of ß cell mass in IRS2-deficient mice. Surprisingly, not only ß cell mass but also ß cell dedifferentiation was effectively rescued, despite no improvement in whole body insulin sensitivity. Ex vivo studies in primary islet cells revealed a mechanism in which CDK4 intervened downstream in the insulin signaling pathway to prevent FOXO1-mediated transcriptional repression of critical ß cell transcription factor Pdx1. FOXO1 inhibition was not related to E2F1 activity, to FOXO1 phosphorylation, or even to FOXO1 subcellular localization, but rather was related to deacetylation and reduced FOXO1 abundance. Taken together, these results demonstrate a differentiation-promoting activity of the classical cell cycle activator CDK4 and support the concept that ß cell mass can be expanded without compromising function.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Ilhotas Pancreáticas , Animais , Camundongos , Diabetes Mellitus Tipo 2/genética , Diferenciação Celular , Desdiferenciação Celular/genética , Modelos Animais de Doenças
10.
J Clin Invest ; 133(13)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395281

RESUMO

Understanding how skeletal muscle fiber proportions are regulated is vital to understanding muscle function. Oxidative and glycolytic skeletal muscle fibers differ in their contractile ability, mitochondrial activity, and metabolic properties. Fiber-type proportions vary in normal physiology and disease states, although the underlying mechanisms are unclear. In human skeletal muscle, we observed that markers of oxidative fibers and mitochondria correlated positively with expression levels of PPARGC1A and CDK4 and negatively with expression levels of CDKN2A, a locus significantly associated with type 2 diabetes. Mice expressing a constitutively active Cdk4 that cannot bind its inhibitor p16INK4a, a product of the CDKN2A locus, were protected from obesity and diabetes. Their muscles exhibited increased oxidative fibers, improved mitochondrial properties, and enhanced glucose uptake. In contrast, loss of Cdk4 or skeletal muscle-specific deletion of Cdk4's target, E2F3, depleted oxidative myofibers, deteriorated mitochondrial function, and reduced exercise capacity, while increasing diabetes susceptibility. E2F3 activated the mitochondrial sensor PPARGC1A in a Cdk4-dependent manner. CDK4, E2F3, and PPARGC1A levels correlated positively with exercise and fitness and negatively with adiposity, insulin resistance, and lipid accumulation in human and rodent muscle. All together, these findings provide mechanistic insight into regulation of skeletal muscle fiber-specification that is of relevance to metabolic and muscular diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Doenças Musculares , Camundongos , Animais , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Obesidade/metabolismo , Estresse Oxidativo , Desenvolvimento Muscular , Fator de Transcrição E2F3/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo
11.
Cell Metab ; 34(2): 285-298.e7, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108515

RESUMO

The central nervous system has long been thought to regulate insulin secretion, an essential process in the maintenance of blood glucose levels. However, the anatomical and functional connections between the brain and insulin-producing pancreatic ß cells remain undefined. Here, we describe a functional transneuronal circuit connecting the hypothalamus to ß cells in mice. This circuit originates from a subpopulation of oxytocin neurons in the paraventricular hypothalamic nucleus (PVNOXT), and it reaches the islets of the endocrine pancreas via the sympathetic autonomic branch to innervate ß cells. Stimulation of PVNOXT neurons rapidly suppresses insulin secretion and causes hyperglycemia. Conversely, silencing of these neurons elevates insulin levels by dysregulating neuronal signaling and secretory pathways in ß cells and induces hypoglycemia. PVNOXT neuronal activity is triggered by glucoprivation. Our findings reveal that a subset of PVNOXT neurons form functional multisynaptic circuits with ß cells in mice to regulate insulin secretion, and their function is necessary for the ß cell response to hypoglycemia.


Assuntos
Células Secretoras de Insulina , Animais , Hipotálamo/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Camundongos , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo
13.
Endocrinology ; 162(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33349851

RESUMO

Pancreatic islet beta cells (ß-cells) synthesize and secrete insulin in response to rising glucose levels and thus are a prime target in both major forms of diabetes. Type 1 diabetes ensues due to autoimmune destruction of ß-cells. On the other hand, the prevailing insulin resistance and hyperglycemia in type 2 diabetes (T2D) elicits a compensatory response from ß-cells that involves increases in ß-cell mass and function. However, the sustained metabolic stress results in ß-cell failure, characterized by severe ß-cell dysfunction and loss of ß-cell mass. Dynamic changes to ß-cell mass also occur during pancreatic development that involves extensive growth and morphogenesis. These orchestrated events are triggered by multiple signaling pathways, including those representing the transforming growth factor ß (TGF-ß) superfamily. TGF-ß pathway ligands play important roles during endocrine pancreas development, ß-cell proliferation, differentiation, and apoptosis. Furthermore, new findings are suggestive of TGF-ß's role in regulation of adult ß-cell mass and function. Collectively, these findings support the therapeutic utility of targeting TGF-ß in diabetes. Summarizing the role of the various TGF-ß pathway ligands in ß-cell development, growth and function in normal physiology, and during diabetes pathogenesis is the topic of this mini-review.


Assuntos
Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/crescimento & desenvolvimento , Fator de Crescimento Transformador beta/fisiologia , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Humanos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/fisiologia , Organogênese/genética , Transdução de Sinais/fisiologia
14.
Cell Rep ; 34(4): 108690, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33503433

RESUMO

Hallmarks of mature ß cells are restricted proliferation and a highly energetic secretory state. Paradoxically, cyclin-dependent kinase 2 (CDK2) is synthesized throughout adulthood, its cytosolic localization raising the likelihood of cell cycle-independent functions. In the absence of any changes in ß cell mass, maturity, or proliferation, genetic deletion of Cdk2 in adult ß cells enhanced insulin secretion from isolated islets and improved glucose tolerance in vivo. At the single ß cell level, CDK2 restricts insulin secretion by increasing KATP conductance, raising the set point for membrane depolarization in response to activation of the phosphoenolpyruvate (PEP) cycle with mitochondrial fuels. In parallel with reduced ß cell recruitment, CDK2 restricts oxidative glucose metabolism while promoting glucose-dependent amplification of insulin secretion. This study provides evidence of essential, non-canonical functions of CDK2 in the secretory pathways of quiescent ß cells.


Assuntos
Linfócitos B/metabolismo , Quinase 2 Dependente de Ciclina/uso terapêutico , Canais KATP/efeitos dos fármacos , Animais , Quinase 2 Dependente de Ciclina/farmacologia , Humanos , Camundongos
15.
Cell Metab ; 2(4): 239-49, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16213226

RESUMO

Cell cycle regulators such as E2F1 and retinoblastoma (RB) play crucial roles in the control of adipogenesis, mostly by controlling the transition between preadipocyte proliferation and adipocyte differentiation. The serine-threonine kinase cyclin-dependent kinase 4 (cdk4) works in a complex with D-type cyclins to phosphorylate RB, mediating the entry of cells into the cell cycle in response to external stimuli. Because cdk4 is an upstream regulator of the E2F-RB pathway, we tested whether cdk4 was a target for new factors that regulate adipogenesis. Here we find that cdk4 inhibition impairs adipocyte differentiation and function. Disruption of cdk4 or activating mutations in cdk4 in primary mouse embryonic fibroblasts results in reduced and increased adipogenic potential, respectively, of these cells. We show that the effects of cdk4 are not limited to the control of differentiation; cdk4 also participates in adipocyte function through activation of PPARgamma.


Assuntos
Adipogenia/fisiologia , Quinase 4 Dependente de Ciclina/metabolismo , PPAR gama/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Animais , Transporte Biológico , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/genética , Regulação da Expressão Gênica , Genes Reporter/genética , Glucose/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transfecção
16.
Cell Death Dis ; 11(3): 184, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170115

RESUMO

Prevailing insulin resistance and the resultant hyperglycemia elicits a compensatory response from pancreatic islet beta cells (ß-cells) that involves increases in ß-cell function and ß-cell mass. However, the sustained metabolic stress eventually leads to ß-cell failure characterized by severe ß-cell dysfunction and progressive loss of ß-cell mass. Whereas, ß-cell dysfunction is relatively well understood at the mechanistic level, the avenues leading to loss of ß-cell mass are less clear with reduced proliferation, dedifferentiation, and apoptosis all potential mechanisms. Butler and colleagues documented increased ß-cell apoptosis in pancreas from lean and obese human Type 2 diabetes (T2D) subjects, with no changes in rates of ß-cell replication or neogenesis, strongly suggesting a role for apoptosis in ß-cell failure. Here, we describe a permissive role for TGF-ß/Smad3 in ß-cell apoptosis. Human islets undergoing ß-cell apoptosis release increased levels of TGF-ß1 ligand and phosphorylation levels of TGF-ß's chief transcription factor, Smad3, are increased in human T2D islets suggestive of an autocrine role for TGF-ß/Smad3 signaling in ß-cell apoptosis. Smad3 phosphorylation is similarly increased in diabetic mouse islets undergoing ß-cell apoptosis. In mice, ß-cell-specific activation of Smad3 promotes apoptosis and loss of ß-cell mass in association with ß-cell dysfunction, glucose intolerance, and diabetes. In contrast, inactive Smad3 protects from apoptosis and preserves ß-cell mass while improving ß-cell function and glucose tolerance. At the molecular level, Smad3 associates with Foxo1 to propagate TGF-ß-dependent ß-cell apoptosis. Indeed, genetic or pharmacologic inhibition of TGF-ß/Smad3 signals or knocking down Foxo1 protects from ß-cell apoptosis. These findings reveal the importance of TGF-ß/Smad3 in promoting ß-cell apoptosis and demonstrate the therapeutic potential of TGF-ß/Smad3 antagonism to restore ß-cell mass lost in diabetes.


Assuntos
Apoptose/genética , Linfócitos B/metabolismo , Proteína Smad3/antagonistas & inibidores , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Animais , Proliferação de Células , Modelos Animais de Doenças , Humanos , Camundongos , Transdução de Sinais , Proteína Smad3/genética , Fator de Crescimento Transformador beta1/genética
17.
Cytokine Growth Factor Rev ; 17(1-2): 107-19, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16257256

RESUMO

The pancreas is a complex exocrine and endocrine gland that controls many homeostatic functions. The exocrine pancreas produces and secretes digestive enzymes, whereas, the endocrine pancreas produces four distinct hormones, chief among them being the glucose regulating hormone-insulin. Diabetes, pancreatitis and pancreatic cancer are some of the main afflictions that result from pancreas dysfunction. Transforming growth factor-beta (TGF-beta) proteins are central regulators of pancreas cell function, and have key roles in pancreas development and pancreatic disease. Since expression levels and kinase activities of components of TGF-beta signaling are aberrantly altered in diseases of the pancreas, modulating the activity of TGF-beta provides a unique and rational opportunity for therapeutic intervention. Although TGF-beta still remains elusive in terms of our understanding of its multifunctional modes of action, research is moving closer to the design of approaches directed toward modulating its activities for therapeutic benefit.


Assuntos
Pâncreas/embriologia , Pâncreas/imunologia , Pancreatopatias/imunologia , Pancreatopatias/patologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Animais , Humanos , Família Multigênica/imunologia , Pâncreas/metabolismo , Pancreatopatias/metabolismo , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/genética
18.
Mol Metab ; 16: 160-171, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30100246

RESUMO

OBJECTIVE: Beige/brite adipose tissue displays morphological characteristics and beneficial metabolic traits of brown adipose tissue. Previously, we showed that TGF-ß signaling regulates the browning of white adipose tissue. Here, we inquired whether TGF-ß signals regulated presumptive beige progenitors in white fat and investigated the TGF-ß regulated mechanisms involved in beige adipogenesis. METHODS: We deleted TGF-ß receptor 1 (TßRI) in adipose tissue (TßRIAdKO mice) and, using flow-cytometry based assays, identified and isolated presumptive beige progenitors located in the stromal vascular cells of white fat. These cells were molecularly characterized to examine beige/brown marker expression and to investigate TGF-ß dependent mechanisms. Further, the cells were transplanted into athymic nude mice to examine their adipogenesis potential. RESULTS: Deletion of TßRI promotes beige adipogenesis while reducing the detrimental effects of high fat diet feeding. Interaction of TGF-ß signaling with the prostaglandin pathway regulated the appearance of beige adipocytes in white fat. Using flow cytometry techniques and stromal vascular fraction from white fat, we isolated presumptive beige stem/progenitor cells (iBSCs). Upon genetic or pharmacologic inhibition of TGF-ß signaling, these cells express high levels of predominantly beige markers. Transplantation of TßRI-deficient stromal vascular cells or iBSCs into athymic nude mice followed by high fat diet feeding and stimulation of ß-adrenergic signaling via CL316,243 injection or cold exposure promoted robust beige adipogenesis in vivo. CONCLUSIONS: TßRI signals target the prostaglandin network to regulate presumptive beige progenitors in white fat capable of developing into beige adipocytes with functional attributes. Controlled inhibition of TßRI signaling and concomitant PGE2 stimulation has the potential to promote beige adipogenesis and improve metabolism.


Assuntos
Adipócitos Marrons/citologia , Adipócitos Brancos/citologia , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Células-Tronco/citologia , Adipócitos Bege/citologia , Adipócitos Bege/metabolismo , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Adipogenia , Tecido Adiposo Bege/citologia , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Diferenciação Celular/fisiologia , Dieta Hiperlipídica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
19.
Mol Cell Biol ; 22(2): 644-56, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11756559

RESUMO

Mutations in CDK4 and its key kinase inhibitor p16(INK4a) have been implicated in the genesis and progression of familial human melanoma. The importance of the CDK4 locus in human cancer first became evident following the identification of a germ line CDK4-Arg24Cys (R24C) mutation, which abolishes the ability of CDK4 to bind to p16(INK4a). To determine the role of the Cdk4(R24C) germ line mutation in the genesis of other cancer types, we introduced the R24C mutation in the Cdk4 locus of mice by using Cre-loxP-mediated "knock-in" technology. Cdk4(R24C/R24C) mouse embryo fibroblasts (MEFs) displayed increased Cdk4 kinase activity resulting in hyperphosphorylation of all three members of the Rb family, pRb, p107, and p130. MEFs derived from Cdk4(R24C/R24C) mice displayed decreased doubling times, escape from replicative senescence, and escape sensitivity to contact-induced growth arrest. These MEFs also exhibited a high degree of susceptibility to oncogene-induced transformation, suggesting that the Cdk4(R24C) mutation can serve as a primary event in the progression towards a fully transformed phenotype. In agreement with the in vitro data, homozygous Cdk4(R24C/R24C) mice developed tumors of various etiology within 8 to 10 months of their life span. The majority of these tumors were found in the pancreas, pituitary, brain, mammary tissue, and skin. In addition, Cdk4(R24C/R24C) mice showed extraordinary susceptibility to carcinogens and developed papillomas within the first 8 to 10 weeks following cutaneous application of the carcinogens 9,10-di-methyl-1,2-benz[a]anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA). This report formally establishes that the activation of Cdk4 is sufficient to promote cancer in many tissues. The observation that a wide variety of tumors develop in mice harboring the Cdk4(R24C) mutation offers a genetic proof that Cdk4 activation may constitute a central event in the genesis of many types of cancers in addition to melanoma.


Assuntos
Senescência Celular/genética , Quinases Ciclina-Dependentes/genética , Mutação em Linhagem Germinativa , Neoplasias Experimentais/genética , Proteínas Proto-Oncogênicas , Animais , Ciclo Celular/genética , Divisão Celular/genética , Transformação Celular Neoplásica/genética , Cocarcinogênese , Quinase 4 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Genes ras , Humanos , Camundongos , Camundongos Mutantes , Neoplasias Experimentais/etiologia , Neoplasias Experimentais/patologia , Oncogenes , Fenótipo , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/genética
20.
Cancer Res ; 65(10): 4067-77, 2005 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15899796

RESUMO

RB pathway mutations, especially at the CDK4 and INK4A loci, are hallmarks of melanomagenesis. It is presently unclear what advantages these alterations confer during melanoma progression and how they influence melanoma therapy. Topoisomerase II inhibitors are widely used to treat human malignancies, including melanoma, although their variable success is attributable to a poor understanding of their mechanism of action. Using mouse and human cells harboring the melanoma-prone p16Ink4a-insensitive CDK4R24C mutation, we show here that topoisomerase II proteins are direct targets of E2F-mediated repression. Drug-treated cells fail to load repressor E2Fs on topoisomerase II promoters leading to elevated topoisomerase II levels and an enhanced sensitivity of cells to apoptosis. This is associated with the increased formation of heterochromatin domains enriched in structural heterochromatin proteins, methylated histones H3/H4, and topoisomerase II. We refer to these preapoptotic heterochromatin domains as apoptosis-associated heterochromatic foci. We suggest that cellular apoptosis is preceded by an intermediary chromatin remodeling state that involves alterations of DNA topology by topoisomerase II enzymes and gene silencing via formation of heterochromatin. These observations provide novel insight into the mechanism of drug action that influence treatment outcome: drug sensitivity or drug resistance.


Assuntos
Apoptose/fisiologia , Proteínas de Ciclo Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Heterocromatina/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Inibidores da Topoisomerase II , Fatores de Transcrição/fisiologia , Animais , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina , Inibidor p16 de Quinase Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Doxorrubicina/farmacologia , Fatores de Transcrição E2F , Etoposídeo/farmacologia , Humanos , Masculino , Melanoma/enzimologia , Melanoma/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA