RESUMO
A critical question in neurodegeneration is why the accumulation of disease-driving proteins causes selective neuronal loss despite their brain-wide expression. In Spinocerebellar ataxia type 1 (SCA1), accumulation of polyglutamine-expanded Ataxin-1 (ATXN1) causes selective degeneration of cerebellar and brainstem neurons. Previous studies revealed that inhibiting Msk1 reduces phosphorylation of ATXN1 at S776 as well as its levels leading to improved cerebellar function. However, there are no regulators that modulate ATXN1 in the brainstem-the brain region whose pathology is most closely linked to premature death. To identify new regulators of ATXN1, we performed genetic screens and identified a transcription factor-kinase axis (ZBTB7B-RSK3) that regulates ATXN1 levels. Unlike MSK1, RSK3 is highly expressed in the human and mouse brainstems where it regulates Atxn1 by phosphorylating S776. Reducing Rsk3 rescues brainstem-associated pathologies and deficits, and lowering Rsk3 and Msk1 together improves cerebellar and brainstem function in an SCA1 mouse model. Our results demonstrate that selective vulnerability of brain regions in SCA1 is governed by region-specific regulators of ATXN1, and targeting multiple regulators could rescue multiple degenerating brain areas.
Assuntos
Tronco Encefálico/metabolismo , Cerebelo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Ataxias Espinocerebelares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Ataxina-1/genética , Ataxina-1/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Proteínas de Ligação a DNA/genética , Drosophila melanogaster , Células HEK293 , Humanos , Camundongos , Fosforilação , Estabilidade Proteica , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Ataxias Espinocerebelares/genética , Fatores de Transcrição/genéticaRESUMO
A growing body of evidence suggests that nuclear alpha-synuclein (αSyn) plays a role in the pathogenesis of Parkinson's disease (PD). However, this question has been difficult to address as controlling the localization of αSyn in experimental systems often requires protein overexpression, which affects its aggregation propensity. To overcome this, we engineered SncaNLS mice, which localize endogenous αSyn to the nucleus. We characterized these mice on a behavioral, histological and biochemical level to determine whether the increase of nuclear αSyn is sufficient to elicit PD-like phenotypes. SncaNLS mice exhibit age-dependent motor deficits and altered gastrointestinal function. We found that these phenotypes were not linked to αSyn aggregation or phosphorylation. Through histological analyses, we observed motor cortex atrophy in the absence of midbrain dopaminergic neurodegeneration. We sampled cortical proteomes of SncaNLS mice and controls to determine the molecular underpinnings of these pathologies. Interestingly, we found several dysregulated proteins involved in dopaminergic signaling, including Darpp32, Pde10a and Gng7, which we further confirmed was decreased in cortical samples of the SncaNLS mice compared with controls. These results suggest that chronic endogenous nuclear αSyn can elicit toxic phenotypes in mice, independent of its aggregation. This model raises key questions related to the mechanism of αSyn toxicity in PD and provides a new model to study an underappreciated aspect of PD pathogenesis.
Assuntos
Transtornos Motores , Doença de Parkinson , Animais , Camundongos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Agregados Proteicos , Doença de Parkinson/metabolismo , FosforilaçãoRESUMO
BACKGROUND: Activated Cdk5 regulates a number of processes during nervous system formation, including neuronal differentiation, growth cone stabilization, and axonal growth. Cdk5 phosphorylates its downstream substrates located in axonal growth cones, where the highly expressed c-Jun N-terminal kinase (JNK)-interacting protein1 (JIP1) has been implicated as another important regulator of axonal growth. In addition, stringent control of the level of intracellular domain of Notch1 (Notch1-IC) plays a regulatory role in axonal outgrowth during neuronal differentiation. However, whether Cdk5-JIP1-Notch1 cooperate to regulate axonal outgrowth, and the mechanism of such joint contribution to this pathway, is presently unknown, and here we explore their potential interaction. RESULTS: Our interactome screen identified JIP1 as an interactor of p35, a Cdk5 activator, and we sought to explore the relationship between Cdk5 and JIP1 on the regulation of axonal outgrowth. We demonstrate that JIP1 phosphorylated by Cdk5 at Thr205 enhances axonal outgrowth and a phosphomimic JIP1 rescues the axonal outgrowth defects in JIP1-/- and p35-/- neurons. Axonal outgrowth defects caused by the specific increase of Notch1 in JIP1-/- neurons are rescued by Numb-mediated inhibition of Notch1. Finally, we demonstrate that Cdk5 phosphorylation of JIP1 further amplifies the phosphorylation status of yet another Cdk5 substrate E3-ubiquitin ligase Itch, resulting in increased Notch1 ubiquitination. CONCLUSIONS: Our findings identify a potentially critical signaling axis involving Cdk5-JIP1-Itch-Notch1, which plays an important role in the regulation of CNS development. Future investigation into the way this pathway integrates with additional pathways regulating axonal growth will further our knowledge of normal central nervous system development and pathological conditions.
Assuntos
Neurônios , Transdução de Sinais , Células Cultivadas , Neurônios/metabolismo , Fosforilação , Transdução de Sinais/fisiologiaRESUMO
The simplicity and cost-effectiveness of CRISPR technology have made high-throughput pooled screening approaches accessible to virtually any laboratory. Analyzing the large sequencing data derived from these studies, however, still demands considerable bioinformatics expertise. Various methods have been developed to lessen this requirement, but there are still three tasks for accurate CRISPR screen analysis that involve bioinformatic know-how, if not prowess: designing a proper statistical hypothesis test for robust target identification, developing an accurate mapping algorithm to quantify sgRNA levels, and minimizing the parameters that need to be fine-tuned. To make CRISPR screen analysis more reliable as well as more readily accessible, we have developed a new algorithm, called CRISPRBetaBinomial or CB2 Based on the beta-binomial distribution, which is better suited to sgRNA data, CB2 outperforms the eight most commonly used methods (HiTSelect, MAGeCK, PBNPA, PinAPL-Py, RIGER, RSA, ScreenBEAM, and sgRSEA) in both accurately quantifying sgRNAs and identifying target genes, with greater sensitivity and a much lower false discovery rate. It also accommodates staggered sgRNA sequences. In conjunction with CRISPRcloud, CB2 brings CRISPR screen analysis within reach for a wider community of researchers.
Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Biologia Computacional , Modelos Estatísticos , Biologia Computacional/métodos , Biologia Computacional/normas , Edição de Genes , Marcação de Genes , Estudos de Associação Genética/métodos , RNA Guia de Cinetoplastídeos , Sensibilidade e EspecificidadeRESUMO
α-Synuclein (α-Syn) accumulation is a pathological hallmark of Parkinson's disease. Duplications and triplications of SNCA, the gene coding for α-Syn, cause genetic forms of the disease, which suggests that increased α-Syn dosage can drive PD. To identify the proteins that regulate α-Syn, we previously performed a screen of potentially druggable genes that led to the identification of 60 modifiers. Among them, Doublecortin-like kinase 1 (DCLK1), a microtubule binding serine threonine kinase, emerged as a promising target due to its potent effect on α-Syn and potential druggability as a neuron-expressed kinase. In this study, we explore the relationship between DCLK1 and α-Syn in human cellular and mouse models of PD. First, we show that DCLK1 regulates α-Syn levels post-transcriptionally. Second, we demonstrate that knockdown of Dclk1 reduces phosphorylated species of α-Syn and α-Syn-induced neurotoxicity in the SNc in two distinct mouse models of synucleinopathy. Last, silencing DCLK1 in human neurons derived from individuals with SNCA triplications reduces phosphorylated and total α-Syn, thereby highlighting DCLK1 as a potential therapeutic target to reduce pathological α-Syn in disease.SIGNIFICANCE STATEMENT DCLK1 regulates α-Syn protein levels, and Dclk1 knockdown rescues α-Syn toxicity in mice. This study provides evidence for a novel function for DCLK1 in the mature brain, and for its potential as a new therapeutic target for synucleinopathies.
Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , alfa-Sinucleína/metabolismo , Animais , Quinases Semelhantes a Duplacortina , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismoRESUMO
Capicua (CIC) regulates a transcriptional network downstream of the RAS/MAPK signaling cascade. In Drosophila, CIC is important for many developmental processes, including embryonic patterning and specification of wing veins. In humans, CIC has been implicated in neurological diseases, including spinocerebellar ataxia type 1 (SCA1) and a neurodevelopmental syndrome. Additionally, we and others have reported mutations in CIC in several cancers. However, whether CIC is a tumor suppressor remains to be formally tested. In this study, we found that deletion of Cic in adult mice causes T cell acute lymphoblastic leukemia/lymphoma (T-ALL). Using hematopoietic-specific deletion and bone marrow transplantation studies, we show that loss of Cic from hematopoietic cells is sufficient to drive T-ALL. Cic-null tumors show up-regulation of the KRAS pathway as well as activation of the NOTCH1 and MYC transcriptional programs. In sum, we demonstrate that loss of CIC causes T-ALL, establishing it as a tumor suppressor for lymphoid malignancies. Moreover, we show that mouse models lacking CIC in the hematopoietic system are robust models for studying the role of RAS signaling as well as NOTCH1 and MYC transcriptional programs in T-ALL.
Assuntos
Diferenciação Celular , Suscetibilidade a Doenças , Leucemia-Linfoma Linfoblástico de Células T Precursoras/etiologia , Proteínas Repressoras/fisiologia , Linfócitos T/patologia , Animais , Células Cultivadas , Camundongos , Camundongos Knockout , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismoRESUMO
Accumulation of α-Synuclein (α-Syn) causes Parkinson's disease (PD) as well as other synucleopathies. α-Syn is the major component of Lewy bodies and Lewy neurites, the proteinaceous aggregates that are a hallmark of sporadic PD. In familial forms of PD, mutations or copy number variations in SNCA (the α-Syn gene) result in a net increase of its protein levels. Furthermore, common risk variants tied to PD are associated with small increases of wild-type α-Syn levels. These findings are further bolstered by animal studies which show that overexpression of α-Syn is sufficient to cause PD-like features. Thus, increased α-Syn levels are intrinsically tied to PD pathogenesis and underscore the importance of identifying the factors that regulate its levels. In this study, we establish a pooled RNAi screening approach and validation pipeline to probe the druggable genome for modifiers of α-Syn levels and identify 60 promising targets. Using a cross-species, tiered validation approach, we validate six strong candidates that modulate α-Syn levels and toxicity in cell lines, Drosophila, human neurons, and mouse brain of both sexes. More broadly, this genetic strategy and validation pipeline can be applied for the identification of therapeutic targets for disorders driven by dosage-sensitive proteins.SIGNIFICANCE STATEMENT We present a research strategy for the systematic identification and validation of genes modulating the levels of α-Synuclein, a protein involved in Parkinson's disease. A cell-based screen of the druggable genome (>7,500 genes that are potential therapeutic targets) yielded many modulators of α-Synuclein that were subsequently confirmed and validated in Drosophila, human neurons, and mouse brain. This approach has broad applicability to the multitude of neurological diseases that are caused by mutations in genes whose dosage is critical for brain function.
Assuntos
Genoma/genética , Neurônios/fisiologia , Interferência de RNA/fisiologia , Análise de Sequência de RNA/métodos , alfa-Sinucleína/genética , Animais , Animais Recém-Nascidos , Drosophila , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Reprodutibilidade dos Testes , Especificidade da EspécieRESUMO
Here, we present a mouse brain protein atlas that covers 17 surgically distinct neuroanatomical regions of the adult mouse brain, each less than 1 mm3 in size. The protein expression levels are determined for 6,500 to 7,500 gene protein products from each region and over 12,000 gene protein products for the entire brain, documenting the physiological repertoire of mouse brain proteins in an anatomically resolved and comprehensive manner. We explored the utility of our spatially defined protein profiling methods in a mouse model of Parkinson's disease. We compared the proteome from a vulnerable region (substantia nigra pars compacta) of wild type and parkinsonian mice with that of an adjacent, less vulnerable, region (ventral tegmental area) and identified several proteins that exhibited both spatiotemporal- and genotype-restricted changes. We validated the most robustly altered proteins using an alternative profiling method and found that these modifications may highlight potential new pathways for future studies. This proteomic atlas is a valuable resource that offers a practical framework for investigating the molecular intricacies of normal brain function as well as regional vulnerability in neurological diseases. All of the mouse regional proteome profiling data are published on line at http://mbpa.bprc.ac.cn/.
Assuntos
Doença de Parkinson/metabolismo , Parte Compacta da Substância Negra/metabolismo , Proteômica/métodos , Área Tegmentar Ventral/metabolismo , Animais , Mapeamento Encefálico , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Camundongos , Proteoma/análiseRESUMO
SUMMARY: We present a user-friendly, cloud-based, data analysis pipeline for the deconvolution of pooled screening data. This tool, CRISPRcloud, serves a dual purpose of extracting, clustering and analyzing raw next generation sequencing files derived from pooled screening experiments while at the same time presenting them in a user-friendly way on a secure web-based platform. Moreover, CRISPRcloud serves as a useful web-based analysis pipeline for reanalysis of pooled CRISPR screening datasets. Taken together, the framework described in this study is expected to accelerate development of web-based bioinformatics tool for handling all studies which include next generation sequencing data. AVAILABILITY AND IMPLEMENTATION: http://crispr.nrihub.org. CONTACT: zhandong.liu@bcm.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Análise de Sequência de DNARESUMO
Emerging evidence has demonstrated a growing genetic component in Parkinson disease (PD). For instance, loss-of-function mutations in PINK1 or PARKIN can cause autosomal recessive PD. Recently, PINK1 and PARKIN have been implicated in the same signaling pathway to regulate mitochondrial clearance through recruitment of PARKIN by stabilization of PINK1 on the outer membrane of depolarized mitochondria. The precise mechanisms that govern this process remain enigmatic. In this study, we identify Bcl2-associated athanogene 2 (BAG2) as a factor that promotes mitophagy. BAG2 inhibits PINK1 degradation by blocking the ubiquitination pathway. Stabilization of PINK1 by BAG2 triggers PARKIN-mediated mitophagy and protects neurons against 1-methyl-4-phenylpyridinium-induced oxidative stress in an in vitro cell model of PD. Collectively, our findings support the notion that BAG2 is an upstream regulator of the PINK1/PARKIN signaling pathway.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Neurônios/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Sobrevivência Celular , Camundongos , Camundongos Mutantes , Mitocôndrias/genética , Membranas Mitocondriais/metabolismo , Mitofagia/genética , Chaperonas Moleculares/genética , Proteínas Quinases/genética , Estabilidade Proteica , Transporte Proteico , Ubiquitina-Proteína Ligases/genética , UbiquitinaçãoRESUMO
DJ-1 (PARK7) is a gene linked to autosomal recessive Parkinson disease (PD). We showed previously that DJ-1 loss sensitizes neurons in models of PD and stroke. However, the biochemical mechanisms underlying this protective role are not completely clear. Here, we identify Von Hippel Lindau (VHL) protein as a critical DJ-1-interacting protein. We provide evidence that DJ-1 negatively regulates VHL ubiquitination activity of the α-subunit of hypoxia-inducible factor-1 (HIF-1α) by inhibiting HIF-VHL interaction. Consistent with this observation, DJ-1 deficiency leads to lowered HIF-1α levels in models of both hypoxia and oxidative stress, two stresses known to stabilize HIF-1α. We also demonstrate that HIF-1α accumulation rescues DJ-1-deficient neurons against 1-methyl-4-phenylpyridinium-induced toxicity. Interestingly, lymphoblast cells extracted from DJ-1-related PD patients show impaired HIF-1α stabilization when compared with normal individuals, indicating that the DJ-1-VHL link may also be relevant to a human context. Together, our findings delineate a model by which DJ-1 mediates neuronal survival by regulation of the VHL-HIF-1α pathway.
Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neurônios/metabolismo , Proteínas Oncogênicas/metabolismo , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Células Cultivadas , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Camundongos , Camundongos Knockout , Neuroblastoma/patologia , Neurônios/efeitos dos fármacos , Neurotoxinas/farmacologia , Proteínas Oncogênicas/deficiência , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Doença de Parkinson/patologia , Peroxirredoxinas , Proteína Desglicase DJ-1 , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Proteína Supressora de Tumor Von Hippel-Lindau/genéticaRESUMO
DJ-1 mutations cause autosomal recessive early-onset Parkinson disease (PD). We report a model of PD pathology: the DJ1-C57 mouse. A subset of DJ-1-nullizygous mice, when fully backcrossed to a C57BL/6 [corrected] background, display dramatic early-onset unilateral loss of dopaminergic (DA) neurons in their substantia nigra pars compacta, progressing to bilateral degeneration of the nigrostriatal axis with aging. In addition, these mice exhibit age-dependent bilateral degeneration at the locus ceruleus nucleus and display mild motor behavior deficits at aged time points. These findings effectively recapitulate the early stages of PD. Therefore, the DJ1-C57 mouse provides a tool to study the preclinical aspects of neurodegeneration. Importantly, by exome sequencing, we identify candidate modifying genes that segregate with the phenotype, providing potentially critical clues into how certain genes may influence the penetrance of DJ-1-related degeneration in mice.
Assuntos
Neurônios Dopaminérgicos/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Locus Cerúleo/patologia , Proteínas do Tecido Nervoso , Proteínas Oncogênicas , Doença de Parkinson/genética , Doença de Parkinson/patologia , Substância Negra/patologia , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Humanos , Locus Cerúleo/metabolismo , Camundongos , Camundongos Knockout , Doença de Parkinson/metabolismo , Substância Negra/metabolismoRESUMO
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide and presents pathologically with Lewy pathology and dopaminergic neurodegeneration. Lewy pathology contains aggregated α-synuclein (αSyn), a protein encoded by the SNCA gene which is also mutated or duplicated in a subset of familial PD cases. Due to its predominant presynaptic localization, immunostaining for the protein results in a diffuse reactivity pattern, providing little insight into the types of cells expressing αSyn. As a result, insight into αSyn expression-driven cellular vulnerability has been difficult to ascertain. Using a combination of knock-in mice that target αSyn to the nucleus (SncaNLS) and in situ hybridization of Snca in wild-type mice, we systematically mapped the topography and cell types expressing αSyn in the mouse brain, spinal cord, retina, and gut. We find a high degree of correlation between αSyn protein and RNA levels and further identify cell types with low and high αSyn content. We also find high αSyn expression in neurons, particularly those involved in PD, and to a lower extent in non-neuronal cell types, notably those of oligodendrocyte lineage, which are relevant to multiple system atrophy pathogenesis. Surprisingly, we also found that αSyn is relatively absent from select neuron types, e.g., ChAT-positive motor neurons, whereas enteric neurons universally express some degree of αSyn. Together, this integrated atlas provides insight into the cellular topography of αSyn, and provides a quantitative map to test hypotheses about the role of αSyn in network vulnerability, and thus serves investigations into PD pathogenesis and other α-synucleinopathies.
RESUMO
Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized by the loss of midbrain dopaminergic neurons (DaNs) and the abnormal accumulation of α-Synuclein (α-Syn) protein. Currently, no treatment can slow nor halt the progression of PD. Multiplications and mutations of the α-Syn gene (SNCA) cause PD-associated syndromes and animal models that overexpress α-Syn replicate several features of PD. Decreasing total α-Syn levels, therefore, is an attractive approach to slow down neurodegeneration in patients with synucleinopathy. We previously performed a genetic screen for modifiers of α-Syn levels and identified CDK14, a kinase of largely unknown function as a regulator of α-Syn. To test the potential therapeutic effects of CDK14 reduction in PD, we ablated Cdk14 in the α-Syn preformed fibrils (PFF)-induced PD mouse model. We found that loss of Cdk14 mitigates the grip strength deficit of PFF-treated mice and ameliorates PFF-induced cortical α-Syn pathology, indicated by reduced numbers of pS129 α-Syn-containing cells. In primary neurons, we found that Cdk14 depletion protects against the propagation of toxic α-Syn species. We further validated these findings on pS129 α-Syn levels in PD patient neurons. Finally, we leveraged the recent discovery of a covalent inhibitor of CDK14 to determine whether this target is pharmacologically tractable in vitro and in vivo. We found that CDK14 inhibition decreases total and pathologically aggregated α-Syn in human neurons, in PFF-challenged rat neurons and in the brains of α-Syn-humanized mice. In summary, we suggest that CDK14 represents a novel therapeutic target for PD-associated synucleinopathy.
Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Sinucleinopatias , Animais , Humanos , Camundongos , Ratos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Neurônios Dopaminérgicos/metabolismo , Mesencéfalo/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Sinucleinopatias/metabolismo , Sinucleinopatias/patologiaRESUMO
The development of disease-modifying therapies (DMTs) for neurological disorders is an important goal in modern neurology, and the associated challenges are similar in many chronic neurological conditions. Major advances have been made in the multiple sclerosis (MS) field, with a range of DMTs being approved for relapsing MS and the introduction of the first DMTs for progressive MS. By contrast, people with Parkinson disease (PD) still lack such treatment options, relying instead on decades-old therapeutic approaches that provide only symptomatic relief. To address this unmet need, an in-person symposium was held in Toronto, Canada, in November 2022 for international researchers and experts in MS and PD to discuss strategies for advancing DMT development. In this Roadmap article, we highlight discussions from the symposium, which focused on therapeutic targets and preclinical models, disease spectra and subclassifications, and clinical trial design and outcome measures. From these discussions, we propose areas for novel or deeper exploration in PD using lessons learned from therapeutic development in MS. In addition, we identify challenges common to the PD and MS fields that need to be addressed to further advance the discovery and development of effective DMTs.
RESUMO
Loss-of-function DJ-1 (PARK7) mutations have been linked with a familial form of early onset Parkinson disease. Numerous studies have supported the role of DJ-1 in neuronal survival and function. Our initial studies using DJ-1-deficient neurons indicated that DJ-1 specifically protects the neurons against the damage induced by oxidative injury in multiple neuronal types and degenerative experimental paradigms, both in vitro and in vivo. However, the manner by which oxidative stress-induced death is ameliorated by DJ-1 is not completely clear. We now present data that show the involvement of DJ-1 in modulation of AKT, a major neuronal prosurvival pathway induced upon oxidative stress. We provide evidence that DJ-1 promotes AKT phosphorylation in response to oxidative stress induced by H(2)O(2) in vitro and in vivo following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. Moreover, we show that DJ-1 is necessary for normal AKT-mediated protective effects, which can be bypassed by expression of a constitutively active form of AKT. Taken together, these data suggest that DJ-1 is crucial for full activation of AKT upon oxidative injury, which serves as one explanation for the protective effects of DJ-1.
Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , Neurotoxinas/metabolismo , Proteínas Oncogênicas/metabolismo , Estresse Oxidativo/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Análise de Variância , Animais , Western Blotting , Fracionamento Celular , Células Cultivadas , Peróxido de Hidrogênio/metabolismo , Imuno-Histoquímica , Camundongos , Neurônios/metabolismo , Peroxirredoxinas , Fosforilação , Proteína Desglicase DJ-1RESUMO
Cajal-Retzius (CR) cells are transient neurons with long-lasting effects on the architecture and circuitry of the neocortex and hippocampus. Contrary to the prevailing assumption that CR cells completely disappear in rodents shortly after birth, a substantial portion of these cells persist in the hippocampus throughout adulthood. The role of these surviving CR cells in the adult hippocampus is largely unknown, partly because of the paucity of suitable tools to dissect their functions in the adult versus the embryonic brain. Here, we show that genetic crosses of the ΔNp73-Cre mouse line, widely used to target CR cells, to reporter mice induce reporter expression not only in CR cells, but also progressively in postnatal dentate gyrus granule neurons. Such a lack of specificity may confound studies of CR cell function in the adult hippocampus. To overcome this, we devise a method that not only leverages the temporary CR cell-targeting specificity of the ΔNp73-Cre mice before the first postnatal week, but also capitalizes on the simplicity and effectiveness of freehand neonatal intracerebroventricular injection of adeno-associated virus. We achieve robust Cre-mediated recombination that remains largely restricted to hippocampal CR cells from early postnatal age to adulthood. We further demonstrate the utility of this method to manipulate neuronal activity of CR cells in the adult hippocampus. This versatile and scalable strategy will facilitate experiments of CR cell-specific gene knockdown and/or overexpression, lineage tracing, and neural activity modulation in the postnatal and adult brain.
Assuntos
Hipocampo , Neocórtex , Camundongos , Animais , Hipocampo/metabolismo , Neurônios/fisiologia , Movimento CelularRESUMO
SUMOylation is an evolutionarily conserved eukaryotic posttranslational protein modification with broad biological relevance. Differentiating between the major small ubiquitin-like modifier (SUMO) paralogs and uncovering paralog-specific functions in vivo has long been very difficult. To overcome this problem, we generated His6-HA-Sumo2 and HA-Sumo2 knockin mouse lines, expanding upon our existing His6-HA-Sumo1 mouse line, to establish a "toolbox" for Sumo1-Sumo2 comparisons in vivo. Leveraging the specificity of the HA epitope, we performed whole-brain imaging and uncovered regional differences between Sumo1 and Sumo2 expression. At the subcellular level, Sumo2 was specifically detected in extranuclear compartments, including synapses. Immunoprecipitation coupled with mass spectrometry identified shared and specific neuronal targets of Sumo1 and Sumo2. Target validation using proximity ligation assays provided further insight into the subcellular distribution of neuronal Sumo2-conjugates. The mouse models and associated datasets provide a powerful framework to determine the native SUMO "code" in cells of the central nervous system.
RESUMO
Neuron death is a key feature of neurological disorders like Alzheimer's or Parkinson's disease (PD). As a result, analysis of neurodegeneration is often considered a central experiment in the postmortem characterization of preclinical PD animal models. Stereology provides a precise estimate of particles, like neurons, in three-dimensional objects, like the brain, and is the gold standard quantification approach for the assessment of neuron survival in neurodegenerative disease research. Here, we provide a detailed step-by-step guide for the quantification of dopaminergic neurons in the substantia nigra pars compacta, a brain area prone to neuron loss in PD. In addition, we outline the protocol for the analysis of the dopaminergic terminals in the striatum, the projection area of midbrain dopaminergic neurons, as a readout for the integrity of the nigrostriatal projections.
Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Animais , Corpo Estriado , Dopamina , Neurônios Dopaminérgicos , Camundongos , NeostriadoRESUMO
The presynaptic protein α-synuclein (αSyn) has been suggested to be involved in the pathogenesis of Parkinson's disease (PD). In PD, the amygdala is prone to develop insoluble αSyn aggregates, and it has been suggested that circuit dysfunction involving the amygdala contributes to the psychiatric symptoms. Yet, how αSyn aggregates affect amygdala function is unknown. In this study, we examined αSyn in glutamatergic axon terminals and the impact of its aggregation on glutamatergic transmission in the basolateral amygdala (BLA). We found that αSyn is primarily present in the vesicular glutamate transporter 1-expressing (vGluT1+) terminals in the mouse BLA, which is consistent with higher levels of αSyn expression in vGluT1+ glutamatergic neurons in the cerebral cortex relative to the vGluT2+ glutamatergic neurons in the thalamus. We found that αSyn aggregation selectively decreased the cortico-BLA, but not the thalamo-BLA, transmission; and that cortico-BLA synapses displayed enhanced short-term depression upon repetitive stimulation. In addition, using confocal microscopy, we found that vGluT1+ axon terminals exhibited decreased levels of soluble αSyn, which suggests that lower levels of soluble αSyn might underlie the enhanced short-term depression of cortico-BLA synapses. In agreement with this idea, we found that cortico-BLA synaptic depression was also enhanced in αSyn knockout mice. In conclusion, both basal and dynamic cortico-BLA transmission were disrupted by abnormal aggregation of αSyn and these changes might be relevant to the perturbed cortical control of the amygdala that has been suggested to play a role in psychiatric symptoms in PD.