Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Arch Biochem Biophys ; 759: 110086, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38972626

RESUMO

Carboxypeptidase B (CPB) in Anopheles spp. breaks down blood and releases free amino acids, which promote Plasmodium sexual development in the mosquito midgut. Our goal was to computationally assess the inhibitory effectiveness of carboxypeptidase inhibitors obtained from tomato, potato (CPiSt), and leech against the Anopheles stephensi CPBAs1 and CPBAs2 enzymes. The tertiary structures of CPB inhibitors were predicted and their interaction mode with CPBAs1 and CPBAs2 were examined using molecular docking. Next, this data was compared with four licensed medications that are known to reduce the Anopheles' CPB activity. Molecular dynamics simulations were used to evaluate the stability of complexes containing CPiSt and its mutant form. Both CPiSt and its mutant form showed promise as possible candidates for further evaluations in the paratransgenesis technique for malaria control, based on the similar bindings of CPiSt and CPiSt-Mut to the active sites of CPBAs1 and CPBAs2, as well as their binding affinity in comparison to the drugs.


Assuntos
Anopheles , Carboxipeptidase B , Solanum lycopersicum , Solanum tuberosum , Anopheles/enzimologia , Animais , Solanum lycopersicum/enzimologia , Carboxipeptidase B/metabolismo , Carboxipeptidase B/química , Carboxipeptidase B/antagonistas & inibidores , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/genética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
2.
Malar J ; 22(1): 118, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37038137

RESUMO

BACKGROUND: The spread of Plasmodium vivax strains resistant to chloroquine (CQ) has posed a challenge to control strategies aimed at eliminating malaria. Molecular analysis of candidate resistance markers is very important for monitoring the P. vivax resistance to CQ in different endemic regions. In the present study, the multidrug resistance 1 (pvmdr1) gene, a possible marker for CQ resistance in P. vivax, was evaluated by molecular methods. METHODS: A simple PCR-RFLP method was developed for mutation analysis in pvmdr1 gene. A number of 120 blood spots were obtained from patients with P. vivax mono-infection in 2021. All of the samples were collected from Pakistani patients who travelled to Iran. RESULTS: None of the samples had any mutation at codon 976 of pvmdr1, while the 1076 mutation was detected in 96.2% of the examined isolates. Only two pvmdr1 haplotypes were identified, including the single mutant (Y976/1076L) as the most prevalent haplotype (with 96.2% frequency) and the wild type (Y976/F1076; with 3.8% frequency). CONCLUSIONS: In this study, the major CQ resistance-mediating mutation and multiple mutant haplotypes of the pvmdr1 gene was not detected. However, continuous monitoring of drug resistance markers and close supervision of the efficacy of CQ is essential to detect the potential emergence of CQ-resistant P. vivax isolates in Iran. This data is important for performing future epidemiological surveillance to monitor CQ resistance in this endemic area and the bordering regions.


Assuntos
Antimaláricos , Malária Vivax , Humanos , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Malária Vivax/epidemiologia , Malária Vivax/tratamento farmacológico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Irã (Geográfico)/epidemiologia , Epidemiologia Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium vivax , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
3.
Malar J ; 22(1): 374, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071314

RESUMO

BACKGROUND: Malaria is a major global health challenge, and for the elimination and eradication of this disease, transmission-blocking vaccines (TBVs) are a priority. Plasmodium falciparum Generative Cell Specific 1 (PfGCS1), a promising TBV candidate, is essential for gamete fertilization. The HAP2-GCS1 domain of this antigen as well as its cd loop could induce antibodies that partially inhibit transmission of P. falciparum. METHODS: In the current study, a new synthetic fusion antigen containing cd loop and HAP2-GCS1 domain (cd-HAP) of PfGCS1 was evaluated as a transmission blocking vaccine candidate. Initially, the profile of naturally acquired IgG antibodies to the cd-HAP antigen was analysed in Iranian individuals infected with P. falciparum, to confirm that this new fusion protein has the appropriate structure containing common epitopes with the native form of PfGCS1. Then, the immunogenicity of cd-HAP was evaluated in BALB/c mice, using different adjuvant systems such as CpG, MPL, QS-21, and a combination of them (CMQ). Furthermore, the blocking efficacy of polyclonal antibodies induced against these formulations was also assessed by oocyst intensity and infection prevalence in the Standard Membrane Feeding Assay (SMFA). RESULTS: The naturally acquired antibodies (dominantly IgG1 and IgG3 subclasses) induced in P. falciparum-infected individuals could recognize the cd-HAP antigen which implies that the new fusion protein has a proper conformation that mimics the native structure of PfGCS1. Concerning the immunogenicity of cd-HAP antigen, the highest IgG levels and titers, by a Th1-type immune profile, and elevated antibody avidity were induced in mice immunized with the cd-HAP antigen formulated with a combination of adjuvants (P < 0.0001). Additionally, cytokine profiling of the immunized mice displayed that a high level of IFN-γ response, a Th1-type immune response, was produced by splenocytes from immunized mice that received cd-HAP antigen in combination with CMQ adjuvants (P < 0.0001). This formulation of cd-HAP antigen with CMQ adjuvants could reduce oocyst intensity and infection prevalence by 82%, evidenced by the SMFA and hold significant implications for future malaria vaccine development. CONCLUSION: Altogether, the results showed that cd-HAP antigen formulated with a combination of the adjuvants (CMQ), could be a promising formulation to develop a PfGCS1-based transmission-blocking vaccine.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Animais , Camundongos , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Anticorpos Antiprotozoários , Antígenos CD , Antígenos de Protozoários , Imunoglobulina G , Irã (Geográfico) , Oocistos , Plasmodium falciparum , Proteínas de Protozoários/metabolismo , Vacinas Sintéticas , Humanos
4.
Genetica ; 150(6): 379-394, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36136258

RESUMO

The greenbottle blowfly Lucilia sericata (L. sericata) is increasingly used in larval therapy of chronic wounds. Netrins as bifunctional proteins are in the superfamily of Laminins secreted from larval salivary glands. The Netrin protein has a significant instructive role in axon guidance, causing neuronal outgrowth, angiogenesis, and cell migration. It seems to be crucial in wound healing and acts as a potential biomarker in diagnosing some clinical diseases. This survey aimed to identify molecular features and analyze in silico structural configuration of Netrin-A in L. sericata larvae. The larvae were reared under standard maggotarium conditions. The nucleic acid sequence of L. sericata Netrin-A (LSN-A) was then identified using rapid amplification of circular DNA ends (RACE) and rapid amplification of genomic ends (RAGE). Parts of the Netrin-A gene, including the middle, 3'-, and 5'-ends, were identified, TA cloned in pTG19 plasmid, and transferred into DH5ɑ Escherichia coli. Each part was sequenced and assembled using SeqMan software. This gene structure was further subjected to in silico analysis. The DNA of LSN-A was identified to be 2407 bp, while its mRNA sequence was recognized as 2115 bp by Oligo0.7 software. It translated the Netrin-A protein with 704 amino acid residues. Its estimated molecular weight was 78.6 kDa. Sequencing of this fragment and its BLAST analysis revealed laminin-based high (95%) similarity with the mRNA sequence of Lucilia cuprina Netrin-A. The 3-D structure of Netrin-A drawn by SWISS-MODEL exhibited its partial resemblance to the reference molecule Netrin-1 of Homo sapiens. This study supports the molecular and structural analyses of LSN-A protein, which could lead to wound treatment. Ultimately, it can be an effective candidate to ameliorate injury. Our next attempt is to produce LSN-A recombinant protein for use in biomedical sciences.


Assuntos
Dípteros , Animais , Humanos , Dípteros/genética , Larva/genética , Calliphoridae , Netrinas/metabolismo , Glândulas Salivares , Biomarcadores/metabolismo , RNA Mensageiro/metabolismo
5.
Malar J ; 19(1): 79, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075635

RESUMO

BACKGROUND: According to the World Health Organization reports, billions of people around the world are at risk for malaria disease and it is important to consider the preventive strategies for protecting the people that are living in high risk areas. One of the main reasons of disease survival is diversity of vectors and parasites in different malaria regions that have their specific features, behaviour and biology. Therefore, specific regional strategies are necessary for successful control of malaria. One of the tools that needs to be developed for elimination and prevention of reintroduction of malaria is a vaccine that interrupt malaria transmission (VIMTs). VIMT is a broad concept that should be adjusted to the biological characteristics of the disease in each region. One type of VIMT is a vector-based vaccine that affects the sexual stage of Plasmodium life cycle. According to recent studies, the aminopeptidase N-1 of Anopheles gambiae (AgAPN-1) is as a potent vector-based VIMT with considerable inhibition activity against the sexual stage of Plasmodium parasite. METHODS: Systems for rapid amplification of cDNA ends (3'-RACE) and genome walking methods were used for sequence determination of apn-1 gene from Anopheles stephensi and distinct bioinformatics software were used for structural analysis. AsAPN-1 was expressed in Spodoptera frugiperda (Sf9) insect cell line using the baculovirus expression system. Recombinant AsAPN-1 was purified under the hybrid condition and its biological activity was assayed. RESULTS: Asapn-1 gene and its coded protein from An. stephensi were characterized for the first time in this study. Subsequently, the structural features and immunological properties of its coded protein were evaluated by in silico approaches. Enzymatic activity of the recombinant AsAPN-1, which was expressed in Sf9 insect cell line, was equal to 6 unit/µl. CONCLUSIONS: Results of this study revealed that AsAPN-1 is very similar to its counterpart in An. gambiae. In silico evaluation and fundamental data which are necessary for its evaluation as a VIMT-based vaccine in the next steps were acquired in this study and those could be useful for research groups that study on malaria vaccine for countries that An. stephensi is the main malaria vector there.


Assuntos
Anopheles/genética , Antígenos CD13/farmacologia , Proteínas de Insetos/genética , Malária/prevenção & controle , Plasmodium falciparum/imunologia , Animais , Anopheles/enzimologia , Proteínas de Insetos/farmacologia , Vacinas Antimaláricas/imunologia , Células Sf9 , Spodoptera
6.
Infect Immun ; 87(6)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30936155

RESUMO

Plasmodium falciparum cell-traversal protein for ookinetes and sporozoites (PfCelTOS) is an advanced vaccine candidate that has a crucial role in the traversal of the malaria parasite in both mosquito and mammalian hosts. As recombinant purified proteins are normally poor immunogens, they require to be admixed with an adjuvant(s); therefore, the objective of the present study was to evaluate the capacity of different vaccine adjuvants, monophosphoryl lipid A (MPL), CpG, and Quillaja saponaria Molina fraction 21 (QS-21), alone or in combination (MCQ [MPL/CpG/QS-21]), to enhance the immunogenicity of Escherichia coli-expressed PfCelTOS in BALB/c mice. This goal was achieved by the assessment of anti-PfCelTOS IgG antibodies (level, titer, IgG isotype profile, avidity, and persistence) and extracellular Th1 cytokines using an enzyme-linked immunosorbent assay (ELISA) on postimmunized BALB/c mouse sera and PfCelTOS-stimulated splenocytes, respectively. Also, an assessment of the transmission-reducing activity (TRA) of anti-PfCelTOS obtained from different vaccine groups was carried out in female Anopheles stephensi mosquitoes by using a standard membrane feeding assay (SMFA). In comparison to PfCelTOS alone, administration of PfCelTOS with three distinct potent Th1 adjuvants in vaccine mouse groups showed enhancement and improvement of PfCelTOS immunogenicity that generated more bias toward a Th1 response with significantly enhanced titers and avidity of the anti-PfCelTOS responses that could impair ookinete development in A. stephensi However, immunization of mice with PfCelTOS with MCQ mixture adjuvants resulted in the highest levels of induction of antibody titers, avidity, and inhibitory antibodies in oocyst development (88%/26.7% reductions in intensity/prevalence) in A. stephensi It could be suggested that adjuvant combinations with different mechanisms stimulate better functional antibody responses than adjuvants individually against challenging diseases such as malaria.


Assuntos
Anticorpos Antiprotozoários/imunologia , Lipídeo A/análogos & derivados , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/imunologia , Oligodesoxirribonucleotídeos/administração & dosagem , Extratos Vegetais/administração & dosagem , Proteínas de Protozoários/administração & dosagem , Linfócitos T/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Modelos Animais de Doenças , Feminino , Humanos , Lipídeo A/administração & dosagem , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/imunologia , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Quillaja/química
7.
Malar J ; 18(1): 146, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31014347

RESUMO

BACKGROUND: Plasmodium falciparum parasite is the most deadly species of human malaria, and the development of an effective vaccine that prevents P. falciparum infection and transmission is a key target for malarial elimination and eradication programmes. P. falciparum cell-traversal protein for ookinetes and sporozoites (PfCelTOS) is an advanced vaccine candidate. A comparative study was performed to characterize the immune responses in BALB/c mouse immunized with Escherichia coli-expressed recombinant PfCelTOS (rPfCelTOS) in toll-like receptor (TLR)-based adjuvants, CpG and Poly I:C alone or in combination (CpG + Poly I:C), followed by the assessment of transmission-reducing activity (TRA) of anti-rPfCelTOS antibodies obtained from different vaccine groups in Anopheles stephensi. METHODS: The aim of the current work was achieved by head-to-head comparison of the vaccine groups using conventional and avidity enzyme-linked immunosorbent assay (ELISA), immunofluorescence test (IFAT), and standard membrane feeding assay (SMFA). RESULTS: Comparing to rPfCelTOS alone, administration of rPfCelTOS with two distinct TLR-based adjuvants in vaccine mouse groups showed a significant increase in responses (antibody level, IgG subclass analysis, avidity, and Th1 cytokines) and was able to induce reasonable transmission-reducing activity. Also, comparable functional activity of anti-rPfCelTOS antibodies was found in group that received antigen in either CpG or Poly I:C (69.9%/20% and 73.5%/24.4%, respectively, reductions in intensity/prevalence). However, the vaccine group receiving rPfCelTOS in combination with CpG + Poly I:C showed a significant induction in antibody titers and inhibitory antibodies in oocysts development (78.3%/19.6% reductions in intensity/prevalence) in An. stephensi. CONCLUSIONS: A key finding in this investigation is that rPfCelTOS administered alone in BALB/c mouse is poorly immunogenic, with relatively low IgG level, avidity, inhibitory antibodies, and mixed Th1/Th2 responses. However, immunological characteristic (IgG level, cytophilic IgG2a and IgG2b, avidity, and Th1 cytokines) and TRA of anti-rPfCelTOS significantly enhanced in the presence of co-administration of TLR-based adjuvants, confirming that targeting TLRs would be an effective means for the enhancement of inducing TRA against rPfCelTOS.


Assuntos
Anopheles/parasitologia , Anticorpos Antiprotozoários/sangue , Afinidade de Anticorpos , Malária Falciparum/prevenção & controle , Proteínas de Protozoários/imunologia , Receptores Toll-Like/imunologia , Adjuvantes Imunológicos , Animais , Antígenos de Protozoários/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Imunofluorescência , Imunização , Imunoglobulina G/sangue , Vacinas Antimaláricas/imunologia , Malária Falciparum/transmissão , Camundongos Endogâmicos BALB C , Oligodesoxirribonucleotídeos/imunologia , Oocistos , Plasmodium falciparum/imunologia , Poli I-C/imunologia , Polilisina/imunologia , Esporozoítos/imunologia
8.
PLoS One ; 19(7): e0306664, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38968270

RESUMO

BACKGROUNDS: Malaria, a preventive and treatable disease, is still responsible for annual deaths reported in most tropical regions, principally in sub-Saharan Africa. Subunit recombinant transmission-blocking vaccines (TBVs) have been proposed as promising vaccines to succeed in malaria elimination and eradication. Here, a provisional study was designed to assess the immunogenicity and functional activity of alanyl aminopeptidase N (APN1) of Anopheles stephensi, as a TBV candidate, administered with MPL, CpG, and QS21 adjuvants in the murine model. METHODOLOGY/PRINCIPAL FINDINGS: The mouse groups were immunized with recombinant APN1 (rAPN1) alone or formulated with CpG, MPL, QS-21, or a combination of adjuvants (CMQ), and the elicited immune responses were evaluated after the third immunization. The standard membrane feeding assay (SMFA) measured the functional activity of antibodies against bacterial-expressed APN1 protein in adjuvanted vaccine groups on transmission of P. falciparum (NF54) to An. stephensi mosquitoes. Evaluation of mice vaccinated with rAPN1 formulated with distinct adjuvants manifested a significant increase in the high-avidity level of anti-APN1 IgG and IgG subclasses; however, rAPN1 induced the highest level of high-avidity anti-APN1 IgG1, IgG2a, and IgG2b antibodies in the immunized vaccine group 5 (APN1/CMQ). In addition, vaccine group 5 (receiving APN1/CMQ), had still the highest level of anti-APN1 IgG antibodies relative to other immunized groups after six months, on day 180. The SMFA data indicates a trend towards higher transmission-reducing activity in groups 2 and 5, which received the antigen formulated with CpG or a combination of three adjuvants. CONCLUSIONS/SIGNIFICANCE: The results have shown the capability of admixture to stimulate high-affinity and long-lasting antibodies against the target antigen to hinder Plasmodium parasite development in the mid-gut of An. stephensi. The attained results authenticated APN1/CMQ and APN1/CpG as a potent APN1-based TBV formulation which will be helpful in designing a vaccine in the future.


Assuntos
Adjuvantes Imunológicos , Anopheles , Antígenos CD13 , Vacinas Antimaláricas , Saponinas , Animais , Anopheles/parasitologia , Anopheles/imunologia , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Camundongos , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Saponinas/farmacologia , Saponinas/administração & dosagem , Antígenos CD13/imunologia , Antígenos CD13/metabolismo , Feminino , Plasmodium falciparum/imunologia , Malária/prevenção & controle , Malária/transmissão , Malária/imunologia , Malária/parasitologia , Oligodesoxirribonucleotídeos/farmacologia , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/imunologia , Camundongos Endogâmicos BALB C , Malária Falciparum/prevenção & controle , Malária Falciparum/transmissão , Malária Falciparum/imunologia , Malária Falciparum/parasitologia
9.
SAGE Open Med ; 12: 20503121231223607, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38292417

RESUMO

Objectives: Lucilia sericata (Diptera: Calliphoridae) is used in larval therapy for wound healing. Netrin-A is an enzyme secreted from the salivary glands of these larvae, and has a central role in neural regeneration and angiogenesis. This study aimed to produce the recombinant Netrin-A protein from Lucilia sericata larvae by the baculovirus expression vector system in the Sf9 insect cell line. Methods: The coding sequence of Netrin-A was cloned, amplified in the pTG19 vector, and then cloned in the pFastBac HTA vector. It was then transformed into DH10Bac, and the recombinant Bacmid was subsequently transfected into Sf9 cells. The recombinant Netrin-A was purified by Ni-NTA agarose. The evaluation was done using SDS-PAGE and western blot, respectively. Finally, its concentration was calculated with the Bradford assay. Results: The molecular weight of this protein was 52 kDa with 404 amino acids. The signal peptide was located between amino acids 24 and 25. The concentration of Netrin-A was calculated to be 48.8 µg/ml. It reaffirmed the characterized gene codes of Lucilia sericata Netrin-A in a previous study. Conclusions: The generation of recombinant Netrin-A could be used in larval therapy, and as a biomarker in certain diseases. The netrin-A of Lucilia sericata was unprecedentedly cloned and expressed in a eukaryotic cell line. Given that this larva is FDA-approved, and non-pathogenic, it conduces to research on the development of maggot therapy in future.

10.
Infect Immun ; 81(6): 2206-16, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23569111

RESUMO

Malaria is one of the most important infectious diseases in the world, and it has many economic and social impacts on populations, especially in poor countries. Transmission-blocking vaccines (TBVs) are valuable tools for malaria eradication. A study on Anopheles gambiae revealed that polyclonal antibodies to carboxypeptidase B1 of A. gambiae can block sexual parasite development in the mosquito midgut. Hence, it was introduced as a TBV target in regions where A. gambiae is the main malaria vector. However, in Iran and neighboring countries as far as China, the main malaria vector is Anopheles stephensi. Also, the genome of this organism has not been sequenced yet. Therefore, in this study, carboxypeptidase B1 of A. stephensi was characterized by genomic and proteomic approaches. Furthermore, its expression pattern after ingestion of Plasmodium falciparum gametocytes and the effect of anti-CPBAs1 antibodies on sexual parasite development were evaluated. Our results revealed that the cpbAs1 expression level was increased after ingestion of the mature gametocytes of P. falciparum and that anti-CPBAs1 directed antibodies could significantly reduce the mosquito infection rate in the test group compared with the control group. Therefore, according to our findings and with respect to the high similarity of carboxypeptidase enzymes between the two main malaria vectors in Africa (A. gambiae) and Asia (A. stephensi) and the presence of other sympatric vectors, CPBAs1 could be introduced as a TBV candidate in regions where A. stephensi is the main malaria vector, and this will broaden the scope for the potential wider application of CPBAs1 antigen homologs/orthologs.


Assuntos
Anopheles/enzimologia , Carboxipeptidase B/imunologia , Carboxipeptidase B/metabolismo , Proteínas de Insetos/metabolismo , Vacinas Antimaláricas/imunologia , Malária/transmissão , Sequência de Aminoácidos , Animais , Anopheles/parasitologia , Sequência de Bases , Carboxipeptidase B/genética , Feminino , Trato Gastrointestinal/enzimologia , Regulação Enzimológica da Expressão Gênica , Proteínas de Insetos/genética , Insetos Vetores/enzimologia , Insetos Vetores/parasitologia , Malária/prevenção & controle , Modelos Moleculares , Dados de Sequência Molecular , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/imunologia , Conformação Proteica
11.
Iran J Microbiol ; 15(2): 258-266, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37193245

RESUMO

Background and Objectives: Although the study on the bacteria residing in the mid-gut, salivary gland, and reproductive organs of insect vectors have drawn appeal to the host-pathogen interactions, we know comparatively less about microbiota that naturally exist in different mosquito organs within Iran. Materials and Methods: In the current investigation, PCR assay by using 16S rRNA gene amplification and DNA sequencing, in addition to the traditional culture-based approach utilized for the detection of cultivable bacterial assemblages in mid-gut and reproductive tracts of Culex quinquefasciatus. Results: The identified bacteria isolated from different tissues of 45 individuals were consisted of Achromobacter, Aeromonas, Arthrobacter, Asaia, Enterobacter, Gluconobacter, Klebsiella, Lysinibacillus, Micrococcus, Psuedomonas and Serratia. The results showed that Proteobacteria was the most prevalent phylum in both genders' mid-gut and reproductive tracts, and Asaia was the most common bacteria that originated in adult females and males' tissues. Conclusion: These outcomes recommend that the discovered microbiome may span through Cx. quinquefasciatus populations. This data can be utilized to interfere with the transmission of pathogens and design new strategies for the control of mosquito-borne diseases.

12.
Iran Biomed J ; 27(5): 219-46, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37873636

RESUMO

Programmable nucleases are powerful genomic tools for precise genome editing. These tools precisely recognize, remove, or change DNA at a defined site, thereby, stimulating cellular DNA repair pathways that can cause mutations or accurate replacement or deletion/insertion of a sequence. CRISPR-Cas9 system is the most potent and useful genome editing technique adapted from the defense immune system of certain bacteria and archaea against viruses and phages. In the past decade, this technology made notable progress, and at present, it has largely been used in genome manipulation to make precise gene editing in plants, animals, and human cells. In this review, we aim to explain the basic principle, mechanisms of action, and applications of this system in different areas of medicine, with emphasizing on the detection and treatment of parasitic diseases.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Bactérias , Mutação , DNA
13.
Sci Rep ; 13(1): 3116, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36813818

RESUMO

CRISPR-mediated integration could be used to develop the recombinant CHO (rCHO) cells by knock-in into the hotspot loci. However, low HDR efficiency besides the complex donor design is the main barrier for achieving so. The recently introduced MMEJ-mediated CRISPR system (CRIS-PITCh) uses a donor with short homology arms, being linearized in the cells via two sgRNAs. In this paper, a new approach to improve CRIS-PITCh knock-in efficiency by employing small molecules was investigated. Two small molecules, B02, a Rad51 inhibitor, and Nocodazole, a G2/M cell cycle synchronizer, were used to target the S100A hotspot site using a bxb1 recombinase comprised landing pad in CHO-K1 cells. Following transfection, the CHO-K1 cells were treated with the optimum concentration of one or combination of small molecules, being determined by the cell viability or flow cytometric cell cycle assay. Stable cell lines were generated and the single-cell clones were achieved by the clonal selection procedure. The finding showed that B02 improved the PITCh-mediated integration approximately twofold. In the case of Nocodazole treatment, the improvement was even more significant, up to 2.4-fold. However, the combinatorial effects of both molecules were not substantial. Moreover, according to the copy number and out-out PCR analyses, 5 and 6 of 20 clonal cells exhibited mono-allelic integration in Nocodazole and B02 groups, respectively. The results of the present study as the first attempt to enhance the CHO platform generation by exploiting two small molecules in the CRIS-PITCh system could be used in future researches to establish rCHO clones.


Assuntos
Sistemas CRISPR-Cas , Reparo do DNA , Cricetinae , Animais , Nocodazol , Células CHO , Cricetulus
14.
Sci Rep ; 13(1): 8766, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253833

RESUMO

Sand fly salivary proteins have immunomodulatory and anti-inflammatory features; hence, they are proven to perform important roles in the early establishment of Leishmania parasite in the vertebrate host. Among them, salivary apyrase with anti-hemostatic properties has a crucial role during the blood meal process. In the present study, a Genome-Walking method was used to characterize a full-length nucleotide sequence of Phlebotomus (P.) kandelakii apyrase (Pkapy). Bioinformatics analyses revealed that Pkapy is a ~ 36 kDa stable and hydrophilic protein that belongs to the Cimex family of apyrases. Moreover, recombinant proteins of Pkapy and P. papatasi apyrase (Ppapy) were over-expressed in Escherichia coli BL2 (DE3) and their antigenicity in BALB/c mice was evaluated. Dot-blot and ELISA results indicated that both recombinant apyrases could induce antibodies in BALB/c. Moreover, a partial cross-reactivity between Pkapy and Ppapy was found. In vitro stimulation of splenocytes from immunized mice with the recombinant proteins indicated cross-reactive T cell proliferative responses. Cytokine analysis revealed significant production of IFN-γ (p < 0.001) and IL-10 (p < 0.01) in response to Pkapy. In conclusion, the full-length nucleotide sequence and molecular characteristics of Pkapy were identified for the first time. Immunologic analyses indicated that Pkapy and Ppapy are immunogenic in BALB/c mice and show partial cross-reactive responses. The immunity to Pkapy was found to be a Th1-dominant response that highlights its potential as a component for an anti-Leishmania vaccine.


Assuntos
Phlebotomus , Psychodidae , Animais , Camundongos , Phlebotomus/genética , Apirase/metabolismo , Camundongos Endogâmicos BALB C , Psychodidae/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas e Peptídeos Salivares
15.
Methods Mol Biol ; 2410: 589-595, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34914070

RESUMO

Malaria is one of the most important infectious diseases in the world, especially in the developing countries of the tropics. There are many difficulties in malaria research, including in vitro culture of the targeted parasites, in vitro production of mature and infectious gametocytes, and animal models. A rodent malaria parasite model is a promising solution to alleviate the stated problems. These parasites are very similar in physiology, life cycle, and structure to human malaria parasites and could help us understand the biology of human malaria. Creating the genetically modified parasites and specific animal mouse models for distinct human illnesses increases the utility of this approach and pre-evaluation strategy. Among the four rodent malaria parasites, P. berghei is the well-studied parasite.


Assuntos
Malária , Plasmodium berghei , Animais , Modelos Animais de Doenças , Estágios do Ciclo de Vida , Camundongos , Camundongos Endogâmicos BALB C
16.
Methods Mol Biol ; 2410: 567-579, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34914068

RESUMO

The main objectives of developing vaccines to prevent malaria transmission are malaria control and preventing the reemergence of the disease in endemic regions. Molecular and in silico characterization of a candidate molecule is the first step in the vaccine design process. Determining the sequence and amplification of full-length cDNA copies from the mRNA transcripts is often challenging. The methods in this chapter provide a protocol for the rapid amplification of cDNA ends (RACE) and genome walking. Carboxypeptidase B2 enzyme from A. stephensi (CPBAs-2) was selected as the target molecule and the steps in its characterization and in silico analysis are explained in this chapter.


Assuntos
Vacinas Antimaláricas , Malária , Animais , DNA Complementar , Vetores de Doenças , Genoma , Humanos , Malária/transmissão
17.
Methods Mol Biol ; 2410: 581-587, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34914069

RESUMO

Plasmodium falciparum is the parasite responsible for the disease malaria. In vitro cultivation of mature gametocytes of P. falciparum plays a central role in evaluating and developing the transmission-blocking drugs and sexual stage vaccines. These types of preventive molecules are crucial for controlling malaria in the future. Among different Plasmodium species that are involved in human malaria, only P. falciparum is cultivable. Therefore, an efficient method is required for in vitro culture of P. falciparum producing mature and infective gametocytes. This chapter describes a reliable and efficient protocol for the production of adult and infective gametocytes that is suitable for small- and large-scale culture.


Assuntos
Anopheles , Malária Falciparum , Plasmodium falciparum , Animais , Bioensaio , Humanos , Malária
18.
Methods Mol Biol ; 2410: 597-606, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34914071

RESUMO

Traditional and modern approaches have been applied to combat the malaria disease. Malaria eradication is a priority in several developing countries. Transmission-blocking vaccines are one of the suggested solutions for malaria eradication. Therefore, there is a demand for introducing the new targets and evaluation methods. Standard membrane feeding assay is the base of the evaluation process of transmission-blocking candidate molecules. Hence, this process is explained in this chapter in detail.


Assuntos
Vacinas Antimaláricas , Malária , Bioensaio , Humanos , Malária/prevenção & controle , Malária Falciparum , Membranas , Plasmodium falciparum/imunologia
19.
Biomed Res Int ; 2021: 9952769, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34212042

RESUMO

INTRODUCTION: Proteus mirabilis is a biofilm-forming agent that quickly settles on the urinary catheters and causing catheter-associated urinary tract infections. Thus, the spread of multidrug-resistant P. mirabilis isolates, with the ability to form a biofilm that carries integron, extended-spectrum ß-lactamases (ESBLs), and plasmid-mediated colistin resistance genes (mcr), represents a severe threat to managing nosocomial infectious diseases. This study is aimed at surveying the prevalence of ESBL, integrase, and mcr genes of P. mirabilis, isolated from the catheter, to assess the differences in their antimicrobial susceptibility and clonal dissemination. METHOD: Microtiter plate assay was adopted to measure biofilm formation. The antimicrobial susceptibility was assessed by the disk diffusion method. Antimicrobial resistance genes (intI1, intI2, intI3, bla TEM, bla CTX-M, bla SHV, mcr1, and mcr2) were detected by PCR. All of the isolates were characterized by repetitive sequence-based PCR. RESULT: From 385 collected catheters in patients admitted to the intensive care unit (ICU), 40 P. mirabilis were isolated. All of the isolates could form a biofilm. Proteus spp. had intrinsic resistance to tetracycline (95%) and nitrofurantoin (92.5%), which explains the high resistance prevalence. The most widely resistant antibiotic was trimethoprim-sulfamethoxazole (75%). Thirty-three (82.5%) isolates were classified as multidrug resistance (MDR). The prevalence of intI1 and intI2 genes was 60% and 25%, respectively. In 6 (15%) isolates, both genes were detected. The most frequent ESBL gene detected in all of the isolates was blaTEM . Also, no detection for mcr1 and mcr2 antibiotic resistance genes was reported. Rep-PCR identified 39(GTG)5 types (G1-G39) of 40 isolates that 38 isolates had unique patterns. CONCLUSION: In this study, 82.5% of isolates were MDR with high antibiotic resistance to trimethoprim-sulfamethoxazole. The intI1 and bla TEM were the most prevalent genes in the integrase and ESBL gene family. High diversity was seen in the isolates with Rep-PCR. The increasing rate of MDR isolates with a high prevalence of resistance genes could be alarming and demonstrate the need for hygienic procedures to prevent the increased antibiotic resistance rate in the future.


Assuntos
Anti-Infecciosos/farmacologia , Infecções Relacionadas a Cateter/tratamento farmacológico , Infecções Relacionadas a Cateter/microbiologia , Integrons/genética , Reação em Cadeia da Polimerase/métodos , Proteus mirabilis/efeitos dos fármacos , beta-Lactamases/metabolismo , Adolescente , Adulto , Idoso , Biofilmes/efeitos dos fármacos , Criança , Pré-Escolar , Colistina/metabolismo , Estudos Transversais , Farmacorresistência Bacteriana/efeitos dos fármacos , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Nitrofurantoína/farmacologia , Filogenia , Plasmídeos/metabolismo , Prevalência , Tetraciclina/farmacologia , Combinação Trimetoprima e Sulfametoxazol/farmacologia , Cateteres Urinários , Adulto Jovem
20.
Infect Genet Evol ; 89: 104710, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421653

RESUMO

Plasmodium vivax is the most widespread malaria species parasitizing humans outside Africa, with approximately 100 million cases reported per year. Most human cases of P. vivax are asymptomatic with low parasitemia, making active case detection-based elimination programme challenging and less effective. Despite the widespread distribution of P. vivax, no effective vaccines are currently available. Transmission blocking vaccines have recently emerged as potential vaccine candidates to reduce transmission rates to below the essential levels required for the maintenance of the parasite life cycle. Here, we demonstrated that P. vivax was the predominant species found in a malaria-endemic area, although P. vivax/P. falciparum co-infections were also common. Through genomic sequence analysis and neighbor-joining algorithms, we demonstrated limited genetic heterogeneity in the P. vivax transmission-blocking vaccine candidate Pvs48/45 among clinical isolates of P. vivax. Restricted genetic polymorphism occurred at both nucleotide and amino acid levels. The most frequent mutation was A â†’ G at nucleotide position 77 (46.7%), whereas the least frequent was C â†’ T at nucleotide position 1230 (3.3%). The occurrence of single nucleotide polymorphisms (SNPs) distribution at 6/8 positions (75%) led to changes in amino acid sequences in the Pvs48/45 loci, whereas 2/8 (25%) of SNPs resulted in no amino acid sequence variations. Consistently, the nucleotide diversity in the Pvs48/45 locus among the P. vivax population studied was extremely low (π = 0.000525). Changes in amino acid sequences in the Pvs48/45 protein did not result in substantial conformational modifications in the tertiary structures of these proteins. Unveiling the population genetic structure and genetic heterogeneity of vaccine target antigens are necessary for rational design of transmission-blocking antibody vaccines and to monitor the vaccine efficacy in clinical trials in endemic areas for malaria.


Assuntos
Heterogeneidade Genética , Vacinas Antimaláricas/imunologia , Malária Vivax/prevenção & controle , Plasmodium vivax/genética , Sequência de Aminoácidos , Animais , Haplótipos , Malária Vivax/imunologia , Malária Vivax/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA