Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(48): 26016-26027, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37976467

RESUMO

Proton transfer is critically important to many electrocatalytic reactions, and directed proton delivery could open new avenues for the design of electrocatalysts. However, although this approach has been successful in molecular electrocatalysis, proton transfer has not received the same attention in heterogeneous electrocatalyst design. Here, we report that a metal oxide proton relay can be built within heterogeneous electrocatalyst architectures and improves the kinetics of electrochemical hydrogen evolution and oxidation reactions. The volcano-type relationship between activity enhancement and pKa of amine additives confirms this improvement; we observe maximum rate enhancement when the pKa of a proton relay matches the pH of the electrolyte solution. Density-functional-theory-based reactivity studies reveal a decreased proton transfer energy barrier with a metal oxide proton relay. These findings demonstrate the possibility of controlling the proton delivery and enhancing the reaction kinetics by tuning the chemical properties and structures at heterogeneous interfaces.

2.
Nano Lett ; 21(11): 4517-4523, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34018760

RESUMO

The conventional thermal treatment systems typically feature low ramping/cooling rates, which lead to steep thermal gradients that generate inefficient, nonuniform reaction conditions and result in nanoparticle aggregation. Herein, we demonstrate a continuous fly-through material synthesis approach using a novel high-temperature reactor design based on the emerging thermal-shock technology. By facing two sheets of carbon paper with a small distance apart (1-3 mm), uniform and ultrahigh temperatures can be reached up to 3200 K within 50 ms by simply applying a voltage of 15 V. The raw materials can be continuously fed through the device, allowing the final products to be rapidly collected. As a proof-of-concept demonstration, we synthesized Pt nanocatalysts (∼4 nm) anchored on carbon black via this reactor at ∼1400 K. Furthermore, we find it features excellent electrocatalytic activities toward methanol oxidation reaction. This work offers a highly efficient platform for nanomaterials synthesis at high temperatures.

3.
J Am Chem Soc ; 142(29): 12613-12619, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32090553

RESUMO

The low-cost hydrogen production from water electrolysis is crucial to the deployment of sustainable hydrogen economy but is currently constrained by the lack of active and robust electrocatalysts from earth-abundant materials. We describe here an unconventional heterostructure composed of strongly coupled Ni-deficient LixNiO nanoclusters and polycrystalline Ni nanocrystals and its exceptional activities toward the hydrogen evolution reaction (HER) in aqueous electrolytes. The presence of lattice oxygen species with strong Brønsted basicity is a significant feature in such heterostructure, which spontaneously split water molecules for accelerated Volmer H-OH dissociation in neutral and alkaline HER. In combination with the intimate LixNiO and Ni interfacial junctions that generate localized hotspots for promoted hydride coupling and hydrogen desorption, the catalysts produce hydrogen at a current density of 10 mA cm-2 under overpotentials of only 20, 50, and 36 mV in acidic, neutral, and alkaline electrolytes, respectively, making them among the most active Pt-free catalysts developed thus far. In addition, such heterostructures also exhibited superior activity toward the hydrogen oxidation reaction in alkaline electrolytes.

4.
Nano Lett ; 17(3): 1602-1609, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28165750

RESUMO

Li-ion batteries (LIB) have been successfully commercialized after the identification of ethylene-carbonate (EC)-containing electrolyte that can form a stable solid electrolyte interphase (SEI) on carbon anode surface to passivate further side reactions but still enable the transportation of the Li+ cation. These electrolytes are still utilized, with only minor changes, after three decades. However, the long-term cycling of LIB leads to continuous consumption of electrolyte and growth of SEI layer on the electrode surface, which limits the battery's life and performance. Herein, a new anode protection mechanism is reported in which, upon changing of the cell potential, the electrolyte components at the electrode-electrolyte interface reorganize reversibly to form a transient protective surface layers on the anode. This layer will disappear after the applied potential is removed so that no permanent SEI layer is required to protect the carbon anode. This phenomenon minimizes the need for a permanent SEI layer and prevents its continuous growth and therefore may lead to largely improved performance for LIBs.

5.
Nano Lett ; 17(5): 3061-3067, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28448154

RESUMO

Li-S batteries have been extensively studied using rigid carbon as the host for sulfur encapsulation, but improving the properties with a reduced electrolyte amount remains a significant challenge. This is critical for achieving high energy density. Here, we developed a soft PEO10LiTFSI polymer swellable gel as a nanoscale reservoir to trap the polysulfides under lean electrolyte conditions. The PEO10LiTFSI gel immobilizes the electrolyte and confines polysulfides within the ion conducting phase. The Li-S cell with a much lower electrolyte to sulfur ratio (E/S) of 4 gE/gS (3.3 mLE/gS) could deliver a capacity of 1200 mA h/g, 4.6 mA h/cm2, and good cycle life. The accumulation of polysulfide reduction products, such as Li2S, on the cathode, is identified as the potential mechanism for capacity fading under lean electrolyte conditions.

6.
J Am Chem Soc ; 139(40): 14143-14149, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28901758

RESUMO

It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). Here, we report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles is tunable through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. Using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe3+ to Fe2+) likely bonded with pyridinic N (FeN4) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe-N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M H2SO4), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 µgPt/cm2). Enhanced stability is attained with the same catalyst, which loses only 20 mV after 10 000 potential cycles (0.6-1.0 V) in O2 saturated acid. The high-performance atomic Fe PGM-free catalyst holds great promise as a replacement for Pt in future PEMFCs.

7.
Nano Lett ; 15(2): 1177-82, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25531653

RESUMO

Magnesium is of great interest as a replacement for lithium in next-generation ion-transfer batteries but Mg-metal anodes currently face critical challenges related to the formation of passivating layers during Mg-plating/stripping and anode-electrolyte-cathode incompatibilities. Alternative anode materials have the potential to greatly extend the spectrum of suitable electrolyte chemistries but must be systematically tailored for effective Mg(2+) storage. Using analytical (scanning) transmission electron microscopy ((S)TEM) and ab initio modeling, we have investigated Mg(2+) insertion and extraction mechanisms and transformation processes in ß-SnSb nanoparticles (NPs), a promising Mg-alloying anode material. During the first several charge-discharge cycles (conditioning), the ß-SnSb particles irreversibly transform into a porous network of pure-Sn and Sb-rich subparticles, as Mg ions replace Sn atoms in the SnSb lattice. After electrochemical conditioning, small Sn particles/grains (<33 ± 20 nm) exhibit highly reversible Mg-storage, while the Sb-rich domains suffer substantial Mg trapping and contribute little to the system performance. This result strongly indicates that pure Sn can act as a high-capacity Mg-insertion anode as theoretically predicted, but that its performance is strongly size-dependent, and stable nanoscale Sn morphologies (<40 nm) are needed for superior, reversible Mg-storage and fast system kinetics.

8.
Angew Chem Int Ed Engl ; 55(21): 6244-7, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27071488

RESUMO

Intercalation and conversion are two fundamental chemical processes for battery materials in response to ion insertion. The interplay between these two chemical processes has never been directly seen and understood at atomic scale. Here, using in situ HRTEM, we captured the atomistic conversion reaction processes during Li, Na, Ca insertion into a WO3 single crystal model electrode. An intercalation step prior to conversion is explicitly revealed at atomic scale for the first time for Li, Na, Ca. Nanoscale diffraction and ab initio molecular dynamic simulations revealed that after intercalation, the inserted ion-oxygen bond formation destabilizes the transition-metal framework which gradually shrinks, distorts and finally collapses to an amorphous W and Mx O (M=Li, Na, Ca) composite structure. This study provides a full atomistic picture of the transition from intercalation to conversion, which is of essential importance for both secondary ion batteries and electrochromic devices.

9.
Phys Chem Chem Phys ; 17(20): 13307-14, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25920549

RESUMO

A novel [Mg2(µ-Cl)2](2+) cation complex, which is highly active for reversible Mg electrodeposition, was identified for the first time in this work. This complex was found to be present in electrolytes formulated in dimethoxyethane (DME) through dehalodimerization of non-nucleophilic MgCl2 by reacting with either Mg salts (such as Mg(TFSI)2, TFSI = bis(trifluoromethane)sulfonylimide) or Lewis acid salts (such as AlEtCl2 or AlCl3). The molecular structure of the cation complex was characterized by single crystal X-ray diffraction, Raman spectroscopy and NMR. The electrolyte synthesis process was studied and rational approaches for formulating highly active electrolytes were proposed. Through control of the anions, electrolytes with an efficiency close to 100%, a wide electrochemical window (up to 3.5 V) and a high ionic conductivity (>6 mS cm(-1)) were obtained. The understanding of electrolyte synthesis in DME developed in this work could bring significant opportunities for the rational formulation of electrolytes of the general formula [Mg2(µ-Cl)2][anion]x for practical Mg batteries.

10.
Nano Lett ; 14(1): 255-60, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24279987

RESUMO

Rechargeable magnesium batteries have attracted wide attention for energy storage. Currently, most studies focus on Mg metal as the anode, but this approach is still limited by the properties of the electrolyte and poor control of the Mg plating/stripping processes. This paper reports the synthesis and application of Bi nanotubes as a high-performance anode material for rechargeable Mg ion batteries. The nanostructured Bi anode delivers a high reversible specific capacity (350 mAh/gBi or 3430 mAh/cm(3)Bi), excellent stability, and high Coulombic efficiency (95% initial and very close to 100% afterward). The good performance is attributed to the unique properties of in situ formed, interconnected nanoporous bismuth. Such nanostructures can effectively accommodate the large volume change without losing electric contact and significantly reduce diffusion length for Mg(2+). Significantly, the nanostructured Bi anode can be used with conventional electrolytes which will open new opportunities to study Mg ion battery chemistry and further improve its properties.

11.
Nano Lett ; 13(3): 1330-5, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23398147

RESUMO

Employing electrolytes containing Bi(3+), bismuth nanoparticles are synchronously electrodeposited onto the surface of a graphite felt electrode during operation of an all-vanadium redox flow battery (VRFB). The influence of the Bi nanoparticles on the electrochemical performance of the VRFB is thoroughly investigated. It is confirmed that Bi is only present at the negative electrode and facilitates the redox reaction between V(II) and V(III). However, the Bi nanoparticles significantly improve the electrochemical performance of VRFB cells by enhancing the kinetics of the sluggish V(II)/V(III) redox reaction, especially under high power operation. The energy efficiency is increased by 11% at high current density (150 mA·cm(-2)) owing to faster charge transfer as compared with one without Bi. The results suggest that using Bi nanoparticles in place of noble metals offers great promise as high-performance electrodes for VRFB application.

12.
Nano Lett ; 13(11): 5203-11, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24079296

RESUMO

Nonlithium metals such as sodium have attracted wide attention as a potential charge carrying ion for rechargeable batteries. Using in situ transmission electron microscopy in combination with density functional theory calculations, we probed the structural and chemical evolution of SnO2 nanowire anodes in Na-ion batteries and compared them quantitatively with results from Li-ion batteries (Huang, J. Y.; et al. Science 2010, 330, 1515 - 1520). Upon Na insertion into SnO2, a displacement reaction occurs, leading to the formation of amorphous NaxSn nanoparticles dispersed in Na2O matrix. With further Na insertion, the NaxSn crystallized into Na15Sn4 (x = 3.75). Upon extraction of Na (desodiation), the NaxSn transforms to Sn nanoparticles. Associated with the dealloying, pores are found to form, leading to a structure of Sn particles confined in a hollow matrix of Na2O. These pores greatly increase electrical impedance, therefore accounting for the poor cyclability of SnO2. DFT calculations indicate that Na(+) diffuses 30 times slower than Li(+) in SnO2, in agreement with in situ TEM measurement. Insertion of Na can chemomechanically soften the reaction product to a greater extent than in lithiation. Therefore, in contrast to the lithiation of SnO2 significantly less dislocation plasticity was seen ahead of the sodiation front. This direct comparison of the results from Na and Li highlights the critical role of ionic size and electronic structure of different ionic species on the charge/discharge rate and failure mechanisms in these batteries.

13.
Nano Lett ; 13(8): 3909-14, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23879207

RESUMO

Sodium ion (Na(+)) batteries have attracted increased attention for energy storage due to the natural abundance of sodium, but their development is hindered by poor intercalation property of Na(+) in electrodes. This paper reports a detailed study of high capacity, high rate sodium ion energy storage in functionalized high-surface-area nanocellular carbon foams (NCCF). The energy storage mechanism is surface-driven reactions between Na(+) and oxygen-containing functional groups on the surface of NCCF. The surface reaction, rather than a Na(+) bulk intercalation reaction, leads to high rate performance and cycling stability due to the enhanced reaction kinetics and the absence of electrode structure change. The NCCF makes more surface area and surface functional groups available for the Na(+) reaction. It delivers 152 mAh/g capacity at the rate of 0.1 A/g and a capacity retention of 90% for over 1600 cycles.

14.
J Am Chem Soc ; 135(11): 4450-6, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23448508

RESUMO

Rechargeable lithium metal batteries are considered the "Holy Grail" of energy storage systems. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) has prevented their practical application over the past 40 years. We show a novel mechanism that can fundamentally alter dendrite formation. At low concentrations, selected cations (such as cesium or rubidium ions) exhibit an effective reduction potential below the standard reduction potential of lithium ions. During lithium deposition, these additive cations form a positively charged electrostatic shield around the initial growth tip of the protuberances without reduction and deposition of the additives. This forces further deposition of lithium to adjacent regions of the anode and eliminates dendrite formation in lithium metal batteries. This strategy may also prevent dendrite growth in lithium-ion batteries as well as other metal batteries and transform the surface uniformity of coatings deposited in many general electrodeposition processes.

15.
Nanotechnology ; 24(42): 424004, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24067410

RESUMO

The lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles, including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electric vehicles. With the increasing demand for devices of high-energy densities (>500 Wh kg(-1)), new energy storage systems, such as lithium-oxygen (Li-O2) batteries and other emerging systems beyond the conventional LIB, have attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performance of these energy storage systems depends not only on the composition of the materials, but also on the structure of the electrode materials used in the batteries. Although the desired performance characteristics of batteries often have conflicting requirements with the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflicting requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li-O2 batteries. Our goal is to elucidate (1) how to realize the full potential of energy materials through the manipulation of morphologies, and (2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties and prolongs the electrode stability and battery lifetime.

16.
J Biomater Appl ; 36(10): 1812-1825, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35232312

RESUMO

Diseases caused by bacterial infections pose ever-increasing threats to human health, making it important to explore alternative antibacterial strategies. Herein, epigallocatechin gallate (EGCG) surface-modified Au nanorods@selenium composites (ASE NPs) were developed for synergistic NIR-II light-responsive antibacterial therapy. In vitro antibacterial experiments demonstrated the improved antibacterial effect of ASE NPs against Staphylococcus aureus (S. aureus) compared with EGCG alone. In addition, in vivo studies demonstrated that ASE NPs cured skin wound infections and sepsis in mice caused by S. aureus. Au nanorods with excellent photothermal conversion realized synergistic photothermal therapy (PTT) in the NIR-II biowindow with an improved penetration depth at a low power density. More importantly, toxicity analysis showed that the composites had no toxic effects on major organs. Thus, the EGCG surface-modified Au nanorods@selenium composites with an NIR-II light-responsive synergistic activity hold great promise for the effective treatment of drug-resistant bacterial infections.


Assuntos
Nanotubos , Selênio , Animais , Antibacterianos/farmacologia , Catequina/análogos & derivados , Ouro , Camundongos , Staphylococcus aureus
17.
J Am Chem Soc ; 133(8): 2541-7, 2011 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-21302925

RESUMO

Carbon-supported precious metal catalysts are widely used in heterogeneous catalysis and electrocatalysis, and enhancement of catalyst dispersion and stability by controlling the interfacial structure is highly desired. Here we report a new method to deposit metal oxides and metal nanoparticles on graphene and form stable metal-metal oxide-graphene triple junctions for electrocatalysis applications. We first synthesize indium tin oxide (ITO) nanocrystals directly on functionalized graphene sheets, forming an ITO-graphene hybrid. Platinum nanoparticles are then deposited, forming a unique triple-junction structure (Pt-ITO-graphene). Our experimental work and periodic density functional theory (DFT) calculations show that the supported Pt nanoparticles are more stable at the Pt-ITO-graphene triple junctions. Furthermore, DFT calculations suggest that the defects and functional groups on graphene also play an important role in stabilizing the catalysts. These new catalyst materials were tested for oxygen reduction for potential applications in polymer electrolyte membrane fuel cells, and they exhibited greatly enhanced stability and activity.


Assuntos
Grafite/química , Nanopartículas Metálicas/química , Platina/química , Compostos de Estanho/química , Catálise , Eletroquímica , Modelos Moleculares , Tamanho da Partícula , Teoria Quântica , Propriedades de Superfície , Compostos de Estanho/síntese química
18.
Anal Chem ; 83(3): 746-52, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21210663

RESUMO

P53 phosphorylation plays an important role in many biological processes and might be used as a potential biomarker in clinical diagnoses. We report a new electrochemical immunosensor for ultrasensitive detection of phosphorylated p53 at Ser392 (phospho-p53(392)) based on graphene oxide (GO) as a nanocarrier in a multienzyme amplification strategy. Greatly enhanced sensitivity was achieved by using the bioconjugates featuring horseradish peroxidase (HRP) and p53(392) signal antibody (p53(392)Ab(2)) linked to functionalized GO (HRP-p53(392)Ab(2)-GO) at a high ratio of HRP/p53(392)Ab(2). After a sandwich immunoreaction, the HRP-p53(392)Ab(2)-GO captured onto the electrode surface produced an amplified electrocatalytic response by the reduction of enzymatically oxidized thionine in the presence of hydrogen peroxide. The increase of response current was proportional to the phospho-p53(392) concentration in the range of 0.02-2 nM with the detection limit of 0.01 nM, which was 10-fold lower than that of the traditional sandwich electrochemical measurement for p53(392). The amplified immunoassay developed in this work shows acceptable stability and reproducibility, and the assay results for phospho-p53(392) spiked in human plasma also show good recovery (92-103.8%). This simple and low-cost immunosensor shows great promise for detection of other phosphorylated proteins and clinical applications.


Assuntos
Eletroquímica/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Grafite/química , Nanoestruturas/química , Óxidos/química , Fosfosserina/análise , Proteína Supressora de Tumor p53/análise , Humanos , Microscopia Eletrônica de Transmissão , Mutação , Nanoestruturas/ultraestrutura , Proteína Supressora de Tumor p53/genética
19.
Phys Chem Chem Phys ; 13(34): 15384-402, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21799983

RESUMO

Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems.

20.
Adv Mater ; 33(6): e1908232, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32240570

RESUMO

Fuel cells as an attractive clean energy technology have recently regained popularity in academia, government, and industry. In a mainstream proton exchange membrane (PEM) fuel cell, platinum-group-metal (PGM)-based catalysts account for ≈50% of the projected total cost for large-scale production. To lower the cost, two materials-based strategies have been pursued: 1) to decrease PGM catalyst usage (so-called low-PGM catalysts), and 2) to develop alternative PGM-free catalysts. Grand stability challenges exist when PGM catalyst loading is decreased in a membrane electrode assembly (MEA)-the power generation unit of a PEM fuel cell-or when PGM-free catalysts are integrated into an MEA. More importantly, there is a significant knowledge gap between materials innovation and device integration. For example, high-performance electrocatalysts usually demonstrate undesired quick degradation in MEAs. This issue significantly limits the development of PEM fuel cells. Herein, recent progress in understanding the degradation of low-PGM and PGM-free catalysts in fuel cell MEAs and materials-based solutions to address these issues are reviewed. The key factors that degrade the MEA performance are highlighted. Innovative, emerging material concepts and development of low-PGM and PGM-free catalysts are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA