Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acc Chem Res ; 56(24): 3581-3594, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38047525

RESUMO

ConspectusThe Barton-McCombie deoxygenation reaction first established the use of O-alkyl thiocarbonyl derivatives as powerful redox-active agents for C(sp3)-O reduction. In recent years, first-row transition metals capable of engaging with alkyl radical intermediates generated from O-alkyl thiocarbonyl derivatives using alternative stoichiometric radical precursors have been developed. Given the ability of select Ni catalysts to both participate in single-electron oxidative addition pathways and intercept alkyl radical intermediates, our group has investigated the use of O-alkyl thiocarbonyl derivatives as electrophiles in novel cross-coupling reactions. After describing related work in this area, this Account will first summarize our entry point into this field. Here, we used the cyclopropane ring as a reporter of leaving group reactivity to aid in the design and optimization of a novel redox-active O-thiocarbamate leaving group for C(sp3)-O arylation. Motivation for this pursuit was driven by the propensity of the cyclopropane ring to undergo ring opening under polar (2e) oxidative addition pathways or to be maintained under single-electron (1e) conditions. Using these guiding principles, we developed a method for the deoxygenative arylation of cyclopropanol derivatives using a Ni catalyst without the need for a stoichiometric external reductant or photocatalyst. We next summarize our evaluation of an alternative redox-active O-thiocarbonyl imidazole auxiliary in a related deoxygenative cross-coupling. This work demonstrated an extension of our initial approach to the deoxygenative arylation of primary and secondary aliphatic alcohol derivatives. A brief mechanistic investigation revealed that this reaction likely proceeds via a distinct mechanism involving direct homolytic C(sp3)-O bond cleavage. We conclude this Account with a summary of work aimed toward a unique approach for thiocarboxylic acid derivative synthesis. This project was inspired by the efficiency of thionoester generation under most of the reaction conditions evaluated in our prior investigations. Using alcohol, amine, or thiol starting materials, which were activated with convenient thiocarbonyl sources in a single step, we optimized for a Ni-catalyzed cross-coupling capable of providing access to a range of thionoester, thioamide, or dithioester products. In summary, our work has revealed the potential of redox-active thiocarbonyl auxiliaries in Ni-catalyzed cross-couplings with C(sp3)-O electrophiles. We anticipate that the continued investigation of aliphatic thiocarbonyl derivatives as radical precursors with alternative single-electron inputs will be an area of continued growth in the years to come.

2.
J Org Chem ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38197128

RESUMO

A nickel-catalyzed reductive cross-coupling of redox active N-hydroxyphthalimide (NHP) esters and iodoarenes for the synthesis of α-aryl nitriles is described. The NHP ester substrate is derived from cyanoacetic acid, which allows for a modular synthesis of substituted α-aryl nitriles, an important scaffold in the pharmaceutical sciences. The reaction exhibits a broad scope, and many functional groups are compatible under the reaction conditions, including complex highly functionalized medicinal agents. Mechanistic studies reveal that reduction and decarboxylation of the NHP ester to the reactive radical intermediate are accomplished by a combination of a chlorosilane additive and Zn dust. We demonstrate that stoichiometric chlorosilane is essential for product formation and that chlorosilane plays a role beyond activation of the metal reductant.

3.
Angew Chem Int Ed Engl ; 63(17): e202402912, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38418404

RESUMO

Despite the importance of heteroatom-substituted cyclopropane derivatives in drug design and organic synthesis, cyclopropanethiols remain critically underexplored. Inspired by the wide use of the Newman-Kwart rearrangement to access valuable thiophenols from phenol feedstocks, we report the development of a photocatalytic approach for efficient ambient temperature aliphatic O- to S-rearrangement on tertiary cyclopropanol derivatives. After demonstrating that a range of cyclopropanethiols-that are difficult to access by other methods-can be obtained with this strategy, we show that these rearranged products can be easily hydrolyzed and further derivatized. We conclude this study with mechanistic findings that enabled an initial extension of this approach toward other classes of aliphatic alcohols.

4.
J Am Chem Soc ; 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37924301

RESUMO

The development of a nickel-catalyzed reductive alkyne hydrocyanation is described using 2-methyl-2-phenylmalononitrile (MPMN), a C-bound electrophilic transnitrilation reagent. Reproducibility issues led to the detection of oxidized hemiaminal impurities within N,N-dimethylacetamide. These impurities release formaldehyde in situ, which was ultimately identified as a critical reaction additive. A range of diaryl and aryl-alkyl alkynes underwent hydrocyanation. Mechanistic experiments revealed that formaldehyde and MPMN undergo a Ni-catalyzed reductive coupling of two π-components, leading to the controlled release of glycolonitrile as the active cyanating agent.

5.
Chem Rev ; 121(1): 3-79, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33085458

RESUMO

The carbon-carbon (C-C) bond cleavage of cyclopropanols is a wide area of research with much current activity. This review highlights new developments in this area over the past two decades. A summary is made of the three main reactivity modes, namely, homoenolate chemistry, ß-keto radical chemistry, and acid-catalyzed ring-opening, as well as all other methods for the C-C bond cleavage and functionalization of cyclopropanols, including base-mediated ring-opening, metal-catalyzed C-C insertions and eliminations, oxidative fragmentation using hypervalent iodine reagents, reactions of donor-acceptor cyclopropanols, and pericylic reactions. Emphasis is placed on the synthetic utility of cyclopropanols and related derivatives, which have emerged as unique three-carbon synthons.

6.
Org Biomol Chem ; 20(30): 5933-5937, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35315852

RESUMO

Quaternary α-(hetero)arylnitriles are desirable biologically relevant products, however the existing methods for their synthesis can be unselective or require the use of undesirable reagents, such as cyanide salts. Herein we report a one-pot method for transnitrilation-mediated decyanation-metalation of disubstituted malononitriles, followed by treatment with (hetero)aryl electrophiles to access quaternary α-(hetero)arylnitrile products. A number of products were prepared using this method (34 examples, 27-99% yield). This method highlights the usefulness of malononitriles as precursors for alkylnitrile-containing compounds.


Assuntos
Sais , Catálise , Indicadores e Reagentes , Nitrilas
7.
J Am Chem Soc ; 143(27): 10422-10428, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34197103

RESUMO

The design of new ligands for cross-coupling is essential for developing new catalytic reactions that access valuable products such as pharmaceuticals. In this report, we exploit the reactivity of nitrile-containing additives in Ni catalysis to design a benzonitrile-containing ligand for cross-coupling involving tertiary nucleophiles. Kinetic and Hammett studies are used to elucidate the role of the optimized ligand, which demonstrate that the benzonitrile moiety acts as an electron-acceptor to promote reductive elimination over ß-hydride elimination and stabilize low-valent Ni. With these conditions, a protocol for decyanation-metalation and Ni-catalyzed arylation is conducted, enabling access to quaternary α-arylnitriles from disubstituted malononitriles.

8.
J Am Chem Soc ; 142(30): 13246-13254, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32609494

RESUMO

The ability to understand and predict reactivity is essential for the development of new reactions. In the context of Ni-catalyzed C(sp3)-O functionalization, we have developed a unique strategy employing activated cyclopropanols to aid the design and optimization of a redox-active leaving group for C(sp3)-O arylation. In this chemistry, the cyclopropane ring acts as a reporter of leaving-group reactivity, since the ring-opened product is obtained under polar (2e) conditions, and the ring-closed product is obtained under radical (1e) conditions. Mechanistic studies demonstrate that the optimal leaving group is redox-active and are consistent with a Ni(I)/Ni(III) catalytic cycle. The optimized reaction conditions are also used to synthesize a number of arylcyclopropanes, which are valuable pharmaceutical motifs.

9.
J Am Chem Soc ; 141(49): 19257-19262, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31710473

RESUMO

Herein, we report a Ni-catalyzed reductive coupling for the synthesis of benzonitriles from aryl (pseudo)halides and an electrophilic cyanating reagent, 2-methyl-2-phenyl malononitrile (MPMN). MPMN is a bench-stable, carbon-bound electrophilic CN reagent that does not release cyanide under the reaction conditions. A variety of medicinally relevant benzonitriles can be made in good yields. Addition of NaBr to the reaction mixture allows for the use of more challenging aryl electrophiles such as aryl chlorides, tosylates, and triflates. Mechanistic investigations suggest that NaBr plays a role in facilitating oxidative addition with these substrates.

10.
Angew Chem Int Ed Engl ; 58(30): 10300-10304, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31083765

RESUMO

The efficient preparation of nitrile-containing building blocks is of interest due to their utility as synthetic intermediates and their prevalence in pharmaceuticals. As a result, significant efforts have been made to develop methods to access these motifs which rely on safer and non-toxic sources of CN. Herein, we report that 2-methyl-2-phenylpropanenitrile is an efficient, non-toxic, electrophilic CN source for the synthesis of nitrile-bearing quaternary centers by a thermodynamic transnitrilation and anion-relay strategy. This one-pot process leads to nitrile products resulting from the gem-difunctionalization of alkyl lithium reagents.

11.
J Org Chem ; 83(2): 913-920, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29226676

RESUMO

A mild and metal-free synthesis of aryl isocyanates from arylamines under an atmosphere of CO2 was developed. The carbamic acid intermediate, derived from the arylamine starting material and CO2 in the presence of DBU, is dehydrated by activated sulfonium reagents to generate the corresponding isocyanate. The latter can be detected by in situ IR and trapped by various amines and alcohols to make unsymmetrical ureas and carbamates, respectively. Dicarbamates can also be prepared in good yields via the mild dehydration of the corresponding dicarbamic acids.

12.
J Org Chem ; 83(19): 11860-11872, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30179005

RESUMO

A nickel-catalyzed cyanation reaction of benzylic and allylic pivalate esters is reported using an air-stable Ni(II) precatalyst and substoichiometric quantities of Zn(CN)2. Alkene additives were found to inhibit catalysis, suggesting that avoiding ß-hydride elimination side reactions is essential for productive catalysis. An enantioenriched allylic ester undergoes enantiospecific cross-coupling to produce an enantioenriched allylic nitrile. This method was applied to an efficient synthesis of (±)-naproxen from commercially available starting materials.

13.
J Am Chem Soc ; 139(33): 11357-11360, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28809490

RESUMO

Metal homoenolates, produced via C-C bond cleavage of cyclopropanols, have been extensively investigated as nucleophiles for the synthesis of ß-substituted carbonyl derivatives. Herein, we demonstrate that zinc homoenolates can react as carbonyl-electrophiles in the presence of nucleophilic amines to yield highly valuable trans-cyclopropylamines in good yields and high diastereoselectivities. GSK2879552, a lysine demethylase 1 inhibitor currently in clinical trials for the treatment of small cell lung carcinoma, was synthesized using this strategy.

14.
J Am Chem Soc ; 137(39): 12713-8, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26378660

RESUMO

Electronic communication between concentric macrocycles with wave functions that extend around their circumferences can lead to remarkable behavior, as illustrated by multiwalled carbon nanotubes and photosynthetic chlorophyll arrays. However, it is difficult to hold one π-conjugated molecular ring inside another. Here, we show that ring-in-ring complexes, consisting of a 6-porphyrin ring locked inside a 12-porphyrin ring, can be assembled by placing different metals in the two rings (zinc and aluminum). A bridging ligand with carboxylate and imidazole binding sites forms spokes between the two rings, resulting in a highly cooperative supramolecular self-assembly process. Excitation is transferred from the inner 6-ring to the outer 12-ring of this Russian doll complex within 40 ps. These complexes lead to a form of template-directed synthesis in which one nanoring promotes formation of a larger concentric homologous ring; here, the effective template is an eight-component noncovalent assembly. Russian doll templating provides a new approach to amplifying the size of a covalent nanostructure.

15.
Angew Chem Int Ed Engl ; 54(18): 5355-9, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25683453

RESUMO

Small alterations to the structure of a star-shaped template totally change its mode of operation. The hexapyridyl template directs the conversion of a porphyrin dimer to the cyclic hexamer, but deleting one pyridine site changes the product to the cyclic decamer, while deleting two binding sites changes the product to the cyclic octamer. This surprising switch in selectivity is explained by the formation of 2:1 caterpillar track complexes, in which two template wheels bind inside the nanoring. Caterpillar track complexes can also be prepared by binding the hexapyridyl template inside the 8- and 10-porphyrin nanorings. NMR exchange spectroscopy (EXSY) experiments show that these complexes exhibit correlated motion, in which the conrotatory rotation of the two template wheels is coupled to rotation of the nanoring track. In the case of the 10-porphyrin system, the correlated motion can be locked by binding palladium(II) dichloride between the two templates.

16.
Org Lett ; 26(21): 4566-4570, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38758597

RESUMO

Mandelic acid derivatives represent a valuable class of compounds due to their wide use in synthetic organic chemistry and the pharmaceutical sector. Herein, we report a novel reductive Ni/photoredox cross-coupling of readily accessible, bench stable N-alkoxyphthalimides and aryl halides to prepare unprotected mandelic acid ester derivatives. Mechanistic experiments suggest that this cross-coupling likely proceeds via a pathway that is distinct from previous reports using similar redox-active alkoxy radical precursors.

17.
Org Lett ; 26(18): 3822-3827, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38669565

RESUMO

Lithiated 1,1-diborylalkanes have been used as nucleophilic coupling partners with a range of oxygen-based electrophiles, including esters, carbonyls, and epoxides. However, their reactivity with nitrogen-based electrophiles, such as aziridines, has remained relatively understudied. Herein, we show that lithiated 1,1-diborylalkanes react with α-halo and α-tosyl aziridines to yield borylated (aminomethyl)cyclopropanes-a privileged scaffold within medicinal chemistry. The reaction displays high levels of diastereoselectivity, enabling careful control of up to three stereocenters within a single transformation. DFT studies provide insight into the reaction mechanism, which diverges from that observed with analogous epihalohydrin starting materials. Derivatization studies were also performed on the products to demonstrate the utility of the boron and amine handles.

18.
Org Lett ; 26(26): 5560-5565, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38915176

RESUMO

An intermolecular nickel-catalyzed reductive 1,2-alkylarylation of acrylates with cyclopropylamine NHP esters and aryl iodides is reported. This operationally simple protocol provides direct access to 1-alkylcyclopropylamine scaffolds. The mild conditions are compatible with four-membered α-amino strained rings as well as five- and six-membered ring systems. The products undergo cyclization to access α-arylated spirocyclic γ-lactams─a motif present in several pharmaceuticals.

19.
Chem Sci ; 14(4): 963-969, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36755731

RESUMO

There is an increasing interest in cyclobutanes within the medicinal chemistry community. Therefore, methods to prepare cyclobutanes that contain synthetic handles for further elaboration are of interest. Herein, we report a new approach for the synthesis of 3-borylated cyclobutanols via a formal [3 + 1]-cycloaddition using readily accessible 1,1-diborylalkanes and epihalohydrins or epoxy alcohol derivatives. 1-Substituted epibromohydrin starting materials provide access to borylated cyclobutanols containing substituents at three of the four positions on the cyclobutane core, and enantioenriched epibromohydrins lead to enantioenriched cyclobutanols with high levels of enantiospecificity (>98%). Finally, derivatization studies demonstrate the synthetic utility of both the OH and Bpin handles.

20.
Nat Rev Chem ; 7(8): 548-560, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37217564

RESUMO

Cyclopropanes are important substructures in natural products and pharmaceuticals. Although traditional methods for their incorporation rely on cyclopropanation of an existing scaffold, the advent of transition-metal catalysis has enabled installation of functionalized cyclopropanes using cross-coupling reactions. The unique bonding and structural properties of cyclopropane render it more easily functionalized in transition-metal-catalysed cross-couplings than other C(sp3) substrates. The cyclopropane coupling partner can participate in polar cross-coupling reactions either as a nucleophile (organometallic reagents) or as an electrophile (cyclopropyl halides). More recently, single-electron transformations featuring cyclopropyl radicals have emerged. This Review will provide an overview of transition-metal-catalysed C-C bond formation reactions at cyclopropane, covering both traditional and current strategies, and the benefits and limitations of each.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA