Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Cell ; 160(6): 1159-68, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25748652

RESUMO

Cytoskeletal remodeling is essential to eukaryotic cell division and morphogenesis. The mechanical forces driving the restructuring are attributed to the action of molecular motors and the dynamics of cytoskeletal filaments, which both consume chemical energy. By contrast, non-enzymatic filament crosslinkers are regarded as mere friction-generating entities. Here, we experimentally demonstrate that diffusible microtubule crosslinkers of the Ase1/PRC1/Map65 family generate directed microtubule sliding when confined between partially overlapping microtubules. The Ase1-generated forces, directly measured by optical tweezers to be in the piconewton-range, were sufficient to antagonize motor-protein driven microtubule sliding. Force generation is quantitatively explained by the entropic expansion of confined Ase1 molecules diffusing within the microtubule overlaps. The thermal motion of crosslinkers is thus harnessed to generate mechanical work analogous to compressed gas propelling a piston in a cylinder. As confinement of diffusible proteins is ubiquitous in cells, the associated entropic forces are likely of importance for cellular mechanics beyond cytoskeletal networks.


Assuntos
Microtúbulos/metabolismo , Animais , Fenômenos Biomecânicos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Fricção , Proteínas de Fluorescência Verde/metabolismo , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Pinças Ópticas , Proteínas de Schizosaccharomyces pombe/metabolismo
2.
Cell ; 151(2): 244-6, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23063116

RESUMO

DNA replication requires hexameric ring-shaped helicases that unwind double-stranded DNA. In this issue, Itsathitphaisarn et al. report a high-resolution crystal structure of DnaB in complex with single-stranded DNA and nucleotide triphosphate analogs, revealing a unique mechanism by which DnaB unwinds DNA two base pairs at a time.

3.
Nat Methods ; 20(4): 523-535, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36973549

RESUMO

Single-molecule Förster-resonance energy transfer (smFRET) experiments allow the study of biomolecular structure and dynamics in vitro and in vivo. We performed an international blind study involving 19 laboratories to assess the uncertainty of FRET experiments for proteins with respect to the measured FRET efficiency histograms, determination of distances, and the detection and quantification of structural dynamics. Using two protein systems with distinct conformational changes and dynamics, we obtained an uncertainty of the FRET efficiency ≤0.06, corresponding to an interdye distance precision of ≤2 Å and accuracy of ≤5 Å. We further discuss the limits for detecting fluctuations in this distance range and how to identify dye perturbations. Our work demonstrates the ability of smFRET experiments to simultaneously measure distances and avoid the averaging of conformational dynamics for realistic protein systems, highlighting its importance in the expanding toolbox of integrative structural biology.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Proteínas , Transferência Ressonante de Energia de Fluorescência/métodos , Reprodutibilidade dos Testes , Proteínas/química , Conformação Molecular , Laboratórios
4.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217619

RESUMO

Periplasmic chaperones 17-kilodalton protein (Skp) and survival factor A (SurA) are essential players in outer membrane protein (OMP) biogenesis. They prevent unfolded OMPs from misfolding during their passage through the periplasmic space and aid in the disassembly of OMP aggregates under cellular stress conditions. However, functionally important links between interaction mechanisms, structural dynamics, and energetics that underpin both Skp and SurA associations with OMPs have remained largely unresolved. Here, using single-molecule fluorescence spectroscopy, we dissect the conformational dynamics and thermodynamics of Skp and SurA binding to unfolded OmpX and explore their disaggregase activities. We show that both chaperones expand unfolded OmpX distinctly and induce microsecond chain reconfigurations in the client OMP structure. We further reveal that Skp and SurA bind their substrate in a fine-tuned thermodynamic process via enthalpy-entropy compensation. Finally, we observed synergistic activity of both chaperones in the disaggregation of oligomeric OmpX aggregates. Our findings provide an intimate view into the multifaceted functionalities of Skp and SurA and the fine-tuned balance between conformational flexibility and underlying energetics in aiding chaperone action during OMP biogenesis.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Biopolímeros/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Transferência Ressonante de Energia de Fluorescência/métodos , Chaperonas Moleculares/química , Conformação Proteica
5.
Bioessays ; 44(12): e2200149, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36284497

RESUMO

Outer membrane proteins (OMPs) maintain the viability of Gram-negative bacteria by functioning as receptors, transporters, ion channels, lipases, and porins. Folding and assembly of OMPs involves synchronized action of chaperones and multi-protein machineries which escort the highly hydrophobic polypeptides to their target outer membrane in a folding competent state. Previous studies have identified proteins and their involvement along the OMP biogenesis pathway. Yet, the mechanisms of action and the intriguing ability of all these molecular machines to work without the typical cellular energy source of ATP, but solely based on thermodynamic principles, are still not well understood. Here, we highlight how different single-molecule studies can shed additional light on the mechanisms and kinetics of OMP biogenesis.


Assuntos
Proteínas da Membrana Bacteriana Externa , Bactérias Gram-Negativas , Proteínas da Membrana Bacteriana Externa/metabolismo , Chaperonas Moleculares/metabolismo , Porinas/metabolismo , Dobramento de Proteína
6.
Exp Eye Res ; 219: 109033, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35288107

RESUMO

Photoreceptor cell transplantation into the mouse retina has been shown to result in the transfer of cytoplasmic material between donor and host photoreceptors. Recently it has been found that this inter-photoreceptor material transfer process is likely to be mediated by nanotube-like structures connecting donor and host photoreceptors. By leveraging cone-specific reporter mice and super-resolution microscopy we provide evidence for the transfer of cytoplasmic material also from endogenous cones to endogenous rod photoreceptors and the existence of nanotube-like cell-cell connections possibly mediating this process in the adult mouse retina, together with preliminary data indicating that horizontal material transfer may also occur in the human retina.


Assuntos
Células Fotorreceptoras Retinianas Cones , Células Fotorreceptoras Retinianas Bastonetes , Animais , Mamíferos , Camundongos , Retina
7.
J Biol Chem ; 295(7): 1985-1991, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31882543

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel protein that is defective in individuals with cystic fibrosis (CF). To advance the rational design of CF therapies, it is important to elucidate how mutational defects in CFTR lead to its impairment and how pharmacological compounds interact with and alter CFTR. Here, using a helical-hairpin construct derived from CFTR's transmembrane (TM) helices 3 and 4 (TM3/4) and their intervening loop, we investigated the structural effects of a patient-derived CF-phenotypic mutation, E217G, located in the loop region of CFTR's membrane-spanning domain. Employing a single-molecule FRET assay to probe the folding status of reconstituted hairpins in lipid bilayers, we found that the E217G hairpin exhibits an altered adaptive packing behavior stemming from an additional GXXXG helix-helix interaction motif created in the mutant hairpin. This observation suggested that the misfolding and functional defects caused by the E217G mutation arise from an impaired conformational adaptability of TM helical segments in CFTR. The addition of the small-molecule corrector Lumacaftor exerts a helix stabilization effect not only on the E217G mutant hairpin, but also on WT TM3/4 and other mutations in the hairpin. This finding suggests a general mode of action for Lumacaftor through which this corrector efficiently improves maturation of various CFTR mutants.


Assuntos
Aminofenóis/química , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/química , Fibrose Cística/genética , Sequência de Aminoácidos/genética , Aminofenóis/farmacologia , Aminopiridinas/química , Benzodioxóis/química , Linhagem Celular , Fibrose Cística/tratamento farmacológico , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/ultraestrutura , Humanos , Conformação Molecular/efeitos dos fármacos , Mutação/genética , Dobramento de Proteína/efeitos dos fármacos , Relação Estrutura-Atividade
9.
Nat Methods ; 15(9): 669-676, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30171252

RESUMO

Single-molecule Förster resonance energy transfer (smFRET) is increasingly being used to determine distances, structures, and dynamics of biomolecules in vitro and in vivo. However, generalized protocols and FRET standards to ensure the reproducibility and accuracy of measurements of FRET efficiencies are currently lacking. Here we report the results of a comparative blind study in which 20 labs determined the FRET efficiencies (E) of several dye-labeled DNA duplexes. Using a unified, straightforward method, we obtained FRET efficiencies with s.d. between ±0.02 and ±0.05. We suggest experimental and computational procedures for converting FRET efficiencies into accurate distances, and discuss potential uncertainties in the experiment and the modeling. Our quantitative assessment of the reproducibility of intensity-based smFRET measurements and a unified correction procedure represents an important step toward the validation of distance networks, with the ultimate aim of achieving reliable structural models of biomolecular systems by smFRET-based hybrid methods.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Laboratórios/normas , Reprodutibilidade dos Testes
10.
Nucleic Acids Res ; 47(4): 1861-1870, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30566629

RESUMO

A predominant tool for adaptation in Gram-negative bacteria is the functional genetic platform called integron. Integrons capture and rearrange promoterless gene cassettes in a unique recombination process involving the recognition of folded single-stranded DNA hairpins-so-called attC sites-with a strong preference for the attC bottom strand. While structural elements have been identified to promote this preference, their mechanistic action remains incomplete. Here, we used high-resolution single-molecule optical tweezers (OT) to characterize secondary structures formed by the attC bottom (${{att}}{{{C}}_{{\rm{bs}}}}$) and top (${{att}}{{{C}}_{{\rm{ts}}}}$) strands of the paradigmatic attCaadA7 site. We found for both sequences two structures-a straight, canonical hairpin and a kinked hairpin. Remarkably, the recombination-preferred ${{att}}{{{C}}_{{\rm{bs}}}}$ predominantly formed the straight hairpin, while the ${{att}}{{{C}}_{{\rm{ts}}}}$ preferentially adopted the kinked structure, which exposes only one complete recombinase binding box. By a mutational analysis, we identified three bases in the unpaired central spacer, which could invert the preferred conformations and increase the recombination frequency of the ${{att}}{{{C}}_{{\rm{ts}}}}$in vivo. A bioinformatics screen revealed structural bias toward a straight, canonical hairpin conformation in the bottom strand of many antibiotic resistance cassettes attC sites. Thus, we anticipate that structural fine tuning could be a mechanism in many biologically active DNA hairpins.


Assuntos
DNA/genética , Farmacorresistência Bacteriana/genética , Integrons/genética , Recombinação Genética , Sítios de Ligação Microbiológicos/genética , DNA/química , DNA de Cadeia Simples/genética , Escherichia coli/genética , Integrases/genética , Conformação de Ácido Nucleico , Pinças Ópticas
11.
Methods ; 169: 11-20, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30776405

RESUMO

Apart from being storage devices for genetic information, nucleic acids can provide regulatory structures through evolutionarily optimized sequences. The interaction of proteins binding specifically to such sequences and resulting secondary structures, or the exposure of single-stranded DNA add a versatile regulatory framework for cells. Biochemical and structural biology experiments have revealed important underlying concepts of protein-DNA interactions but are often limited by ensemble averaging or static information. To decipher the dynamics of conformations adopted by protein-DNA complexes, single-molecule approaches have become a powerful resource over the past two decades. In particular single-molecule FRET (smFRET), which allows a read-out of DNA or protein conformations, became widely used. Here, we illustrate how to implement the technique and exemplarily describe how smFRET yields insights into conformational changes of DNA secondary structures induced by the single-stranded DNA binding protein SSB. We further explain how we use smFRET to study mechanisms of the replication initiator DnaA and the competition of DnaA and SSB for single-stranded DNA. We anticipate that smFRET will further develop into a particularly useful technique to study dynamic competitions of proteins for the same DNA substrate.


Assuntos
DNA Forma A/química , DNA de Cadeia Simples/química , Transferência Ressonante de Energia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Sequências Repetidas Invertidas , Cadeias de Markov , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Conformação Proteica
12.
Nucleic Acids Res ; 45(18): 10555-10563, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28985409

RESUMO

Biologically functional DNA hairpins are found in archaea, prokaryotes and eukaryotes, playing essential roles in various DNA transactions. However, during DNA replication, hairpin formation can stall the polymerase and is therefore prevented by the single-stranded DNA binding protein (SSB). Here, we address the question how hairpins maintain their functional secondary structure despite SSB's presence. As a model hairpin, we used the recombinogenic form of the attC site, essential for capturing antibiotic-resistance genes in the integrons of bacteria. We found that attC hairpins have a conserved high GC-content near their apical loop that creates a dynamic equilibrium between attC fully opened by SSB and a partially structured attC-6-SSB complex. This complex is recognized by the recombinase IntI, which extrudes the hairpin upon binding while displacing SSB. We anticipate that this intriguing regulation mechanism using a base pair distribution to balance hairpin structure formation and genetic stability is key to the dissemination of antibiotic resistance genes among bacteria and might be conserved among other functional hairpins.


Assuntos
Sítios de Ligação Microbiológicos , DNA Bacteriano/química , DNA de Cadeia Simples , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Integrons , DNA Bacteriano/metabolismo , Integrases/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica
13.
Proc Natl Acad Sci U S A ; 113(27): 7533-8, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27339135

RESUMO

Spontaneous folding of a polypeptide chain into a knotted structure remains one of the most puzzling and fascinating features of protein folding. The folding of knotted proteins is on the timescale of minutes and thus hard to reproduce with atomistic simulations that have been able to reproduce features of ultrafast folding in great detail. Furthermore, it is generally not possible to control the topology of the unfolded state. Single-molecule force spectroscopy is an ideal tool for overcoming this problem: by variation of pulling directions, we controlled the knotting topology of the unfolded state of the 52-knotted protein ubiquitin C-terminal hydrolase isoenzyme L1 (UCH-L1) and have therefore been able to quantify the influence of knotting on its folding rate. Here, we provide direct evidence that a threading event associated with formation of either a 31 or 52 knot, or a step closely associated with it, significantly slows down the folding of UCH-L1. The results of the optical tweezers experiments highlight the complex nature of the folding pathway, many additional intermediate structures being detected that cannot be resolved by intrinsic fluorescence. Mechanical stretching of knotted proteins is also of importance for understanding the possible implications of knots in proteins for cellular degradation. Compared with a simple 31 knot, we measure a significantly larger size for the 52 knot in the unfolded state that can be further tightened with higher forces. Our results highlight the potential difficulties in degrading a 52 knot compared with a 31 knot.


Assuntos
Redobramento de Proteína , Desdobramento de Proteína , Ubiquitina Tiolesterase/química , Pinças Ópticas , Imagem Individual de Molécula
14.
J Chem Phys ; 148(12): 123330, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29604846

RESUMO

Thermodynamic properties of single molecules including enthalpic and entropic contributions are often determined from experiments by a direct control and precise measurement of the local temperature. However, common temperature monitoring techniques using, for example, ultrafine temperature probes can lead to uncertainties as the probe cannot be placed in the vicinity of the molecule of interest. Here, we devised an approach to measure the local temperature in freely diffusing confocal single-molecule Förster Resonance Energy Transfer (smFRET) experiments in situ by directly adding the temperature-sensitive fluorescent dye Rhodamine B, whose fluorescence lifetime serves as a probe of the local temperature in the confocal volume. We demonstrate that the temperature and FRET efficiencies of static and dynamic molecules can be extracted within one measurement simultaneously, without the need of a reference chamber. We anticipate this technique to be particularly useful in the physicochemical analyses of temperature-dependent biomolecular processes from single-molecule measurements.


Assuntos
Rodaminas/química , Fenômenos Químicos , Transferência Ressonante de Energia de Fluorescência , Temperatura
15.
BMC Biol ; 15(1): 65, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28738898

RESUMO

BACKGROUND: Biological mineral formation (biomineralization) proceeds in specialized compartments often bounded by a lipid bilayer membrane. Currently, the role of membranes in biomineralization is hardly understood. RESULTS: Investigating biomineralization of SiO2 (silica) in diatoms we identified Silicanin-1 (Sin1) as a conserved diatom membrane protein present in silica deposition vesicles (SDVs) of Thalassiosira pseudonana. Fluorescence microscopy of GFP-tagged Sin1 enabled, for the first time, to follow the intracellular locations of a biomineralization protein during silica biogenesis in vivo. The analysis revealed incorporation of the N-terminal domain of Sin1 into the biosilica via association with the organic matrix inside the SDVs. In vitro experiments showed that the recombinant N-terminal domain of Sin1 undergoes pH-triggered assembly into large clusters, and promotes silica formation by synergistic interaction with long-chain polyamines. CONCLUSIONS: Sin1 is the first identified SDV transmembrane protein, and is highly conserved throughout the diatom realm, which suggests a fundamental role in the biomineralization of diatom silica. Through interaction with long-chain polyamines, Sin1 could serve as a molecular link by which the SDV membrane exerts control on the assembly of biosilica-forming organic matrices in the SDV lumen.


Assuntos
Diatomáceas/genética , Diatomáceas/metabolismo , Proteínas de Membrana/genética , RNA de Algas/genética , Dióxido de Silício/metabolismo , Proteínas de Membrana/metabolismo , RNA de Algas/metabolismo
16.
Biophys J ; 113(6): 1280-1289, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28629619

RESUMO

Structural and dynamic investigations of unfolded proteins are important for understanding protein-folding mechanisms as well as the interactions of unfolded polypeptide chains with other cell components. In the case of outer-membrane proteins (OMPs), unfolded-state properties are of particular physiological relevance, because these proteins remain unfolded for extended periods of time during their biogenesis and rely on interactions with binding partners to support proper folding. Using a combination of ensemble and single-molecule spectroscopy, we have scrutinized the unfolded state of outer-membrane phospholipase A (OmpLA) to provide a detailed view of its structural dynamics on timescales from nanoseconds to milliseconds. We find that even under strongly denaturing conditions and in the absence of residual secondary structure, OmpLA populates an ensemble of slowly (>100 ms) interconverting and conformationally heterogeneous unfolded states that lack the fast chain-reconfiguration motions expected for an unstructured, fully unfolded chain. The drastically slowed sampling of potentially folding-competent states, as compared with a random-coil polypeptide, may contribute to the slow in vitro folding kinetics observed for many OMPs. In vivo, however, slow intramolecular long-range dynamics might be advantageous for entropically favored binding of unfolded OMPs to chaperones and, by facilitating conformational selection after release from chaperones, for preserving binding-competent conformations before insertion into the outer membrane.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Fosfolipases A1/química , Desdobramento de Proteína , Proteínas da Membrana Bacteriana Externa/metabolismo , Dicroísmo Circular , Escherichia coli , Cinética , Fosfolipases A1/metabolismo , Estrutura Secundária de Proteína , Espectrometria de Fluorescência
17.
J Am Chem Soc ; 139(30): 10184-10187, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28682611

RESUMO

Two-photon excitation provides high spatial resolution in three dimensions of the corresponding chemical or physical processes, allowing submicrometer structuring in stereolithography and three-dimensional (3D) microfabrication. While studying two-photon structuring applications, we observed an undescribed phenomenon in photochemistry that dictates reactivity of maleimide groups in two-photon mode. A low-absorbance transition formerly ignored in classical photochemistry has been found for maleimides. This transition was assigned to symmetry-breaking donor-acceptor complex formation, which revealed a formally forbidden pathway in [2+2] cycloaddition reactions of maleimide moieties. This synthetic pathway allowed for the creation of hydrogel materials under physiological conditions at low laser excitation energy (0.1 J/cm2 at 800 nm) without the use of photoinitiators, which makes it truly two-photon click chemistry.

18.
Small ; 13(44)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29024433

RESUMO

The stability of DNA origami nanostructures under various environmental conditions constitutes an important issue in numerous applications, including drug delivery, molecular sensing, and single-molecule biophysics. Here, the effect of Na+ and Mg2+ concentrations on DNA origami stability is investigated in the presence of urea and guanidinium chloride (GdmCl), two strong denaturants commonly employed in protein folding studies. While increasing concentrations of both cations stabilize the DNA origami nanostructures against urea denaturation, they are found to promote DNA origami denaturation by GdmCl. These inverse behaviors are rationalized by a salting-out of Gdm+ to the hydrophobic DNA base stack. The effect of cation-induced DNA origami denaturation by GdmCl deserves consideration in the design of single-molecule studies and may potentially be exploited in future applications such as selective denaturation for purification purposes.


Assuntos
DNA/química , Guanidina/farmacologia , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Ureia/farmacologia , Cátions , Microscopia de Força Atômica , Temperatura de Transição
19.
Nucleic Acids Res ; 43(1): 396-405, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25477384

RESUMO

DNA replication initiation is mediated across all domains of life by initiator proteins oligomerizing at replication origins. Recently, it was shown that initiators can directly bind single-stranded DNA (ssDNA) and thus might enhance origin melting. In this study, we used single-molecule fluorescence assays to probe the ssDNA binding mechanism of the replication initiator DnaA. Our experiments revealed that DnaA forms a dynamic filament on ssDNA in 3' to 5' directionality in the presence of ATP and analogs. After nucleation with a three-monomer seed, monomers dynamically assemble and disassemble one monomer at a time at the 5' end, each monomer binding three nucleotides of ssDNA. The addition of adjacent double-stranded DnaA binding sites stabilized the DnaA filament on ssDNA. Our results extend the current models of origin melting via DnaA ssDNA interaction.


Assuntos
Proteínas de Bactérias/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ligação Proteica , Origem de Replicação
20.
Nano Lett ; 16(1): 381-6, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26632021

RESUMO

We present a hybrid single-molecule technique combining magnetic tweezers and Förster resonance energy transfer (FRET) measurements. Through applying external forces to a paramagnetic sphere, we induce conformational changes in DNA nanostructures, which are detected in two output channels simultaneously. First, by tracking a magnetic bead with high spatial and temporal resolution, we observe overall DNA length changes along the force axis. Second, the measured FRET efficiency between two fluorescent probes monitors local conformational changes. The synchronized orthogonal readout in different observation channels will facilitate deciphering the complex mechanisms of biomolecular machines.


Assuntos
DNA/química , Nanoestruturas/química , Nanotecnologia , Conformação de Ácido Nucleico , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Magnetismo , Pinças Ópticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA