Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 335
Filtrar
1.
Angew Chem Int Ed Engl ; 63(23): e202400476, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38656762

RESUMO

The novel hetero-dinuclear complex trans,trans,trans-[PtIV(py)2(N3)2(OH)(µ-OOCCH2CH2CONHCH2-bpyMe)IrIII(ppy)2]Cl (Pt-Ir), exhibits charge transfer between the acceptor photochemotherapeutic Pt(IV) (Pt-OH) and donor photodynamic Ir(III) (Ir-NH2) fragments. It is stable in the dark, but undergoes photodecomposition more rapidly than the Pt(IV) parent complex (Pt-OH) to generate Pt(II) species, an azidyl radical and 1O2. The Ir(III)* excited state, formed after irradiation, can oxidise NADH to NAD⋅ radicals and NAD+. Pt-Ir is highly photocytotoxic towards cancer cells with a high photocytotoxicity index upon irradiation with blue light (465 nm, 4.8 mW/cm2), even with short light-exposure times (10-60 min). In contrast, the mononuclear Pt-OH and Ir-NH2 subunits and their simple mixture are much less potent. Cellular Pt accumulation was higher for Pt-Ir compared to Pt-OH. Irradiation of Pt-Ir in cancer cells damages nuclei and releases chromosomes. Synchrotron-XRF revealed ca. 4× higher levels of intracellular platinum compared to iridium in Pt-Ir treated cells under dark conditions. Luminescent Pt-Ir distributes over the whole cell and generates ROS and 1O2 within 1 h of irradiation. Iridium localises strongly in small compartments, suggestive of complex cleavage and excretion via recycling vesicles (e.g. lysosomes). The combination of PDT and PACT motifs in one molecule, provides Pt-Ir with a novel strategy for multimodal phototherapy.


Assuntos
Antineoplásicos , Irídio , Fotoquimioterapia , Fármacos Fotossensibilizantes , Platina , Irídio/química , Irídio/farmacologia , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Platina/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Estrutura Molecular , Sobrevivência Celular/efeitos dos fármacos
2.
J Biol Inorg Chem ; 28(3): 345-353, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36884092

RESUMO

Synthetic anticancer catalysts offer potential for low-dose therapy and the targeting of biochemical pathways in novel ways. Chiral organo-osmium complexes, for example, can catalyse the asymmetric transfer hydrogenation of pyruvate, a key substrate for energy generation, in cells. However, small-molecule synthetic catalysts are readily poisoned and there is a need to optimise their activity before this occurs, or to avoid this occurring. We show that the activity of the synthetic organometallic redox catalyst [Os(p-cymene)(TsDPEN)] (1), which can reduce pyruvate to un-natural D-lactate in MCF7 breast cancer cells using formate as a hydride source, is significantly increased in combination with the monocarboxylate transporter (MCT) inhibitor AZD3965. AZD3965, a drug currently in clinical trials, also significantly lowers the intracellular level of glutathione and increases mitochondrial metabolism. These synergistic mechanisms of reductive stress induced by 1, blockade of lactate efflux, and oxidative stress induced by AZD3965 provide a strategy for low-dose combination therapy with novel mechanisms of action.


Assuntos
Ácido Láctico , Neoplasias , Ácido Láctico/química , Ácido Láctico/farmacologia , Piruvatos/química , Piruvatos/farmacologia , Catálise
3.
Inorg Chem ; 62(50): 20745-20753, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37643591

RESUMO

A novel photoactivatable Pt(IV) diazido anticancer agent, Pt-succ-DFO, bearing a pendant deferoxamine (DFO) siderophore for radiometal chelation, has been synthesized for the study of its in vivo behavior with radionuclide imaging. Pt-succ-DFO complexation of Fe(III) and Ga(III) ions yielded new heterobimetallic complexes that maintain the photoactivation properties and photocytotoxicity of the parent Pt complex in human cancer cell lines. Radiolabeled Pt-succ-DFO-68Ga (t1/2 = 68 min, positron emitter) was readily prepared under mild conditions and was stable in the dark upon incubation with human serum. PET imaging of Pt-succ-DFO-68Ga in healthy mice revealed a promising biodistribution profile with rapid renal excretion and limited organ accumulation, implying that little off-target uptake is expected for this class of agents. Overall, this research provides the first in vivo imaging study of the whole-body distribution of a photoactivatable Pt(IV) azido anticancer complex and illustrates the potential of radionuclide imaging as a tool for the preclinical development of novel light-activated agents.


Assuntos
Compostos Férricos , Radioisótopos de Gálio , Animais , Humanos , Camundongos , Distribuição Tecidual , Medicina de Precisão , Tomografia por Emissão de Pósitrons , Fototerapia , Linhagem Celular Tumoral , Zircônio
4.
Angew Chem Int Ed Engl ; 62(1): e202215360, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36345707

RESUMO

The unique thermodynamic and kinetic coordination chemistry of ruthenium allows it to modulate key adverse aggregation and membrane interactions of α-synuclein (α-syn) associated with Parkinson's disease. We show that the low-toxic RuIII complex trans-[ImH][RuCl4 (Me2 SO)(Im)] (NAMI-A) has dual inhibitory effects on both aggregation and membrane interactions of α-syn with submicromolar affinity, and disassembles pre-formed fibrils. NAMI-A abolishes the cytotoxicity of α-syn towards neuronal cells and mitigates neurodegeneration and motor impairments in a rat model of Parkinson's. Multinuclear NMR and MS analyses show that NAMI-A binds to residues involved in protein aggregation and membrane binding. NMR studies reveal the key steps in pro-drug activation and the effect of activated NAMI-A species on protein folding. Our findings provide a new basis for designing ruthenium complexes which could mitigate α-syn-induced Parkinson's pathology differently from organic agents.


Assuntos
Compostos Organometálicos , Doença de Parkinson , Rutênio , Ratos , Animais , alfa-Sinucleína/química , Doença de Parkinson/patologia , Rutênio/farmacologia , Rutênio/química , Compostos Organometálicos/química
5.
J Biol Inorg Chem ; 27(8): 695-704, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36153767

RESUMO

Determination of the toxicity of compounds toward cancer cells is a frequent procedure in drug discovery. For metal complexes, which are often reactive prodrugs, care has to be taken to consider reactions with components of the cell culture medium that might change the speciation of the metal complex before it is taken up by the cells. Here, we consider possible reactions between the clinical platinum drugs cisplatin and oxaliplatin with penicillin G, an antibiotic added routinely to cell culture media to prevent bacterial contamination. Platinum has a high affinity for ligands with sulfur donors. Penicillin G is an unstable thioether that degrades in a range of pathways. Nuclear magnetic resonance (NMR) and UV-Vis absorption spectroscopic studies show that reactions with cisplatin can occur within minutes to hours at 310 K, but more slowly with oxaliplatin. The identities of the Pt- adducts were investigated by mass spectrometry. The marked effect on cytotoxicity of co-incubation of cisplatin with penicillin G was demonstrated for the HeLa human cervical cancer cell line. These studies highlight the possibility that reactions with penicillin G might influence the cytotoxic activity of metal complexes determined in culture media.


Assuntos
Antineoplásicos , Complexos de Coordenação , Humanos , Cisplatino/farmacologia , Cisplatino/química , Oxaliplatina/farmacologia , Oxaliplatina/química , Platina/química , Compostos Organoplatínicos/farmacologia , Compostos Organoplatínicos/química , Antineoplásicos/química , Penicilina G/farmacologia
6.
Faraday Discuss ; 234(0): 264-283, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35156974

RESUMO

Transition metal ions have a unique ability to organise and control the steric and electronic effects around a substrate in the active site of a catalyst. We consider half-sandwich Ru(II) (Noyori-type) and Os(II) sulfonyldiamine 16-electron active catalysts [Ru/Os(η6-p-cymene)(TsDPEN-H2)], where TsDPEN is N-tosyl-1,2-diphenylethylenediamine containing S,S or R,R chiral centres, which catalyse the highly efficient asymmetric transfer hydrogenation of aromatic ketones to chiral alcohols using formic acid as a hydride source. We discuss the recognition of the prochiral ketone acetophenone by the catalyst, the protonation of a ligand NH and transfer of hydride from formate to the metal, subsequent transfer of hydride to one enantiotopic face of the ketone, followed by proton transfer from metal-bound NH2, and regeneration of the catalyst. Our DFT calculations illustrate the role of the two chiral carbons on the N,N-chelated sulfonyldiamine ligand, the axial chirality of the π-bonded p-cymene arene, and the chirality of the metal centre. We discuss new features of the mechanism, including how a change in metal chirality of the hydride intermediate dramatically switches p-cymene coordination from η6 to η2. Moreover, the calculations suggest a step-wise mechanism involving substrate docking to the bound amine NH2 followed by hydride transfer prior to protonation of the O-atom of acetophenone and release of the enantio-pure alcohol. This implies that formation and stability of the M-H hydride intermediate is highly dependent on the presence of the protonated amine ligand. The Os(II) catalyst is more stable than the Ru(II) analogue, and these studies illustrate the subtle differences in mechanistic behaviour between these 4d6 and 5d6 second-row and third-row transition metal congeners in group 8 of the periodic table.


Assuntos
Acetofenonas , Cetonas , Catálise , Teoria da Densidade Funcional , Hidrogenação , Cetonas/química , Ligantes
7.
Int J Mol Sci ; 23(14)2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35886972

RESUMO

We report the synthesis and characterization of three half-sandwich Ru(II) arene complexes [(η6-arene)Ru(N,N')L][PF6]2 containing arene = p-cymene, N,N' = bipyridine, and L = pyridine meta- with methylenenaphthalimide (C1), methylene(nitro)naphthalimide (C2), or methylene(piperidinyl)naphthalimide (C3). The naphthalimide acts as an antenna for photoactivation. After 3 h of irradiation with blue light, the monodentate pyridyl ligand had almost completely dissociated from complex C3, which contains an electron donor on the naphthalimide ring, whereas only 50% dissociation was observed for C1 and C2. This correlates with the lower wavelength and strong absorption of C3 in this region of the spectrum (λmax = 418 nm) compared with C1 and C2 (λmax = 324 and 323 nm, respectively). All the complexes were relatively non-toxic towards A549 human lung cancer cells in the dark, but only complex C3 exhibited good photocytoxicity towards these cancer cells upon irradiation with blue light (IC50 = 10.55 ± 0.30 µM). Complex C3 has the potential for use in photoactivated chemotherapy (PACT).


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Células A549 , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Humanos , Ligantes , Estrutura Molecular , Naftalimidas/farmacologia , Rutênio/farmacologia
8.
J Am Chem Soc ; 143(48): 20224-20240, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808054

RESUMO

The Pt(IV) prodrug trans, trans, trans-[Pt(pyridine)2(N3)2(OH)2] (Pt1) and its coumarin derivative trans, trans, trans-[Pt(pyridine)2(N3)2(OH)(coumarin-3-carboxylate)] (Pt2) are promising agents for photoactivated chemotherapy. These complexes are inert in the dark but release Pt(II) species and radicals upon visible light irradiation, resulting in photocytotoxicity toward cancer cells. Here, we have used synchrotron techniques to investigate the in-cell behavior of these prodrugs and visualize, for the first time, changes in cellular morphology and Pt localization upon treatment with and without light irradiation. We show that photoactivation of Pt2 induces remarkable cellular damage with extreme alterations to multiple cellular components, including formation of vacuoles, while also significantly increasing the cellular accumulation of Pt species compared to dark conditions. X-ray absorption near-edge structure (XANES) measurements in cells treated with Pt2 indicate only partial reduction of the prodrug upon irradiation, highlighting that phototoxicity in cancer cells may involve not only Pt(II) photoproducts but also photoexcited Pt(IV) species.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Pró-Fármacos/farmacologia , Antineoplásicos/química , Antineoplásicos/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/efeitos da radiação , Humanos , Luz , Células PC-3 , Platina/química , Platina/efeitos da radiação , Pró-Fármacos/química , Pró-Fármacos/efeitos da radiação , Análise de Célula Única
9.
Chemistry ; 27(41): 10711-10716, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34046954

RESUMO

Photoactivatable agents offer the prospect of highly selective cancer therapy with low side effects and novel mechanisms of action that can combat current drug resistance. 1,8-Naphthalimides with their extended π system can behave as light-harvesting groups, fluorescent probes and DNA intercalators. We conjugated N-(carboxymethyl)-1,8-naphthalimide (gly-R-Nap) with an R substituent on the naphthyl group to photoactive diazido PtIV complexes to form t,t,t-[Pt(py)2 (N3 )2 (OH)(gly-R-Nap)], R=H (1), 3-NO2 (2) or 4-NMe2 (3). They show enhanced photo-oxidation, cellular accumulation and promising photo-cytotoxicity in human A2780 ovarian, A549 lung and PC3 prostate cancer cells with visible light activation, and low dark cytotoxicity. Complexes 1 and 2 exhibit pre-intercalation into DNA, resulting in enhanced photo-induced DNA crosslinking. Complex 3 has a red-shifted absorption band at 450 nm, allowing photoactivation and photo-cytotoxicity with green light.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , DNA , Feminino , Humanos , Luz , Compostos Organoplatínicos , Platina
10.
Inorg Chem ; 60(23): 17450-17461, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34503331

RESUMO

Half-sandwich Os-arene complexes exhibit promising anticancer activity, but their photochemistry has hardly been explored. To exploit the photocytotoxicity and photochemistry of Os-arenes, O,O-chelated complexes [Os(η6-p-cymene)(Curc)Cl] (OsCUR-1, Curc = curcumin) and [Os(η6-biphenyl)(Curc)Cl] (OsCUR-2), and N,N-chelated complexes [Os(η6-biphenyl)(dpq)I]PF6 (OsDPQ-2, dpq = pyrazino[2,3-f][1,10]phenanthroline) and [Os(η6-biphenyl)(bpy)I]PF6 (OsBPY-2, bpy = 2,2'-bipyridine), have been investigated. The Os-arene curcumin complexes showed remarkable photocytotoxicity toward a range of cancer cell lines (blue light IC50: 2.6-5.8 µM, photocytotoxicity index PI = 23-34), especially toward cisplatin-resistant cancer cells, but were nontoxic to normal cells. They localized mainly in mitochondria in the dark but translocated to the nucleus upon photoirradiation, generating DNA and mitochondrial damage, which might contribute toward overcoming cisplatin resistance. Mitochondrial damage, apoptosis, ROS generation, DNA damage, angiogenesis inhibition, and colony formation were observed when A549 lung cancer cells were treated with OsCUR-2. The photochemistry of these Os-arene complexes was investigated by a combination of NMR, HPLC-MS, high energy resolution fluorescence detected (HERFD), X-ray adsorption near edge structure (XANES) spectroscopy, total fluorescence yield (TFY) XANES spectra, and theoretical computation. Selective photodissociation of the arene ligand and oxidation of Os(II) to Os(III) occurred under blue light or UVA excitation. This new approach to the design of novel Os-arene complexes as phototherapeutic agents suggests that the novel curcumin complex OsCUR-2, in particular, is a potential candidate for further development as a photosensitizer for anticancer photoactivated chemotherapy (PACT).


Assuntos
Antineoplásicos/farmacologia , Calixarenos/farmacologia , Complexos de Coordenação/farmacologia , Osmio/farmacologia , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Calixarenos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Dano ao DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Osmio/química , Processos Fotoquímicos
11.
Angew Chem Int Ed Engl ; 60(12): 6462-6472, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33590607

RESUMO

Most metallodrugs are prodrugs that can undergo ligand exchange and redox reactions in biological media. Here we have investigated the cellular stability of the anticancer complex [OsII [(η6 -p-cymene)(RR/SS-MePh-DPEN)] [1] (MePh-DPEN=tosyl-diphenylethylenediamine) which catalyses the enantioselective reduction of pyruvate to lactate in cells. The introduction of a bromide tag at an unreactive site on a phenyl substituent of Ph-DPEN allowed us to probe the fate of this ligand and Os in human cancer cells by a combination of X-ray fluorescence (XRF) elemental mapping and inductively coupled plasma-mass spectrometry (ICP-MS). The BrPh-DPEN ligand is readily displaced by reaction with endogenous thiols and translocated to the nucleus, whereas the Os fragment is exported from the cells. These data explain why the efficiency of catalysis is low, and suggests that it could be optimised by developing thiol resistant analogues. Moreover, this work also provides a new way for the delivery of ligands which are inactive when administered on their own.


Assuntos
Antineoplásicos/química , Estruturas Metalorgânicas/química , Osmio/química , Antineoplásicos/farmacologia , Catálise , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Hidrogenação , Estruturas Metalorgânicas/farmacologia , Conformação Molecular , Osmio/farmacologia
12.
Br J Cancer ; 123(6): 871-873, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32587359

RESUMO

Oncological phototherapy, including current photodynamic therapy (PDT), developmental photoactivated chemotherapy (PACT) and photothermal therapy (PTT), shows promising photo-efficacy for superficial and internal tumours. The dual application of light and photochemotherapeutic agents allows accurate cancer targeting, low invasiveness and novel mechanisms of action. Current advances in new light sources and photoactive agents are encouraging for future development.


Assuntos
Neoplasias/terapia , Fototerapia/métodos , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Terapia Fototérmica/métodos
13.
J Biol Inorg Chem ; 25(2): 295-303, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32124100

RESUMO

The organoiridium complex Ir[(C,N)2(O,O)] (1) where C, N = 1-phenylisoquinoline and O,O = 2,2,6,6-tetramethyl-3,5-heptanedionate is a promising photosensitiser for Photo-Dynamic Therapy (PDT). 1 is not toxic to cells in the dark. However, irradiation of the compound with one-photon blue or two-photon red light generates high levels of singlet oxygen (1O2) (in Zhang et al. Angew Chem Int Ed Engl 56 (47):14898-14902 https://doi.org/10.1002/anie.201709082,2017), both within cell monolayers and in tumour models. Moreover, photo-excited 1 oxidises key proteins, causing metabolic alterations in cancer cells with potent antiproliferative activity. Here, the tomograms obtained by cryo-Soft X-ray Tomography (cryo-SXT) of human PC3 prostate cancer cells treated with 1, irradiated with blue light, and cryopreserved to maintain them in their native state, reveal that irradiation causes extensive and specific alterations to mitochondria, but not other cellular components. Such new insights into the effect of 1O2 generation during PDT using iridium photosensitisers on cells contribute to a detailed understanding of their cellular mode of action.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Criopreservação , Mitocôndrias/efeitos dos fármacos , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Irídio/química , Irídio/farmacologia , Masculino , Mitocôndrias/metabolismo , Conformação Molecular , Células PC-3 , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Tomografia Computadorizada por Raios X
14.
Chemistry ; 26(40): 8676-8688, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32452579

RESUMO

Resistance to chemotherapy is a current clinical problem, especially in the treatment of microbial infections and cancer. One strategy to overcome this is to make new derivatives of existing drugs by conjugation to organometallic fragments, either by an appropriate linker, or by direct coordination of the drug to a metal. We illustrate this with examples of conjugated organometallic metallocene sandwich and half-sandwich complexes, RuII and OsII arene, and RhIII and IrIII cyclopentadienyl half-sandwich complexes. Ferrocene conjugates are particularly promising. The ferrocene-chloroquine conjugate ferroquine is in clinical trials for malaria treatment, and a ferrocene-tamoxifen derivative (a ferrocifen) seems likely to enter anticancer trails soon. Several other examples illustrate that organometallic conjugation can restore the activity of drugs to which resistance has developed.


Assuntos
Aminoquinolinas/química , Antimaláricos/uso terapêutico , Cloroquina/farmacologia , Complexos de Coordenação/química , Compostos Ferrosos/química , Malária/tratamento farmacológico , Metalocenos/química , Compostos Organometálicos/química , Compostos de Rutênio/farmacologia , Antimaláricos/farmacologia , Cloroquina/química , Complexos de Coordenação/uso terapêutico , Humanos , Estrutura Molecular , Compostos de Rutênio/síntese química
15.
Chemistry ; 26(22): 4980-4987, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-31999015

RESUMO

The metallation of nucleic acids is key to wide-ranging applications, from anticancer medicine to nanomaterials, yet there is a lack of understanding of the molecular-level effects of metallation. Here, we apply single-molecule fluorescence methods to study the reaction of an organo-osmium anticancer complex and DNA. Individual metallated DNA hairpins are characterised using Förster resonance energy transfer (FRET). Although ensemble measurements suggest a simple two-state system, single-molecule experiments reveal an underlying heterogeneity in the oligonucleotide dynamics, attributable to different degrees of metallation of the GC-rich hairpin stem. Metallated hairpins display fast two-state transitions with a two-fold increase in the opening rate to ≈2 s-1 , relative to the unmodified hairpin, and relatively static conformations with long-lived open (and closed) states of 5 to ≥50 s. These studies show that a single-molecule approach can provide new insight into metallation-induced changes in DNA structure and dynamics.


Assuntos
Antineoplásicos/química , DNA/química , Antineoplásicos/farmacologia , DNA/metabolismo , Fluorescência , Transferência Ressonante de Energia de Fluorescência , Nanotecnologia , Conformação de Ácido Nucleico
16.
Eur J Inorg Chem ; 2020(11-12): 1052-1060, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33776557

RESUMO

We report the synthesis, characterisation and cytotoxicity of six cyclometalated rhodium(III) complexes [CpXRh(C^N)Z]0/+, in which CpX = Cp*, Cpph, or Cpbiph, C^N = benzo[h]quinoline, and Z = chloride or pyridine. Three x-ray crystal structures showing the expected "piano-stool" configurations have been determined. The chlorido complexes hydrolysed faster in aqueous solution, also reacted preferentially with 9-ethyl guanine or glutathione compared to their pyridine analogues. The 1-biphenyl-2,3,4,5,-tetramethylcyclopentadienyl complex [CpbiphRh(benzo[h]quinoline)Cl] (3a) was the most efficient catalyst in coenzyme reduced nicotinamide adenine dinucleotide (NADH) oxidation to NAD+ and induced an elevated level of reactive oxygen species (ROS) in A549 human lung cancer cells. The pyridine complex [CpbiphRh(benzo[h]quinoline)py]+ (3b) was the most potent against A549 lung and A2780 ovarian cancer cell lines, being 5-fold more active than cisplatin towards A549 cells, and acted as a ROS scavenger. This work highlights a ligand-controlled strategy to modulate the reactivity and cytotoxicity of cyclometalated rhodium anticancer complexes.

17.
Inorganica Chim Acta ; 503: 119396, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33776131

RESUMO

We report the synthesis and characterization of novel pentamethylcyclopentadienyl (Cp*) iridium(III) complexes [(Cp*)Ir(4-methyl-4'-carboxy-2,2'-bipyridine)Cl]PF6 (Ir-I), the product (Ir-II) from amide coupling of Ir-I to dibenzocyclooctyne-amine, and its conjugate (Ir-CP) with the cyclic nona-peptide c(CRWYDENAC). The familiar three-legged 'piano-stool' configuration for complex Ir-I was confirmed by its single crystal X-ray structure. Significantly, copper-free click strategy has been developed for site-specific conjugation of the parent complex Ir-I to the tumour targeting nona-cyclic peptide. The approach consisted of two steps: (i) the carboxylic acid group of the bipyridine ligand in complex Ir-I was first attached to an amine functionalized dibenzocyclooctyne group via amide formation to generate complex Ir-II; and (ii) the alkyne bond of dibenzocyclooctyne in complex Ir-II underwent a subsequent strain-promoted copper-free cycloaddition with the azide group of the modified peptide. Interestingly, while complex Ir-I was inactive towards A2780 human ovarian cancer cells, complex Ir-II exhibited moderate cytotoxic activity. Targeted complexes such as Ir-CP offer scope for enhanced activity and selectivity of this class of anticancer complexes.

18.
Angew Chem Int Ed Engl ; 59(1): 61-73, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31310436

RESUMO

In this Minireview, we highlight recent advances in the design of transition metal complexes for photodynamic therapy (PDT) and photoactivated chemotherapy (PACT), and discuss the challenges and opportunities for the translation of such agents into clinical use. New designs for light-activated transition metal complexes offer photoactivatable prodrugs with novel targeted mechanisms of action. Light irradiation can provide spatial and temporal control of drug activation, increasing selectivity and reducing side-effects. The photophysical and photochemical properties of transition metal complexes can be controlled by the appropriate choice of the metal, its oxidation state, the number and types of ligands, and the coordination geometry.


Assuntos
Complexos de Coordenação/química , Metais/química , Fotoquimioterapia/métodos , Humanos
19.
Angew Chem Int Ed Engl ; 59(29): 11984-11991, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32227670

RESUMO

A hallmark of Parkinson's disease is the death of neuromelanin-pigmented neurons, but the role of neuromelanin is unclear. The in situ characterization of neuromelanin remains dependent on detectable pigmentation, rather than direct quantification of neuromelanin. We show that direct, label-free nanoscale visualization of neuromelanin and associated metal ions in human brain tissue can be achieved using synchrotron scanning transmission x-ray microscopy (STXM), through a characteristic feature in the neuromelanin x-ray absorption spectrum at 287.4 eV that is also present in iron-free and iron-laden synthetic neuromelanin. This is confirmed in consecutive brain sections by correlating STXM neuromelanin imaging with silver nitrate-stained neuromelanin. Analysis suggests that the 1s-σ* (C-S) transition in benzothiazine groups accounts for this feature. This method illustrates the wider potential of STXM as a label-free spectromicroscopy technique applicable to both organic and inorganic materials.


Assuntos
Encéfalo/diagnóstico por imagem , Melaninas/metabolismo , Doença de Parkinson/patologia , Neurônios Dopaminérgicos/patologia , Humanos , Ferro/química , Metais/química , Microscopia , Doença de Parkinson/diagnóstico , Nitrato de Prata/química , Espectrometria por Raios X , Síncrotrons
20.
Analyst ; 144(5): 1575-1581, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30663751

RESUMO

The most widely used anticancer drugs are platinum complexes, but complexes of other transition metals also show promise and may widen the spectrum of activity, reduce side-effects, and overcome resistance. The latter include organo-iridium(iii) 'piano-stool' complexes. To understand their mechanism of action, it is important to discover how they bind to biomolecules and how binding is affected by functionalisation of the ligands bound to iridium. We have characterised, by MS and MS/MS techniques, unusual adducts from reactions between 3 novel iridium(iii) anti-cancer complexes each possessing reactive sites both at the metal (coordination by substitution of a labile chlorido ligand) and on the ligand (covalent bond formation involving imine formation by one or two aldehyde functions). Peptide modification by the metal complex had a drastic effect on both Collisonally Activated Dissociation (CAD) and Electron Capture Dissociation (ECD) MS/MS behaviour, tuning requirements, and fragmentation channels. CAD MS/MS was effective only when studying the covalent condensation products. ECD MS/MS, although hindered by electron-quenching at the Iridium complex site, was suitable for studying many of the species observed, locating the modification sites, and often identifying them to within a single amino acid residue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA