Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 57(5): 973-986.e7, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38697117

RESUMO

The ubiquitin-binding endoribonuclease N4BP1 potently suppresses cytokine production by Toll-like receptors (TLRs) that signal through the adaptor MyD88 but is inactivated via caspase-8-mediated cleavage downstream of death receptors, TLR3, or TLR4. Here, we examined the mechanism whereby N4BP1 limits inflammatory responses. In macrophages, deletion of N4BP1 prolonged activation of inflammatory gene transcription at late time points after TRIF-independent TLR activation. Optimal suppression of inflammatory cytokines by N4BP1 depended on its ability to bind polyubiquitin chains, as macrophages and mice-bearing inactivating mutations in a ubiquitin-binding motif in N4BP1 displayed increased TLR-induced cytokine production. Deletion of the noncanonical IκB kinases (ncIKKs), Tbk1 and Ikke, or their adaptor Tank phenocopied N4bp1 deficiency and enhanced macrophage responses to TLR1/2, TLR7, or TLR9 stimulation. Mechanistically, N4BP1 acted in concert with the ncIKKs to limit the duration of canonical IκB kinase (IKKα/ß) signaling. Thus, N4BP1 and the ncIKKs serve as an important checkpoint against over-exuberant innate immune responses.


Assuntos
Endorribonucleases , Quinase I-kappa B , Inflamação , Macrófagos , Proteínas Serina-Treonina Quinases , Receptores Toll-Like , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Citocinas/metabolismo , Endorribonucleases/metabolismo , Endorribonucleases/genética , Quinase I-kappa B/metabolismo , Quinase I-kappa B/genética , Inflamação/imunologia , Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Receptores Toll-Like/metabolismo , Ubiquitina/metabolismo
2.
Nature ; 602(7896): 328-335, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34933320

RESUMO

Mutations in the protein kinase PINK1 lead to defects in mitophagy and cause autosomal recessive early onset Parkinson's disease1,2. PINK1 has many unique features that enable it to phosphorylate ubiquitin and the ubiquitin-like domain of Parkin3-9. Structural analysis of PINK1 from diverse insect species10-12 with and without ubiquitin provided snapshots of distinct structural states yet did not explain how PINK1 is activated. Here we elucidate the activation mechanism of PINK1 using crystallography and cryo-electron microscopy (cryo-EM). A crystal structure of unphosphorylated Pediculus humanus corporis (Ph; human body louse) PINK1 resolves an N-terminal helix, revealing the orientation of unphosphorylated yet active PINK1 on the mitochondria. We further provide a cryo-EM structure of a symmetric PhPINK1 dimer trapped during the process of trans-autophosphorylation, as well as a cryo-EM structure of phosphorylated PhPINK1 undergoing a conformational change to an active ubiquitin kinase state. Structures and phosphorylation studies further identify a role for regulatory PINK1 oxidation. Together, our research delineates the complete activation mechanism of PINK1, illuminates how PINK1 interacts with the mitochondrial outer membrane and reveals how PINK1 activity may be modulated by mitochondrial reactive oxygen species.


Assuntos
Proteínas de Insetos , Pediculus , Proteínas Quinases , Animais , Microscopia Crioeletrônica , Proteínas de Insetos/metabolismo , Mitocôndrias , Mitofagia , Fosforilação , Conformação Proteica , Proteínas Quinases/metabolismo , Ubiquitina/metabolismo
3.
Nature ; 587(7833): 275-280, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32971525

RESUMO

Mutations in the death receptor FAS1,2 or its ligand FASL3 cause autoimmune lymphoproliferative syndrome, whereas mutations in caspase-8 or its adaptor FADD-which mediate cell death downstream of FAS and FASL-cause severe immunodeficiency in addition to autoimmune lymphoproliferative syndrome4-6. Mouse models have corroborated a role for FADD-caspase-8 in promoting inflammatory responses7-12, but the mechanisms that underlie immunodeficiency remain undefined. Here we identify NEDD4-binding protein 1 (N4BP1) as a suppressor of cytokine production that is cleaved and inactivated by caspase-8. N4BP1 deletion in mice increased the production of select cytokines upon stimulation of the Toll-like receptor (TLR)1-TLR2 heterodimer (referred to herein as TLR1/2), TLR7 or TLR9, but not upon engagement of TLR3 or TLR4. N4BP1 did not suppress TLR3 or TLR4 responses in wild-type macrophages, owing to TRIF- and caspase-8-dependent cleavage of N4BP1. Notably, the impaired production of cytokines in response to TLR3 and TLR4 stimulation of caspase-8-deficient macrophages13 was largely rescued by co-deletion of N4BP1. Thus, the persistence of intact N4BP1 in caspase-8-deficient macrophages impairs their ability to mount robust cytokine responses. Tumour necrosis factor (TNF), like TLR3 or TLR4 agonists, also induced caspase-8-dependent cleavage of N4BP1, thereby licensing TRIF-independent TLRs to produce higher levels of inflammatory cytokines. Collectively, our results identify N4BP1 as a potent suppressor of cytokine responses; reveal N4BP1 cleavage by caspase-8 as a point of signal integration during inflammation; and offer an explanation for immunodeficiency caused by mutations of FADD and caspase-8.


Assuntos
Caspase 8/metabolismo , Citocinas/imunologia , Imunidade Inata/imunologia , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Células Cultivadas , Citocinas/antagonistas & inibidores , Humanos , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
4.
EMBO J ; 39(15): e105127, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32567101

RESUMO

Manipulation of host ubiquitin signaling is becoming an increasingly apparent evolutionary strategy among bacterial and viral pathogens. By removing host ubiquitin signals, for example, invading pathogens can inactivate immune response pathways and evade detection. The ovarian tumor (OTU) family of deubiquitinases regulates diverse ubiquitin signals in humans. Viral pathogens have also extensively co-opted the OTU fold to subvert host signaling, but the extent to which bacteria utilize the OTU fold was unknown. We have predicted and validated a set of OTU deubiquitinases encoded by several classes of pathogenic bacteria. Biochemical assays highlight the ubiquitin and polyubiquitin linkage specificities of these bacterial deubiquitinases. By determining the ubiquitin-bound structures of two examples, we demonstrate the novel strategies that have evolved to both thread an OTU fold and recognize a ubiquitin substrate. With these new examples, we perform the first cross-kingdom structural analysis of the OTU fold that highlights commonalities among distantly related OTU deubiquitinases.


Assuntos
Proteínas de Bactérias , Enzimas Desubiquitinantes , Legionella/enzimologia , Dobramento de Proteína , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Enzimas Desubiquitinantes/química , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Legionella/genética , Poliubiquitina/química , Poliubiquitina/genética , Poliubiquitina/metabolismo , Especificidade por Substrato
5.
Nature ; 552(7683): 51-56, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29160309

RESUMO

Autosomal-recessive juvenile Parkinsonism (AR-JP) is caused by mutations in a number of PARK genes, in particular the genes encoding the E3 ubiquitin ligase Parkin (PARK2, also known as PRKN) and its upstream protein kinase PINK1 (also known as PARK6). PINK1 phosphorylates both ubiquitin and the ubiquitin-like domain of Parkin on structurally protected Ser65 residues, triggering mitophagy. Here we report a crystal structure of a nanobody-stabilized complex containing Pediculus humanus corporis (Ph)PINK1 bound to ubiquitin in the 'C-terminally retracted' (Ub-CR) conformation. The structure reveals many peculiarities of PINK1, including the architecture of the C-terminal region, and reveals how the N lobe of PINK1 binds ubiquitin via a unique insertion. The flexible Ser65 loop in the Ub-CR conformation contacts the activation segment, facilitating placement of Ser65 in a phosphate-accepting position. The structure also explains how autophosphorylation in the N lobe stabilizes structurally and functionally important insertions, and reveals the molecular basis of AR-JP-causing mutations, some of which disrupt ubiquitin binding.


Assuntos
Pediculus/enzimologia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Animais , Sítios de Ligação , Cristalografia por Raios X , Mitofagia , Modelos Moleculares , Mutação , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/imunologia , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/imunologia
7.
EMBO J ; 36(24): 3555-3572, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29133469

RESUMO

The Ser/Thr protein kinase PINK1 phosphorylates the well-folded, globular protein ubiquitin (Ub) at a relatively protected site, Ser65. We previously showed that Ser65 phosphorylation results in a conformational change in which Ub adopts a dynamic equilibrium between the known, common Ub conformation and a distinct, second conformation wherein the last ß-strand is retracted to extend the Ser65 loop and shorten the C-terminal tail. We show using chemical exchange saturation transfer (CEST) nuclear magnetic resonance experiments that a similar, C-terminally retracted (Ub-CR) conformation also exists at low population in wild-type Ub. Point mutations in the moving ß5 and neighbouring ß-strands shift the Ub/Ub-CR equilibrium. This enabled functional studies of the two states, and we show that while the Ub-CR conformation is defective for conjugation, it demonstrates improved binding to PINK1 through its extended Ser65 loop, and is a superior PINK1 substrate. Together our data suggest that PINK1 utilises a lowly populated yet more suitable Ub-CR conformation of Ub for efficient phosphorylation. Our findings could be relevant for many kinases that phosphorylate residues in folded protein domains.


Assuntos
Proteínas Quinases/metabolismo , Ubiquitina/metabolismo , Cristalização , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Modelos Estruturais , Conformação Molecular , Fosforilação , Mutação Puntual , Domínios Proteicos , Proteínas Quinases/genética , Estabilidade Proteica , Especificidade por Substrato , Ubiquitina/química , Ubiquitina/genética
8.
Cell Host Microbe ; 29(10): 1521-1530.e10, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34492225

RESUMO

The pore-forming protein gasdermin D (GSDMD) executes lytic cell death called pyroptosis to eliminate the replicative niche of intracellular pathogens. Evolution favors pathogens that circumvent this host defense mechanism. Here, we show that the Shigella ubiquitin ligase IpaH7.8 functions as an inhibitor of GSDMD. Shigella is an enteroinvasive bacterium that causes hemorrhagic gastroenteritis in primates, but not rodents. IpaH7.8 contributes to species specificity by ubiquitinating human, but not mouse, GSDMD and targeting it for proteasomal degradation. Accordingly, infection of human epithelial cells with IpaH7.8-deficient Shigella flexneri results in increased GSDMD-dependent cell death compared with wild type. Consistent with pyroptosis contributing to murine disease resistance, eliminating GSDMD from NLRC4-deficient mice, which are already sensitized to oral infection with Shigella flexneri, leads to further enhanced bacterial replication and increased disease severity. This work highlights a species-specific pathogen arms race focused on maintenance of host cell viability.


Assuntos
Proteínas de Bactérias/metabolismo , Disenteria Bacilar/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Shigella flexneri/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas de Bactérias/genética , Disenteria Bacilar/genética , Disenteria Bacilar/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Feminino , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Camundongos Knockout , Proteínas de Ligação a Fosfato/genética , Proteínas Citotóxicas Formadoras de Poros/genética , Proteólise , Shigella flexneri/genética , Shigella flexneri/fisiologia , Ubiquitina-Proteína Ligases/genética
9.
Nat Struct Mol Biol ; 24(11): 920-930, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28945249

RESUMO

Damaged mitochondria undergo mitophagy, a specialized form of autophagy that is initiated by the protein kinase PINK1 and the ubiquitin E3 ligase Parkin. Ubiquitin-specific protease USP30 antagonizes Parkin-mediated ubiquitination events on mitochondria and is a key negative regulator of mitophagy. Parkin and USP30 both show a preference for assembly or disassembly, respectively, of Lys6-linked polyubiquitin, a chain type that has not been well studied. Here we report crystal structures of human USP30 bound to monoubiquitin and Lys6-linked diubiquitin, which explain how USP30 achieves Lys6-linkage preference through unique ubiquitin binding interfaces. We assess the interplay between USP30, PINK1 and Parkin and show that distally phosphorylated ubiquitin chains impair USP30 activity. Lys6-linkage-specific affimers identify numerous mitochondrial substrates for this modification, and we show that USP30 regulates Lys6-polyubiquitinated TOM20. Our work provides insights into the architecture, activity and regulation of USP30, which will aid drug design against this and related enzymes.


Assuntos
Enzimas Desubiquitinantes/química , Enzimas Desubiquitinantes/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Humanos , Ligação Proteica , Proteínas Quinases/metabolismo , Especificidade por Substrato , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA