Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Opin Struct Biol ; 86: 102814, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38631106

RESUMO

Molecular simulations are an essential asset in the first steps of drug design campaigns. However, the requirement of high-throughput limits applications mainly to qualitative approaches with low computational cost, but also low accuracy. Unlocking the potential of more rigorous quantum mechanical/molecular mechanics (QM/MM) models combined with molecular dynamics-based free energy techniques could have a tremendous impact. Indeed, these two relatively old techniques are emerging as promising methods in the field. This has been favored by the exponential growth of computer power and the proliferation of powerful data-driven methods. Here, we briefly review recent advances and applications, and give our perspective on the impact that QM/MM and free-energy methods combined with machine learning-aided algorithms can have on drug design.


Assuntos
Algoritmos , Desenho de Fármacos , Aprendizado de Máquina , Simulação de Dinâmica Molecular , Teoria Quântica
2.
J Clin Med ; 13(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38999235

RESUMO

The best management of patients who suffer from traumatic brain injury (TBI) while on oral anticoagulants is one of the most disputed problems of emergency services. Indeed, guidelines, clinical decision rules, and observational studies addressing this topic are scarce and conflicting. Moreover, relevant issues such as the specific treatment (and even definition) of mild TBI, rate of delayed intracranial injury, indications for neurosurgery, and anticoagulant modulation are largely empiric. We reviewed the most recent evidence on these topics and explored other clinically relevant aspects, such as the promising role of dosing brain biomarkers, the strategies to assess the extent of anticoagulation, and the indications of reversals and tranexamic acid administration, in cases of mild TBI or as a bridge to neurosurgery. The appropriate timing of anticoagulant resumption was also discussed. Finally, we obtained an insight into the economic burden of TBI in patients on oral anticoagulants, and future directions on the management of this subpopulation of TBI patients were proposed. In this article, at the end of each section, a "take home message" is stated.

3.
Int J Biol Macromol ; 278(Pt 1): 134219, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39097041

RESUMO

Cholesterol is a major component of plasma membranes and plays a significant role in actively regulating the functioning of several membrane proteins in humans. In this study, we focus on the role of cholesterol depletion on the voltage-gated sodium channel Nav1.7, which is primarily expressed in the peripheral sensory neurons and linked to various chronic inherited pain syndromes. Coarse-grained molecular dynamics simulations revealed key dynamic changes of Nav1.7 upon membrane cholesterol depletion: A loss of rigidity in the structural motifs linked to activation and fast-inactivation is observed, suggesting an easier transition of the channel between different gating states. In-vitro whole-cell patch clamp experiments on HEK293t cells expressing Nav1.7 validated these predictions at the functional level: Hyperpolarizing shifts in the voltage-dependence of activation and fast-inactivation were observed along with an acceleration of the time to peak and onset kinetics of fast inactivation. These results underline the critical role of membrane composition, and of cholesterol in particular, in influencing Nav1.7 gating characteristics. Furthermore, our results also point to cholesterol-driven changes of the geometry of drug-binding regions, hinting to a key role of the membrane environment in the regulation of drug effects.

4.
Cell Rep Methods ; 4(4): 100756, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38608689

RESUMO

Programmable DNA endonucleases derived from bacterial genetic defense systems, exemplified by CRISPR-Cas9, have made it significantly easier to perform genomic modifications in living cells. However, unprogrammed, off-target modifications can have serious consequences, as they often disrupt the function or regulation of non-targeted genes and compromise the safety of therapeutic gene editing applications. High-fidelity mutants of Cas9 have been established to enable more accurate gene editing, but these are typically less efficient. Here, we merge the strengths of high-fidelity Cas9 and hyperactive Cas9 variants to provide an enzyme, which we dub HyperDriveCas9, that yields the desirable properties of both parents. HyperDriveCas9 functions efficiently in mammalian cells and introduces insertion and deletion mutations into targeted genomic regions while maintaining a favorable off-target profile. HyperDriveCas9 is a precise and efficient tool for gene editing applications in science and medicine.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Edição de Genes , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Células HEK293 , Mutação , Endonucleases/genética , Endonucleases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA