Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
EMBO J ; 43(13): 2661-2684, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38811851

RESUMO

The molecular mechanisms governing the response of hematopoietic stem cells (HSCs) to stress insults remain poorly defined. Here, we investigated effects of conditional knock-out or overexpression of Hmga2 (High mobility group AT-hook 2), a transcriptional activator of stem cell genes in fetal HSCs. While Hmga2 overexpression did not affect adult hematopoiesis under homeostasis, it accelerated HSC expansion in response to injection with 5-fluorouracil (5-FU) or in vitro treatment with TNF-α. In contrast, HSC and megakaryocyte progenitor cell numbers were decreased in Hmga2 KO animals. Transcription of inflammatory genes was repressed in Hmga2-overexpressing mice injected with 5-FU, and Hmga2 bound to distinct regions and chromatin accessibility was decreased in HSCs upon stress. Mechanistically, we found that casein kinase 2 (CK2) phosphorylates the Hmga2 acidic domain, promoting its access and binding to chromatin, transcription of anti-inflammatory target genes, and the expansion of HSCs under stress conditions. Notably, the identified stress-regulated Hmga2 gene signature is activated in hematopoietic stem progenitor cells of human myelodysplastic syndrome patients. In sum, these results reveal a TNF-α/CK2/phospho-Hmga2 axis controlling adult stress hematopoiesis.


Assuntos
Caseína Quinase II , Cromatina , Proteína HMGA2 , Células-Tronco Hematopoéticas , Camundongos Knockout , Proteína HMGA2/metabolismo , Proteína HMGA2/genética , Animais , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Humanos , Caseína Quinase II/metabolismo , Caseína Quinase II/genética , Cromatina/metabolismo , Cromatina/genética , Fator de Necrose Tumoral alfa/metabolismo , Hematopoese , Estresse Fisiológico , Fluoruracila/farmacologia , Regeneração , Fosforilação , Síndromes Mielodisplásicas/patologia , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Camundongos Endogâmicos C57BL
2.
EMBO J ; 41(8): e109463, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35229328

RESUMO

In order to support bone marrow regeneration after myeloablation, hematopoietic stem cells (HSCs) actively divide to provide both stem and progenitor cells. However, the mechanisms regulating HSC function and cell fate choice during hematopoietic recovery remain unclear. We herein provide novel insights into HSC regulation during regeneration by focusing on mitochondrial metabolism and ATP citrate lyase (ACLY). After 5-fluorouracil-induced myeloablation, HSCs highly expressing endothelial protein C receptor (EPCRhigh ) were enriched within the stem cell fraction at the expense of more proliferative EPCRLow HSCs. These EPCRHigh HSCs were initially more primitive than EPCRLow HSCs and enabled stem cell expansion by enhancing histone acetylation, due to increased activity of ACLY in the early phase of hematopoietic regeneration. In the late phase of recovery, HSCs enhanced differentiation potential by increasing the accessibility of cis-regulatory elements in progenitor cell-related genes, such as CD48. In conditions of reduced mitochondrial metabolism and ACLY activity, these HSCs maintained stem cell phenotypes, while ACLY-dependent histone acetylation promoted differentiation into CD48+ progenitor cells. Collectively, these results indicate that the dynamic control of ACLY-dependent metabolism and epigenetic alterations is essential for HSC regulation during hematopoietic regeneration.


Assuntos
ATP Citrato (pro-S)-Liase , Medula Óssea , ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Histonas/metabolismo
3.
Cancer Sci ; 114(7): 2821-2834, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36945113

RESUMO

MicroRNAs (miRNAs) play a crucial role in regulating gene expression. MicroRNA expression levels fluctuate, and point mutations and methylation occur in cancer cells; however, to date, there have been no reports of carcinogenic point mutations in miRNAs. MicroRNA 142 (miR-142) is frequently mutated in patients with follicular lymphoma, diffuse large B-cell lymphoma, chronic lymphocytic leukemia (CLL), and acute myeloid leukemia/myelodysplastic syndrome (AML/MDS). To understand the role of miR-142 mutation in blood cancers, the CRISPR-Cas9 system was utilized to successfully generate miR-142-55A>G mutant knock-in (Ki) mice, simulating the most frequent mutation in patients with miR-142 mutated AML/MDS. Bone marrow cells from miR-142 mutant heterozygous Ki mice were transplanted, and we found that the miR-142 mutant/wild-type cells were sufficient for the development of CD8+ T-cell leukemia in mice post-transplantation. RNA-sequencing analysis in hematopoietic stem/progenitor cells and CD8+ T-cells revealed that miR-142-Ki/+ cells had increased expression of the mTORC1 activator, a potential target of wild-type miR-142-3p. Notably, the expression of genes involved in apoptosis, differentiation, and the inhibition of the Akt-mTOR pathway was suppressed in miR-142-55A>G heterozygous cells, indicating that these genes are repressed by the mutant miR-142-3p. Thus, in addition to the loss of function due to the halving of wild-type miR-142-3p alleles, mutated miR-142-3p gained the function to suppress the expression of distinct target genes, sufficient to cause leukemogenesis in mice.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Síndromes Mielodisplásicas , Animais , Camundongos , Carcinogênese , Linfócitos T CD8-Positivos/metabolismo , Mutação com Ganho de Função , Leucemia Mieloide Aguda/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Síndromes Mielodisplásicas/genética
4.
FASEB J ; 36(7): e22345, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35635715

RESUMO

High mobility group nucleosome-binding protein 3 (HMGN3), a member of the HMGN family, modulates the structure of chromatin and regulates transcription through transcription factors. HMGN3 has been implicated in the development of various cancers; however, the underlying mechanisms remain unclear. We herein demonstrated that the high expression of HMGN3 correlated with the metastasis of liver fluke infection-induced cholangiocarcinoma (CCA) in patients in northeastern Thailand. The knockdown of HMGN3 in CCA cells significantly impaired the oncogenic properties of colony formation, migration, and invasion. HMGN3 inhibited the expression of and blocked the intracellular polarities of epithelial regulator genes, such as the CDH1/E-cadherin and TJAP1 genes in CCA cells. A chromatin immunoprecipitation sequencing analysis revealed that HMGN3 required the transcription factor SNAI2 to bind to and repress the expression of epithelial regulator genes, at least in part, due to histone deacetylases (HDACs), the pharmacological inhibition of which reactivated these epithelial regulators in CCA, leading to impairing the cell migration capacity. Therefore, the overexpression of HMGN3 represses the transcription of and blocks the polarities of epithelial regulators in CCA cells in a manner that is dependent on the SNAI2 gene and HDACs.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Regulação da Expressão Gênica , Proteínas HMGN/genética , Proteínas HMGN/metabolismo , Humanos , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Blood ; 136(1): 106-118, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32219445

RESUMO

Mutations in JAK2, myeloproliferative leukemia virus (MPL), or calreticulin (CALR) occur in hematopoietic stem cells (HSCs) and are detected in more than 80% of patients with myeloproliferative neoplasms (MPNs). They are thought to play a driver role in MPN pathogenesis via autosomal activation of the JAK-STAT signaling cascade. Mutant CALR binds to MPL, activates downstream MPL signaling cascades, and induces essential thrombocythemia in mice. However, embryonic lethality of Calr-deficient mice precludes determination of a role for CALR in hematopoiesis. To clarify the role of CALR in normal hematopoiesis and MPN pathogenesis, we generated hematopoietic cell-specific Calr-deficient mice. CALR deficiency had little effect on the leukocyte count, hemoglobin levels, or platelet count in peripheral blood. However, Calr-deficient mice showed some hematopoietic properties of MPN, including decreased erythropoiesis and increased myeloid progenitor cells in the bone marrow and extramedullary hematopoiesis in the spleen. Transplantation experiments revealed that Calr haploinsufficiency promoted the self-renewal capacity of HSCs. We generated CALRdel52 mutant transgenic mice with Calr haploinsufficiency as a model that mimics human MPN patients and found that Calr haploinsufficiency restored the self-renewal capacity of HSCs damaged by CALR mutations. Only recipient mice transplanted with Lineage-Sca1+c-kit+ cells harboring both CALR mutation and Calr haploinsufficiency developed MPN in competitive conditions, showing that CALR haploinsufficiency was necessary for the onset of CALR-mutated MPNs.


Assuntos
Calreticulina/fisiologia , Transtornos Mieloproliferativos/etiologia , Células-Tronco/patologia , Animais , Medula Óssea/patologia , Calreticulina/deficiência , Calreticulina/genética , Autorrenovação Celular , Eritropoese , Genótipo , Hematopoese Extramedular , Células-Tronco Hematopoéticas/patologia , Camundongos , Camundongos Transgênicos , Transtornos Mieloproliferativos/patologia , Células-Tronco Neoplásicas/patologia , Deleção de Sequência , Transcriptoma
6.
Genesis ; 58(9): e23386, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32645254

RESUMO

Random gene trapping is the application of insertional mutagenesis techniques that are conventionally used to inactivate protein-coding genes in mouse embryonic stem (ES) cells. Transcriptionally silent genes are not effectively targeted by conventional random gene trapping techniques, thus we herein developed an unbiased poly (A) trap (UPATrap) method using a Tol2 transposon, which preferentially integrated into active genes rather than silent genes in ES cells. To achieve efficient trapping at transcriptionally silent genes using random insertional mutagenesis in ES cells, we generated a new diphtheria toxin (DT)-mediated trapping vector, DTrap that removed cells, through the expression of DT that was induced by the promoter activity of the trapped genes, and selected trapped clones using the neomycin-resistance gene of the vector. We found that a double-DT, the dDT vector, dominantly induced the disruption of silent genes, but not active genes, and showed more stable integration in ES cells than the UPATrap vector. The dDT vector disrupted differentiated cell lineage genes, which were silent in ES cells, and labeled trapped clone cells by the expression of EGFP upon differentiation. Thus, the dDT vector provides a systematic approach to disrupt silent genes and examine the cellular functions of trapped genes in the differentiation of target cells and development.


Assuntos
Elementos de DNA Transponíveis , Toxina Diftérica/genética , Marcação de Genes/métodos , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Mutagênese , Mutagênese Insercional
7.
Haematologica ; 105(4): 905-913, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31171641

RESUMO

Healthy bone marrow progenitors yield a co-ordinated balance of hematopoietic lineages. This balance shifts with aging toward enhanced granulopoiesis with diminished erythropoiesis and lymphopoiesis, changes which likely contribute to the development of bone marrow disorders in the elderly. In this study, RUNX3 was identified as a hematopoietic stem and progenitor cell factor whose levels decline with aging in humans and mice. This decline is exaggerated in hematopoietic stem and progenitor cells from subjects diagnosed with unexplained anemia of the elderly. Hematopoietic stem cells from elderly unexplained anemia patients had diminished erythroid but unaffected granulocytic colony forming potential. Knockdown studies revealed human hematopoietic stem and progenitor cells to be strongly influenced by RUNX3 levels, with modest deficiencies abrogating erythroid differentiation at multiple steps while retaining capacity for granulopoiesis. Transcriptome profiling indicated control by RUNX3 of key erythroid transcription factors, including KLF1 and GATA1 These findings thus implicate RUNX3 as a participant in hematopoietic stem and progenitor cell aging, and a key determinant of erythroid-myeloid lineage balance.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Idoso , Envelhecimento , Animais , Diferenciação Celular , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Eritropoese , Humanos , Camundongos
8.
Acta Haematol ; 143(2): 96-111, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31401626

RESUMO

The treatment of chronic myeloid leukaemia (CML) requires quantitative polymerase chain reaction (qPCR) to monitor BCR-ABL1 in International Scale (IS). Some normal subjects were found to harbour BCR-ABL1. We performed a systematic review on normal subjects harbouring BCR-ABL1. A literature search was done on July 16, 2017 using EBSCOhost Research Databases interface and Western Pacific Region Index Medicus. Two authors selected the studies, extracted the data, and evaluated the quality of studies using the modified Appraisal Tool for Cross-Sectional Studies independently. The outcomes were prevalence, level of BCR-ABL1IS, proportion, and time of progression to CML. The initial search returned 4,770 studies. Eleven studies, all having used convenient sampling, were included, with total of 1,360 subjects. Ten studies used qualitative PCR and one used qPCR (not IS). The mean prevalence of M-BCR was 5.9, 15.5, and 15.9% in cord blood/newborns/infants (CB/NB/I) (n = 170), children (n = 90), and adults (n = 454), respectively, while m-BCR was 15, 26.9, and 23.1% in CB/NB/I (n = 786), children (n = 67), and adults (n = 208), respectively. No study reported the proportion and time of progression to CML. Nine studies were graded as moderate quality, one study as poor quality, and one study as unacceptable. The result of the studies could neither be inferred to the general normal population nor compared. Follow-up data were scarce.


Assuntos
Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Doença Aguda , Crise Blástica/patologia , Doença Crônica , Bases de Dados Factuais , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Cromossomo Filadélfia
9.
Lab Invest ; 99(11): 1622-1635, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31231131

RESUMO

The involvement of Wnt signaling in human lung cancer remains unclear. This study investigated the role of Wnt11 in neuroendocrine (NE) differentiation, cell proliferation, and epithelial-to-mesenchymal transition (EMT) in human small-cell lung cancer (SCLC). Immunohistochemical staining of resected specimens showed that Wnt11 was expressed at higher levels in SCLCs than in non-SCLCs; 58.8% of SCLC, 5.2% of adenocarcinoma (ADC), and 23.5% of squamous cell carcinoma tissues stained positive for Wnt11. A positive relationship was observed between Achaete-scute complex homolog 1 (Ascl1) and Wnt11 expression in SCLC cell lines, and this was supported by transcriptome data from SCLC tissue. The expression of Wnt11 and some NE markers increased after the transfection of ASCL1 into the A549 ADC cell line. Knockdown of Ascl1 downregulated Wnt11 expression in SCLC cell lines. Ascl1 regulated Wnt11 expression via lysine H3K27 acetylation at the enhancer region of the WNT11 gene. Wnt11 controlled NE differentiation, cell proliferation, and E-cadherin expression under the regulation of Ascl1 in SCLC cell lines. The phosphorylation of AKT and p38 mitogen-activated protein kinase markedly increased after transfection of WNT11 into the SBC3 SCLC cell line, which suggests that Wnt11 promotes cell proliferation in SCLC cell lines. Ascl1 plays an important role in regulating the Wnt signaling pathway and is one of the driver molecules of Wnt11 in human SCLC. Ascl1 and Wnt11 may employ a cooperative mechanism to control the biology of SCLC. The present results indicate the therapeutic potential of targeting the Ascl1-Wnt11 signaling axis and support the clinical utility of Wnt11 as a biological marker in SCLC.


Assuntos
Antígenos CD/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Caderinas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Proteínas Wnt/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Animais , Antígenos CD/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Caderinas/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Elementos Facilitadores Genéticos , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Xenoenxertos , Histonas/metabolismo , Humanos , Imidas/farmacologia , Neoplasias Pulmonares/genética , Masculino , Camundongos , Camundongos Knockout , Células Neuroendócrinas/metabolismo , Células Neuroendócrinas/patologia , Quinolinas/farmacologia , RNA Interferente Pequeno/genética , Carcinoma de Pequenas Células do Pulmão/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/genética , Via de Sinalização Wnt/efeitos dos fármacos
10.
Blood ; 126(10): 1172-83, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26219303

RESUMO

Recent genome sequencing revealed inactivating mutations in EZH2, which encodes an enzymatic component of polycomb-repressive complex 2 (PRC2), in patients with myelodysplastic syndrome (MDS), myeloproliferative neoplasms (MPNs), and MDS/MPN overlap disorders. We herein demonstrated that the hematopoietic-specific deletion of Ezh2 in mice induced heterogeneous hematopoietic malignancies. Myelodysplasia was detected in mice following the deletion of Ezh2, and resulted in the development of MDS and MDS/MPN. Thrombocytosis was induced by Ezh2 loss and sustained in some mice with myelodysplasia. Although less frequent, Ezh2 loss also induced T-cell acute lymphoblastic leukemia and the clonal expansion of B-1a B cells. Gene expression profiling showed that PRC2 target genes were derepressed upon the deletion of Ezh2 in hematopoietic stem and progenitor cells, but were largely repressed during the development of MDS and MDS/MPN. Chromatin immunoprecipitation-sequence analysis of trimethylation of histone H3 at lysine 27 (H3K27me3) revealed a compensatory function of Ezh1, another enzymatic component of PRC2, in this process. The deletion of Ezh1 alone did not cause dysplasia or any hematologic malignancies in mice, but abolished the repopulating capacity of hematopoietic stem cells when combined with Ezh2 loss. These results clearly demonstrated an essential role of Ezh1 in the pathogenesis of hematopoietic malignancies induced by Ezh2 insufficiency, and highlighted the differential functions of Ezh1 and Ezh2 in hematopoiesis.


Assuntos
Neoplasias Hematológicas/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Animais , Imunoprecipitação da Cromatina , Proteína Potenciadora do Homólogo 2 de Zeste , Neoplasias Hematológicas/genética , Camundongos , Camundongos Mutantes , Complexo Repressor Polycomb 2/genética , Transcriptoma
11.
Blood ; 125(2): 304-15, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25395421

RESUMO

Acquired mutations of JAK2 and TET2 are frequent in myeloproliferative neoplasms (MPNs). We examined the individual and cooperative effects of these mutations on MPN development. Recipients of JAK2V617F cells developed primary myelofibrosis-like features; the addition of loss of TET2 worsened this JAK2V617F-induced disease, causing prolonged leukocytosis, splenomegaly, extramedullary hematopoiesis, and modestly shorter survival. Double-mutant (JAK2V617F plus loss of TET2) myeloid cells were more likely to be in a proliferative state than JAK2V617F single-mutant myeloid cells. In a serial competitive transplantation assay, JAK2V617F cells resulted in decreased chimerism in the second recipients, which did not develop MPNs. In marked contrast, cooperation between JAK2V617F and loss of TET2 developed and maintained MPNs in the second recipients by compensating for impaired hematopoietic stem cell (HSC) functioning. In-vitro sequential colony formation assays also supported the observation that JAK2V617F did not maintain HSC functioning over the long-term, but concurrent loss of TET2 mutation restored it. Transcriptional profiling revealed that loss of TET2 affected the expression of many HSC signature genes. We conclude that loss of TET2 has two different roles in MPNs: disease accelerator and disease initiator and sustainer in combination with JAK2V617F.


Assuntos
Proteínas de Ligação a DNA/genética , Janus Quinase 2/genética , Transtornos Mieloproliferativos/genética , Proteínas Proto-Oncogênicas/genética , Animais , Dioxigenases , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos
12.
Rinsho Ketsueki ; 58(10): 1809-1817, 2017.
Artigo em Japonês | MEDLINE | ID: mdl-28978819

RESUMO

Myelodysplastic syndrome (MDS) is a clonal hematopoietic stem cell disease characterized by impaired hematopoiesis and an increased risk of transformation to acute myeloid leukemia (AML). Epigenetic regulators, including TET2, DNMT3A and EZH2, are often mutated in patients with MDS. Recently, exome sequencing of blood cells from aged people without hematological malignancies have demonstrated the presence of clonal hematopoiesis with myeloid malignancies-associated mutations, such as TET2 and DNMT3A. Here, I will discuss the molecular mechanisms underlying the accumulation of epigenetic alterations and genetic mutations, including TET2, DNMT3A and EZH2, and how these promote the development of MDS and hematological malignancies in aged people with clonal hematopoiesis.


Assuntos
Epigênese Genética , Síndromes Mielodisplásicas/genética , Animais , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , DNA Metiltransferase 3A , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Humanos , Mutação
13.
Blood ; 123(21): 3336-43, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24735968

RESUMO

Numerous studies have recently reported mutations involving multiple components of the messenger RNA (mRNA) splicing machinery in patients with myelodysplastic syndrome (MDS). SF3B1 is mutated in 70% to 85% of refractory anemia with ringed sideroblasts (RARS) patients and is highly associated with the presence of RARS, although the pathological role of SF3B1 mutations in MDS-RARS has not been elucidated yet. Here, we analyzed the function of pre-mRNA splicing factor Sf3b1 in hematopoiesis. Sf3b1(+/-) mice maintained almost normal hematopoiesis and did not develop hematological malignancies during a long observation period. However, Sf3b1(+/-) cells had a significantly impaired capacity to reconstitute hematopoiesis in a competitive setting and exhibited some enhancement of apoptosis, but they did not show any obvious defects in differentiation. Additional depletion of Sf3b1 with shRNA in Sf3b1(+/-) hematopoietic stem cells (HSCs) severely compromised their proliferative capacity both in vitro and in vivo. Finally, we unexpectedly found no changes in the frequencies of sideroblasts in either Sf3b1(+/-) erythroblasts or cultured Sf3b1(+/-) erythroblasts expressing shRNA against Sf3b1. Our findings indicate that the level of Sf3b1 expression is critical for the proliferative capacity of HSCs, but the haploinsufficiency for Sf3b1 is not sufficient to induce a RARS-like phenotype.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas/patologia , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Fosfoproteínas/genética , Ribonucleoproteína Nuclear Pequena U2/genética , Anemia Refratária/genética , Anemia Refratária/patologia , Animais , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Haploidia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Precursores de RNA/genética , Splicing de RNA , Fatores de Processamento de RNA , RNA Interferente Pequeno/genética
14.
Blood ; 121(17): 3434-46, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23471304

RESUMO

RUNX1/AML1 mutations have been identified in myelodysplastic syndromes (MDSs). In a mouse bone marrow transplantation model, a RUNX1 mutant, D171N, was shown to collaborate with Evi1 in the development of MDSs; however, this is rare in humans. Using enforced expression in human CD34(+) cells, we showed that the D171N mutant, the most frequent target of mutation in the RUNX1 gene, had an increased self-renewal capacity, blocked differentiation, dysplasia in all 3 lineages, and tendency for immaturity, but no proliferation ability. BMI1 overexpression was observed in CD34(+) cells from the majority of MDS patients with RUNX1 mutations, but not in D171N-transduced human CD34(+) cells. Cotransduction of D171N and BMI1 demonstrated that BMI1 overexpression conferred proliferation ability to D171N-transduced cells in both human CD34(+) cells and a mouse bone marrow transplantation model. Stepwise transduction of D171N followed by BMI1 in human CD34(+) cells resulted in long-term proliferation with a retained CD34(+) cell fraction, which is quite similar to the phenotype in patients with higher-risk MDSs. Our results indicate that BMI1 overexpression is one of the second hit partner genes of RUNX1 mutations that contribute to the development of MDSs.


Assuntos
Transformação Celular Neoplásica/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Mutação/genética , Síndromes Mielodisplásicas/patologia , Complexo Repressor Polycomb 1/metabolismo , Idoso , Animais , Antígenos CD34/metabolismo , Western Blotting , Transplante de Medula Óssea , Diferenciação Celular , Proliferação de Células , Citometria de Fluxo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Fenótipo , Complexo Repressor Polycomb 1/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Rinsho Ketsueki ; 56(2): 111-8, 2015 Feb.
Artigo em Japonês | MEDLINE | ID: mdl-25765789

RESUMO

Myelodysplastic syndrome (MDS) is a clonal hematopoietic stem cell disease characterized by impaired hematopoiesis and an increased risk of transformation to acute myeloid leukemia. Various epigenetic regulators are mutated in MDS patients, indicating that accumulation of epigenetic alterations together with genetic alterations plays a crucial role in the development of MDS.


Assuntos
Epigênese Genética/genética , Epigenômica , Hematopoese/genética , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/genética , Humanos , Mutação/genética , Síndromes Mielodisplásicas/diagnóstico
16.
Rinsho Ketsueki ; 56(11): 2287-94, 2015 Nov.
Artigo em Japonês | MEDLINE | ID: mdl-26666714

RESUMO

Recent genome studies have identified recurrent somatic mutations in various myeloid malignancies, including acute myeloid leukemia, myelodysplastic syndrome and myeloproliferative neoplasm. These mutations frequently occur in epigenetic regulator genes, and functions of the proteins encoded by these genes in hematopoietic cells have been extensively analyzed, as reported recently. It is noteworthy that several epigenetic regulator genes, such as DNMT3A, TET2 and ASXL1, have also been identified in pre-leukemic stem cells. As targeting pre-leukemic stem cells would be a promising therapeutic approach, further investigations of epigenetic abnormalities in hematopoietic cells are anticipated to lead to the development of novel epigenetic therapies. In this review, we discuss recent genetic and functional data regarding epigenetic regulator genes and the future landscape of this new research field.


Assuntos
Epigênese Genética , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide/genética , Mutação , Animais , Metilação de DNA , Humanos , Transcrição Gênica
17.
Blood ; 120(5): 1107-17, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22677129

RESUMO

EZH2, a catalytic component of the polycomb repressive complex 2, trimethylates histone H3 at lysine 27 (H3K27) to repress the transcription of target genes. Although EZH2 is overexpressed in various cancers, including some hematologic malignancies, the role of EZH2 in acute myeloid leukemia (AML) has yet to be examined in vivo. In the present study, we transformed granulocyte macrophage progenitors from Cre-ERT;Ezh2(flox/flox) mice with the MLL-AF9 leukemic fusion gene to analyze the function of Ezh2 in AML. Deletion of Ezh2 in transformed granulocyte macrophage progenitors compromised growth severely in vitro and attenuated the progression of AML significantly in vivo. Ezh2-deficient leukemic cells developed into a chronic myelomonocytic leukemia-like disease with a lower frequency of leukemia-initiating cells compared with the control. Chromatin immunoprecipitation followed by sequencing revealed a significant reduction in the levels of trimethylation at H3K27 in Ezh2-deficient leukemic cells, not only at Cdkn2a, a known major target of Ezh2, but also at a cohort of genes relevant to the developmental and differentiation processes. Overexpression of Egr1, one of the derepressed genes in Ezh2-deficient leukemic cells, promoted the differentiation of AML cells profoundly. Our findings suggest that Ezh2 inhibits differentiation programs in leukemic stem cells, thereby augmenting their leukemogenic activity.


Assuntos
Diferenciação Celular/genética , Transformação Celular Neoplásica/genética , Proteínas de Ligação a DNA/fisiologia , Leucemia Mieloide Aguda/genética , Fatores de Transcrição/fisiologia , Animais , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo/genética , Proteína Potenciadora do Homólogo 2 de Zeste , Deleção de Genes , Células HEK293 , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Complexo Repressor Polycomb 2 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima/genética
18.
Blood ; 120(5): 1118-29, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22740449

RESUMO

One mechanism for disrupting the MLL gene in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) is through partial tandem duplication (MLL-PTD); however, the mechanism by which MLL-PTD contributes to MDS and AML development and maintenance is currently unknown. Herein, we investigated hematopoietic stem/progenitor cell (HSPC) phenotypes of Mll-PTD knock-in mice. Although HSPCs (Lin(-)Sca1(+)Kit(+) (LSK)/SLAM(+) and LSK) in Mll(PTD/WT) mice are reduced in absolute number in steady state because of increased apoptosis, they have a proliferative advantage in colony replating assays, CFU-spleen assays, and competitive transplantation assays over wild-type HSPCs. The Mll(PTD/WT)-derived phenotypic short-term (ST)-HSCs/multipotent progenitors and granulocyte/macrophage progenitors have self-renewal capability, rescuing hematopoiesis by giving rise to long-term repopulating cells in recipient mice with an unexpected myeloid differentiation blockade and lymphoid-lineage bias. However, Mll(PTD/WT) HSPCs never develop leukemia in primary or recipient mice, suggesting that additional genetic and/or epigenetic defects are necessary for full leukemogenic transformation. Thus, the Mll-PTD aberrantly alters HSPCs, enhances self-renewal, causes lineage bias, and blocks myeloid differentiation. These findings provide a framework by which we can ascertain the underlying pathogenic role of MLL-PTD in the clonal evolution of human leukemia, which should facilitate improved therapies and patient outcomes.


Assuntos
Proliferação de Células , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Células Mieloides/fisiologia , Proteína de Leucina Linfoide-Mieloide/genética , Estresse Fisiológico/fisiologia , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Linhagem da Célula/fisiologia , Células Cultivadas , Evolução Clonal/genética , Duplicação Gênica/fisiologia , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Histona-Lisina N-Metiltransferase , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Sequências de Repetição em Tandem/genética
19.
Leukemia ; 38(6): 1275-1286, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734786

RESUMO

TIF1ß/KAP1/TRIM28, a chromatin modulator, both represses and activates the transcription of genes in normal and malignant cells. Analyses of datasets on leukemia patients revealed that the expression level of TIF1ß was increased in patients with chronic myeloid leukemia at the blast crisis and acute myeloid leukemia. We generated a BCR::ABL1 conditional knock-in (KI) mouse model, which developed aggressive myeloid leukemia, and demonstrated that the deletion of the Tif1ß gene inhibited the progression of myeloid leukemia and showed longer survival than that in BCR::ABL1 KI mice, suggesting that Tif1ß drove the progression of BCR::ABL1-induced leukemia. In addition, the deletion of Tif1ß sensitized BCR::ABL1 KI leukemic cells to dasatinib. The deletion of Tif1ß decreased the expression levels of TIF1ß-target genes and chromatin accessibility peaks enriched with the Fosl1-binding motif in BCR::ABL1 KI stem cells. TIF1ß directly bound to the promoters of proliferation genes, such as FOSL1, in human BCR::ABL1 cells, in which TIF1ß and FOSL1 bound to adjacent regions of chromatin. Since the expression of Fosl1 was critical for the enhanced growth of BCR::ABL1 KI cells, Tif1ß and Fosl1 interacted to activate the leukemic transcriptional program in and cellular function of BCR::ABL1 KI stem cells and drove the progression of myeloid leukemia.


Assuntos
Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Animais , Camundongos , Humanos , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Regulação Leucêmica da Expressão Gênica , Proteína 28 com Motivo Tripartido/metabolismo , Proteína 28 com Motivo Tripartido/genética , Transcrição Gênica
20.
Blood ; 118(25): 6544-52, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22012064

RESUMO

The mixed-lineage leukemia (MLL) H3K4 methyltransferase protein, and the heterodimeric RUNX1/CBFß transcription factor complex, are critical for definitive and adult hematopoiesis, and both are frequently targeted in human acute leukemia. We identified a physical and functional interaction between RUNX1 (AML1) and MLL and show that both are required to maintain the histone lysine 4 trimethyl mark (H3K4me3) at 2 critical regulatory regions of the AML1 target gene PU.1. Similar to CBFß, we show that MLL binds to AML1 abrogating its proteasome-dependent degradation. Furthermore, a subset of previously uncharacterized frame-shift and missense mutations at the N terminus of AML1, found in MDS and AML patients, impairs its interaction with MLL, resulting in loss of the H3K4me3 mark within PU.1 regulatory regions, and decreased PU.1 expression. The interaction between MLL and AML1 provides a mechanism for the sequence-specific binding of MLL to DNA, and identifies RUNX1 target genes as potential effectors of MLL function.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Histonas/metabolismo , Mutação , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas Proto-Oncogênicas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Transativadores/genética , Doença Aguda , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/metabolismo , Expressão Gênica , Células HEK293 , Histona-Lisina N-Metiltransferase , Humanos , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Lisina/metabolismo , Metilação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Síndromes Mielodisplásicas/patologia , Proteína de Leucina Linfoide-Mieloide/genética , Ligação Proteica , Proteínas Proto-Oncogênicas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA