RESUMO
Humans are thought to be more susceptible to neurodegeneration than equivalently-aged primates. It is not known whether this vulnerability is specific to anatomically-modern humans or shared with other hominids. The contribution of introgressed Neanderthal DNA to neurodegenerative disorders remains uncertain. It is also unclear how common variants associated with neurodegenerative disease risk are maintained by natural selection in the population despite their deleterious effects. In this study, we aimed to quantify the genome-wide contribution of Neanderthal introgression and positive selection to the heritability of complex neurodegenerative disorders to address these questions. We used stratified-linkage disequilibrium score regression to investigate the relationship between five SNP-based signatures of natural selection, reflecting different timepoints of evolution, and genome-wide associated variants of the three most prevalent neurodegenerative disorders: Alzheimer's disease, amyotrophic lateral sclerosis and Parkinson's disease. We found no evidence for enrichment of positively-selected SNPs in the heritability of Alzheimer's disease, amyotrophic lateral sclerosis and Parkinson's disease, suggesting that common deleterious disease variants are unlikely to be maintained by positive selection. There was no enrichment of Neanderthal introgression in the SNP-heritability of these disorders, suggesting that Neanderthal admixture is unlikely to have contributed to disease risk. These findings provide insight into the origins of neurodegenerative disorders within the evolution of Homo sapiens and addresses a long-standing debate, showing that Neanderthal admixture is unlikely to have contributed to common genetic risk of neurodegeneration in anatomically-modern humans.
Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Homem de Neandertal , Doenças Neurodegenerativas , Doença de Parkinson , Animais , Humanos , Homem de Neandertal/genética , Doenças Neurodegenerativas/genética , Seleção GenéticaRESUMO
A rare lysosomal disease resembling a mucopolysaccharidosis with unusual systemic features, including renal disease and platelet dysfunction, caused by the defect in a conserved region of the VPS33A gene on human chromosome 12q24.31, occurs in Yakuts-a nomadic Turkic ethnic group of Southern Siberia. VPS33A is a core component of the class C core vacuole/endosome tethering (CORVET) and the homotypic fusion and protein sorting (HOPS) complexes, which have essential functions in the endocytic pathway. Here we show that cultured fibroblasts from patients with this disorder have morphological changes: vacuolation with disordered endosomal/lysosomal compartments and-common to sphingolipid diseases-abnormal endocytic trafficking of lactosylceramide. Urine glycosaminoglycan studies revealed a pathological excess of sialylated conjugates as well as dermatan and heparan sulphate. Lipidomic screening showed elevated ß-D-galactosylsphingosine with unimpaired activity of cognate lysosomal hydrolases. The 3D crystal structure of human VPS33A predicts that replacement of arginine 498 by tryptophan will de-stabilize VPS33A folding. We observed that the missense mutation reduced the abundance of full-length VPS33A and other components of the HOPS and CORVET complexes. Treatment of HeLa cells stably expressing the mutant VPS33A with a proteasome inhibitor rescued the mutant protein from degradation. We propose that the disease is due to diminished intracellular abundance of intact VPS33A. Exposure of patient-derived fibroblasts to the clinically approved proteasome inhibitor, bortezomib, or inhibition of glucosylceramide synthesis with eliglustat, partially corrected the impaired lactosylceramide trafficking defect and immediately suggest therapeutic avenues to explore in this fatal orphan disease.
Assuntos
Antígenos CD/metabolismo , Erros Inatos do Metabolismo dos Carboidratos/genética , Endocitose , Lactosilceramidas/metabolismo , Lisossomos/metabolismo , Mutação de Sentido Incorreto , Proteínas de Transporte Vesicular/genética , Bortezomib/uso terapêutico , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Erros Inatos do Metabolismo dos Carboidratos/fisiopatologia , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Células HeLa , Humanos , Lactente , Lisossomos/fisiologia , Masculino , Mucopolissacaridoses , Fenótipo , Inibidores de Proteassoma/uso terapêutico , Conformação Proteica , Pirrolidinas/uso terapêutico , Sibéria , Proteínas de Transporte Vesicular/metabolismo , Sequenciamento do ExomaRESUMO
Identifying large expansions of short tandem repeats (STRs), such as those that cause amyotrophic lateral sclerosis (ALS) and fragile X syndrome, is challenging for short-read whole-genome sequencing (WGS) data. A solution to this problem is an important step toward integrating WGS into precision medicine. We developed a software tool called ExpansionHunter that, using PCR-free WGS short-read data, can genotype repeats at the locus of interest, even if the expanded repeat is larger than the read length. We applied our algorithm to WGS data from 3001 ALS patients who have been tested for the presence of the C9orf72 repeat expansion with repeat-primed PCR (RP-PCR). Compared against this truth data, ExpansionHunter correctly classified all (212/212, 95% CI [0.98, 1.00]) of the expanded samples as either expansions (208) or potential expansions (4). Additionally, 99.9% (2786/2789, 95% CI [0.997, 1.00]) of the wild-type samples were correctly classified as wild type by this method with the remaining three samples identified as possible expansions. We further applied our algorithm to a set of 152 samples in which every sample had one of eight different pathogenic repeat expansions, including those associated with fragile X syndrome, Friedreich's ataxia, and Huntington's disease, and correctly flagged all but one of the known repeat expansions. Thus, ExpansionHunter can be used to accurately detect known pathogenic repeat expansions and provides researchers with a tool that can be used to identify new pathogenic repeat expansions.
Assuntos
Esclerose Lateral Amiotrófica/genética , Expansão das Repetições de DNA , Sequenciamento Completo do Genoma/métodos , Algoritmos , Proteína C9orf72/genética , Bases de Dados Genéticas , Humanos , Medicina de Precisão , Sensibilidade e Especificidade , SoftwareRESUMO
OBJECTIVE: Smoking has been widely studied as a susceptibility factor for amyotrophic lateral sclerosis (ALS), but results are conflicting and at risk of confounding bias. We used the results of recently published large genome-wide association studies and Mendelian randomisation methods to reduce confounding to assess the relationship between smoking and ALS. METHODS: Two genome-wide association studies investigating lifetime smoking (n=463 003) and ever smoking (n=1 232 091) were identified and used to define instrumental variables for smoking. A genome-wide association study of ALS (20 806 cases; 59 804 controls) was used as the outcome for inverse variance weighted Mendelian randomisation, and four other Mendelian randomisation methods, to test whether smoking is causal for ALS. Analyses were bidirectional to assess reverse causality. RESULTS: There was no strong evidence for a causal or reverse causal relationship between smoking and ALS. The results of Mendelian randomisation using the inverse variance weighted method were: lifetime smoking OR 0.94 (95% CI 0.74 to 1.19), p value 0.59; ever smoking OR 1.10 (95% CI 1 to 1.23), p value 0.05. CONCLUSIONS: Using multiple methods, large sample sizes and sensitivity analyses, we find no evidence with Mendelian randomisation techniques that smoking causes ALS. Other smoking phenotypes, such as current smoking, may be suitable for future Mendelian randomisation studies.
Assuntos
Esclerose Lateral Amiotrófica/genética , Fumar/genética , Esclerose Lateral Amiotrófica/epidemiologia , Causalidade , Humanos , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Fumar/epidemiologiaRESUMO
OBJECTIVE: Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease of motor neurons with a median survival of 2 years. Familial ALS has a younger age of onset than apparently sporadic ALS. We sought to determine whether this younger age of onset is a result of ascertainment bias or has a genetic basis. METHODS: Samples from people with ALS were sequenced for 13 ALS genes. To determine the effect of genetic variation, age of onset was compared in people with sporadic ALS carrying a pathogenic gene variant and those who do not; to determine the effect of family history, we compared those with genetic sporadic ALS and familial ALS. RESULTS: There were 941 people with a diagnosis of ALS, 100 with familial ALS. Of 841 with apparently sporadic ALS, 95 carried a pathogenic gene variant. The mean age of onset in familial ALS was 5.3 years younger than for apparently sporadic ALS (p=6.0×10-5, 95% CI 2.8 to 7.8 years). The mean age of onset of genetic sporadic ALS was 2.9 years younger than non-genetic sporadic ALS (p=0.011, 95% CI 0.7 to 5.2 years). There was no difference between the mean age of onset in genetic sporadic ALS and familial ALS (p=0.097). CONCLUSIONS: People with familial ALS have an age of onset about 5 years younger than those with apparently sporadic ALS, and we have shown that this is a result of Mendelian gene variants lowering the age of onset, rather than ascertainment bias.
Assuntos
Esclerose Lateral Amiotrófica/epidemiologia , Esclerose Lateral Amiotrófica/genética , Variação Genética/genética , Adulto , Idade de Início , Idoso , Viés , Bases de Dados de Ácidos Nucleicos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reino UnidoRESUMO
BACKGROUND: Progressive supranuclear palsy is a neurodegenerative tauopathy manifesting clinically as a progressive akinetic-rigid syndrome. In this study, we sought to identify genetic variants influencing PSP susceptibility through a genome-wide association analysis of a cohort of well-characterized patients who had participated in the Neuroprotection and Natural History in Parkinson Plus Syndromes and Blood Brain Barrier in Parkinson Plus Syndromes studies. METHODS: We genotyped single-nucleotide polymorphisms in 283 PSP cases from the United Kingdom, Germany, and France and compared these with genotypes from 4472 controls. Copy number variants were identified from genotyping data. RESULTS: We observed associations on chromosome 17 within or close to the MAPT gene and explored the genetic architecture at this locus. We confirmed the previously reported association of rs1768208 in the MOBP gene (P = 3.29 × 10-13 ) and rs1411478 in STX6 (P = 3.45 × 10-10 ). The population-attributable risk from the MAPT, MOBP, and STX6 single-nucleotide polymorphisms was found to be 0.37, 0.26, and 0.08, respectively. In addition, we found 2 instances of copy number variants spanning the MAPT gene in patients with PSP. These copy number variants include tau but few other genes within the chromosome 17 haplotype region, providing additional support for the direct pathogenicity of MAPT in PSP. CONCLUSIONS: Clinicians should also be aware of MAPT duplication as a possible genetic cause of PSP, especially in patients presenting with young age at onset. © 2019 International Parkinson and Movement Disorder Society.
Assuntos
Variações do Número de Cópias de DNA/genética , Genótipo , Paralisia Supranuclear Progressiva/genética , Proteínas tau/genética , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Amyotrophic lateral sclerosis is a progressive neurodegenerative disease of motor neurons. About 25 genes have been verified as relevant to the disease process, with rare and common variation implicated. We used next generation sequencing and repeat sizing to comprehensively assay genetic variation in a panel of known amyotrophic lateral sclerosis genes in 1126 patient samples and 613 controls. About 10% of patients were predicted to carry a pathological expansion of the C9orf72 gene. We found an increased burden of rare variants in patients within the untranslated regions of known disease-causing genes, driven by SOD1, TARDBP, FUS, VCP, OPTN and UBQLN2. We found 11 patients (1%) carried more than one pathogenic variant (P = 0.001) consistent with an oligogenic basis of amyotrophic lateral sclerosis. These findings show that the genetic architecture of amyotrophic lateral sclerosis is complex and that variation in the regulatory regions of associated genes may be important in disease pathogenesis.
Assuntos
Esclerose Lateral Amiotrófica/genética , Variação Genética , Herança Multifatorial , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Reino Unido , Adulto JovemRESUMO
BACKGROUND: C-reactive protein (CRP) is associated with immune, cardiometabolic, and psychiatric traits and diseases. Yet it is inconclusive whether these associations are causal. METHODS AND FINDINGS: We performed Mendelian randomization (MR) analyses using two genetic risk scores (GRSs) as instrumental variables (IVs). The first GRS consisted of four single nucleotide polymorphisms (SNPs) in the CRP gene (GRSCRP), and the second consisted of 18 SNPs that were significantly associated with CRP levels in the largest genome-wide association study (GWAS) to date (GRSGWAS). To optimize power, we used summary statistics from GWAS consortia and tested the association of these two GRSs with 32 complex somatic and psychiatric outcomes, with up to 123,865 participants per outcome from populations of European ancestry. We performed heterogeneity tests to disentangle the pleiotropic effect of IVs. A Bonferroni-corrected significance level of less than 0.0016 was considered statistically significant. An observed p-value equal to or less than 0.05 was considered nominally significant evidence for a potential causal association, yet to be confirmed. The strengths (F-statistics) of the IVs were 31.92-3,761.29 and 82.32-9,403.21 for GRSCRP and GRSGWAS, respectively. CRP GRSGWAS showed a statistically significant protective relationship of a 10% genetically elevated CRP level with the risk of schizophrenia (odds ratio [OR] 0.86 [95% CI 0.79-0.94]; p < 0.001). We validated this finding with individual-level genotype data from the schizophrenia GWAS (OR 0.96 [95% CI 0.94-0.98]; p < 1.72 × 10-6). Further, we found that a standardized CRP polygenic risk score (CRPPRS) at p-value thresholds of 1 × 10-4, 0.001, 0.01, 0.05, and 0.1 using individual-level data also showed a protective effect (OR < 1.00) against schizophrenia; the first CRPPRS (built of SNPs with p < 1 × 10-4) showed a statistically significant (p < 2.45 × 10-4) protective effect with an OR of 0.97 (95% CI 0.95-0.99). The CRP GRSGWAS showed that a 10% increase in genetically determined CRP level was significantly associated with coronary artery disease (OR 0.88 [95% CI 0.84-0.94]; p < 2.4 × 10-5) and was nominally associated with the risk of inflammatory bowel disease (OR 0.85 [95% CI 0.74-0.98]; p < 0.03), Crohn disease (OR 0.81 [95% CI 0.70-0.94]; p < 0.005), psoriatic arthritis (OR 1.36 [95% CI 1.00-1.84]; p < 0.049), knee osteoarthritis (OR 1.17 [95% CI 1.01-1.36]; p < 0.04), and bipolar disorder (OR 1.21 [95% CI 1.05-1.40]; p < 0.007) and with an increase of 0.72 (95% CI 0.11-1.34; p < 0.02) mm Hg in systolic blood pressure, 0.45 (95% CI 0.06-0.84; p < 0.02) mm Hg in diastolic blood pressure, 0.01 ml/min/1.73 m2 (95% CI 0.003-0.02; p < 0.005) in estimated glomerular filtration rate from serum creatinine, 0.01 g/dl (95% CI 0.0004-0.02; p < 0.04) in serum albumin level, and 0.03 g/dl (95% CI 0.008-0.05; p < 0.009) in serum protein level. However, after adjustment for heterogeneity, neither GRS showed a significant effect of CRP level (at p < 0.0016) on any of these outcomes, including coronary artery disease, nor on the other 20 complex outcomes studied. Our study has two potential limitations: the limited variance explained by our genetic instruments modeling CRP levels in blood and the unobserved bias introduced by the use of summary statistics in our MR analyses. CONCLUSIONS: Genetically elevated CRP levels showed a significant potentially protective causal relationship with risk of schizophrenia. We observed nominal evidence at an observed p < 0.05 using either GRSCRP or GRSGWAS-with persistence after correction for heterogeneity-for a causal relationship of elevated CRP levels with psoriatic osteoarthritis, rheumatoid arthritis, knee osteoarthritis, systolic blood pressure, diastolic blood pressure, serum albumin, and bipolar disorder. These associations remain yet to be confirmed. We cannot verify any causal effect of CRP level on any of the other common somatic and neuropsychiatric outcomes investigated in the present study. This implies that interventions that lower CRP level are unlikely to result in decreased risk for the majority of common complex outcomes.
Assuntos
Proteína C-Reativa/genética , Estudo de Associação Genômica Ampla , Cardiopatias/genética , Doenças do Sistema Imunitário/genética , Análise da Randomização Mendeliana , Transtornos Mentais/genética , Doenças Metabólicas/genética , Proteína C-Reativa/metabolismo , Genótipo , Humanos , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Genome-wide association studies have been successful in identifying common variants that influence the susceptibility to complex diseases. From these studies, it has emerged that there is substantial overlap in susceptibility loci between diseases. In line with those findings, we hypothesized that shared genetic pathways may exist between multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). While both diseases may have inflammatory and neurodegenerative features, epidemiological studies have indicated an increased co-occurrence within individuals and families. To this purpose, we combined genome-wide data from 4088 MS patients, 3762 ALS patients and 12 030 healthy control individuals in whom 5 440 446 single-nucleotide polymorphisms (SNPs) were successfully genotyped or imputed. We tested these SNPs for the excess association shared between MS and ALS and also explored whether polygenic models of SNPs below genome-wide significance could explain some of the observed trait variance between diseases. Genome-wide association meta-analysis of SNPs as well as polygenic analyses fails to provide evidence in favor of an overlap in genetic susceptibility between MS and ALS. Hence, our findings do not support a shared genetic background of common risk variants in MS and ALS.
Assuntos
Esclerose Lateral Amiotrófica/epidemiologia , Esclerose Lateral Amiotrófica/genética , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/genética , Comorbidade , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Identification of mutations at familial loci for amyotrophic lateral sclerosis (ALS) has provided novel insights into the aetiology of this rapidly progressing fatal neurodegenerative disease. However, genome-wide association studies (GWAS) of the more common (â¼90%) sporadic form have been less successful with the exception of the replicated locus at 9p21.2. To identify new loci associated with disease susceptibility, we have established the largest association study in ALS to date and undertaken a GWAS meta-analytical study combining 3959 newly genotyped Italian individuals (1982 cases and 1977 controls) collected by SLAGEN (Italian Consortium for the Genetics of ALS) together with samples from Netherlands, USA, UK, Sweden, Belgium, France, Ireland and Italy collected by ALSGEN (the International Consortium on Amyotrophic Lateral Sclerosis Genetics). We analysed a total of 13 225 individuals, 6100 cases and 7125 controls for almost 7 million single-nucleotide polymorphisms (SNPs). We identified a novel locus with genome-wide significance at 17q11.2 (rs34517613 with P = 1.11 × 10(-8); OR 0.82) that was validated when combined with genotype data from a replication cohort (P = 8.62 × 10(-9); OR 0.833) of 4656 individuals. Furthermore, we confirmed the previously reported association at 9p21.2 (rs3849943 with P = 7.69 × 10(-9); OR 1.16). Finally, we estimated the contribution of common variation to heritability of sporadic ALS as â¼12% using a linear mixed model accounting for all SNPs. Our results provide an insight into the genetic structure of sporadic ALS, confirming that common variation contributes to risk and that sufficiently powered studies can identify novel susceptibility loci.
Assuntos
Esclerose Lateral Amiotrófica/genética , Cromossomos Humanos Par 17/genética , Estudo de Associação Genômica Ampla , Estudos de Casos e Controles , Humanos , PrognósticoRESUMO
OBJECTIVE: Substantial clinical, pathological, and genetic overlap exists between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP-43 inclusions have been found in both ALS and FTD cases (FTD-TDP). Recently, a repeat expansion in C9orf72 was identified as the causal variant in a proportion of ALS and FTD cases. We sought to identify additional evidence for a common genetic basis for the spectrum of ALS-FTD. METHODS: We used published genome-wide association studies data for 4,377 ALS patients and 13,017 controls, and 435 pathology-proven FTD-TDP cases and 1,414 controls for genotype imputation. Data were analyzed in a joint meta-analysis, by replicating topmost associated hits of one disease in the other, and by using a conservative rank products analysis, allocating equal weight to ALS and FTD-TDP sample sizes. RESULTS: Meta-analysis identified 19 genome-wide significant single nucleotide polymorphisms (SNPs) in C9orf72 on chromosome 9p21.2 (lowest p = 2.6 × 10(-12) ) and 1 SNP in UNC13A on chromosome 19p13.11 (p = 1.0 × 10(-11) ) as shared susceptibility loci for ALS and FTD-TDP. Conditioning on the 9p21.2 genotype increased statistical significance at UNC13A. A third signal, on chromosome 8q24.13 at the SPG8 locus coding for strumpellin (p = 3.91 × 10(-7) ) was replicated in an independent cohort of 4,056 ALS patients and 3,958 controls (p = 0.026; combined analysis p = 1.01 × 10(-7) ). INTERPRETATION: We identified common genetic variants in C9orf72, but in addition in UNC13A that are shared between ALS and FTD. UNC13A provides a novel link between ALS and FTD-TDP, and identifies changes in neurotransmitter release and synaptic function as a converging mechanism in the pathogenesis of ALS and FTD-TDP.
Assuntos
Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/genética , Estudo de Associação Genômica Ampla/métodos , Proteínas do Tecido Nervoso/genética , Proteínas/genética , Proteína C9orf72 , Cromossomos Humanos Par 19/genética , Cromossomos Humanos Par 9/genética , Expansão das Repetições de DNA/genética , Estudo de Associação Genômica Ampla/tendências , Humanos , Mutação , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
A rare variant in TREM2 (p.R47H, rs75932628) was recently reported to increase the risk of Alzheimer's disease (AD) and, subsequently, other neurodegenerative diseases, i.e. frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). Here we comprehensively assessed TREM2 rs75932628 for association with these diseases in a total of 19,940 previously untyped subjects of European descent. These data were combined with those from 28 published data sets by meta-analysis. Furthermore, we tested whether rs75932628 shows association with amyloid beta (Aß42) and total-tau protein levels in the cerebrospinal fluid (CSF) of 828 individuals with AD or mild cognitive impairment. Our data show that rs75932628 is highly significantly associated with the risk of AD across 24,086 AD cases and 148,993 controls of European descent (odds ratio or OR = 2.71, P = 4.67 × 10(-25)). No consistent evidence for association was found between this marker and the risk of FTLD (OR = 2.24, P = .0113 across 2673 cases/9283 controls), PD (OR = 1.36, P = .0767 across 8311 cases/79,938 controls) and ALS (OR = 1.41, P = .198 across 5544 cases/7072 controls). Furthermore, carriers of the rs75932628 risk allele showed significantly increased levels of CSF-total-tau (P = .0110) but not Aß42 suggesting that TREM2's role in AD may involve tau dysfunction.
Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença , Glicoproteínas de Membrana/genética , Doenças Neurodegenerativas/genética , Receptores Imunológicos/genética , Idoso , Alelos , Esclerose Lateral Amiotrófica/genética , Estudos de Casos e Controles , Feminino , Degeneração Lobar Frontotemporal/genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/genética , Locos de Características Quantitativas , Fatores de Risco , População Branca , Proteínas tau/líquido cefalorraquidianoRESUMO
Repeat expansions in the C9orf72 gene are the most common genetic cause of (ALS) and frontotemporal dementia (FTD). Like other genetic forms of neurodegeneration, pinpointing the precise mechanism(s) by which this mutation leads to neuronal death remains elusive, and this lack of knowledge hampers the development of therapy for C9orf72-related disease. We used an agnostic approach based on genomic data (n = 41,273 ALS and healthy samples, and n = 1,516 C9orf72 carriers) to overcome these bottlenecks. Our drug-repurposing screen, based on gene- and expression-pattern matching and information about the genetic variants influencing onset age among C9orf72 carriers, identified acamprosate, a γ-aminobutyric acid analog, as a potentially repurposable treatment for patients carrying C9orf72 repeat expansions. We validated its neuroprotective effect in cell models and showed comparable efficacy to riluzole, the current standard of care. Our work highlights the potential value of genomics in repurposing drugs in situations where the underlying pathomechanisms are inherently complex. VIDEO ABSTRACT.
RESUMO
Amyotrophic Lateral Sclerosis (ALS) is a devastating progressive neurodegenerative disease, resulting in selective motor neuron degeneration and paralysis. Patients die approximately 3-5 years after diagnosis. Disease pathophysiology is multifactorial, including excitotoxicity, but is not yet fully understood. Genetic analysis has proven fruitful in the past to further understand genes modulating the disease and increase knowledge of disease mechanisms. Here, we revisit a previously performed microsatellite analysis in ALS and focus on another hit, PLCD1, encoding phospholipase C delta 1 (PLCδ1), to investigate its role in ALS. PLCδ1 may contribute to excitotoxicity as it increases inositol 1,4,5-trisphosphate (IP3) formation, which releases calcium from the endoplasmic reticulum through IP3 receptors. We find that expression of PLCδ1 is increased in ALS mouse spinal cord and in neurons from ALS mice. Furthermore, genetic ablation of this protein in ALS mice significantly increases survival, but does not affect astrogliosis, microgliosis, aggregation or the amount of motor neurons at end stage compared to ALS mice with PLCδ1. Interestingly, genetic ablation of PLCδ1 prevents nuclear shrinkage of motor neurons in ALS mice at end stage. These results indicate that PLCD1 contributes to ALS and that PLCδ1 may be a new target for future studies.
Assuntos
Esclerose Lateral Amiotrófica/genética , Fosfolipase C delta/genética , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Fosfolipase C delta/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Análise de SobrevidaRESUMO
The transactive response DNA binding protein (TDP-43) proteinopathies describe a clinico-pathological spectrum of multi-system neurodegeneration that spans motor neuron disease/amyotrophic lateral sclerosis (MND/ALS) and frontotemporal lobar degeneration (FTLD). We have identified four male patients who presented with the clinical features of a pure MND/ALS phenotype (without dementia) but who had distinctive cortical and cerebellar pathology that was different from other TDP-43 proteinopathies. All patients initially presented with weakness of limbs and respiratory muscles and had a family history of MND/ALS. None had clinically identified cognitive decline or dementia during life and they died between 11 and 32 months after symptom onset. Neuropathological investigation revealed lower motor neuron involvement with TDP-43-positive inclusions typical of MND/ALS. In contrast, the cerebral pathology was atypical, with abundant star-shaped p62-immunoreactive neuronal cytoplasmic inclusions in the cerebral cortex, basal ganglia and hippocampus, while TDP-43-positive inclusions were sparse. This pattern was also seen in the cerebellum where p62-positive, TDP-43-negative inclusions were frequent in granular cells. Western blots of cortical lysates, in contrast to those of sporadic MND/ALS and FTLD-TDP, showed high p62 levels and low TDP-43 levels with no high molecular weight smearing. MND/ALS-associated SOD1, FUS and TARDBP gene mutations were excluded; however, further investigations revealed that all four of the cases did show a repeat expansion of C9orf72, the recently reported cause of chromosome 9-linked MND/ALS and FTLD. We conclude that these chromosome 9-linked MND/ALS cases represent a pathological sub-group with abundant p62 pathology in the cerebral cortex, hippocampus and cerebellum but with no significant associated cognitive decline.
Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/psicologia , Cerebelo/patologia , Córtex Cerebral/patologia , Transtornos Cognitivos/genética , Transtornos Cognitivos/patologia , Proteínas de Ligação a DNA/genética , Hipocampo/patologia , Corpos de Inclusão/patologia , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/psicologia , Proteínas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Idade de Início , Western Blotting , Encéfalo/patologia , Proteína C9orf72 , DNA/genética , Feminino , Imunofluorescência , Humanos , Imuno-Histoquímica , Masculino , Microscopia Eletrônica , Pessoa de Meia-Idade , Medula Espinal/patologia , Bancos de Tecidos , Expansão das Repetições de TrinucleotídeosRESUMO
There is a strong genetic contribution to Amyotrophic lateral sclerosis (ALS) risk, with heritability estimates of up to 60%. Both Mendelian and small effect variants have been identified, but in common with other conditions, such variants only explain a little of the heritability. Genomic structural variation might account for some of this otherwise unexplained heritability. We therefore investigated association between structural variation in a set of 25 ALS genes, and ALS risk and phenotype. As expected, the repeat expansion in the C9orf72 gene was identified as associated with ALS. Two other ALS-associated structural variants were identified: inversion in the VCP gene and insertion in the ERBB4 gene. All three variants were associated both with increased risk of ALS and specific phenotypic patterns of disease expression. More than 70% of people with respiratory onset ALS harboured ERBB4 insertion compared with 25% of the general population, suggesting respiratory onset ALS may be a distinct genetic subtype.
RESUMO
Superoxide dismutase (SOD1) gene variants may cause amyotrophic lateral sclerosis, some of which are associated with a distinct phenotype. Most studies assess limited variants or sample sizes. In this international, retrospective observational study, we compare phenotypic and demographic characteristics between people with SOD1-ALS and people with ALS and no recorded SOD1 variant. We investigate which variants are associated with age at symptom onset and time from onset to death or censoring using Cox proportional-hazards regression. The SOD1-ALS dataset reports age of onset for 1122 and disease duration for 883 people; the comparator population includes 10,214 and 9010 people respectively. Eight variants are associated with younger age of onset and distinct survival trajectories; a further eight associated with younger onset only and one with distinct survival only. Here we show that onset and survival are decoupled in SOD1-ALS. Future research should characterise rarer variants and molecular mechanisms causing the observed variability.
Assuntos
Esclerose Lateral Amiotrófica , Humanos , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/epidemiologia , Superóxido Dismutase/genética , Fenótipo , MutaçãoRESUMO
Background: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the loss of upper and lower motor neurons, leading to progressive weakness of voluntary muscles, with death following from neuromuscular respiratory failure, typically within 3 to 5 years. There is a strong genetic contribution to ALS risk. In 10% or more, a family history of ALS or frontotemporal dementia is obtained, and the Mendelian genes responsible for ALS in such families have now been identified in about 50% of cases. Only about 14% of apparently sporadic ALS is explained by known genetic variation, suggesting that other forms of genetic variation are important. Telomeres maintain DNA integrity during cellular replication, differ between sexes, and shorten naturally with age. Sex and age are risk factors for ALS and we therefore investigated telomere length in ALS. Methods: Samples were from Project MinE, an international ALS whole genome sequencing consortium that includes phenotype data. For validation we used donated brain samples from motor cortex from people with ALS and controls. Ancestry and relatedness were evaluated by principal components analysis and relationship matrices of DNA microarray data. Whole genome sequence data were from Illumina HiSeq platforms and aligned using the Isaac pipeline. TelSeq was used to quantify telomere length using whole genome sequence data. We tested the association of telomere length with ALS and ALS survival using Cox regression. Results: There were 6,580 whole genome sequences, reducing to 6,195 samples (4,315 from people with ALS and 1,880 controls) after quality control, and 159 brain samples (106 ALS, 53 controls). Accounting for age and sex, there was a 20% (95% CI 14%, 25%) increase of telomere length in people with ALS compared to controls (p = 1.1 × 10-12), validated in the brain samples (p = 0.03). Those with shorter telomeres had a 10% increase in median survival (p = 5.0×10-7). Although there was no difference in telomere length between sporadic ALS and familial ALS (p=0.64), telomere length in 334 people with ALS due to expanded C9orf72 repeats was shorter than in those without expanded C9orf72 repeats (p = 5.0×10-4). Discussion: Although telomeres shorten with age, longer telomeres are a risk factor for ALS and worsen prognosis. Longer telomeres are associated with ALS.
RESUMO
The noncoding genome is substantially larger than the protein-coding genome but has been largely unexplored by genetic association studies. Here, we performed region-based rare variant association analysis of >25,000 variants in untranslated regions of 6,139 amyotrophic lateral sclerosis (ALS) whole genomes and the whole genomes of 70,403 non-ALS controls. We identified interleukin-18 receptor accessory protein (IL18RAP) 3' untranslated region (3'UTR) variants as significantly enriched in non-ALS genomes and associated with a fivefold reduced risk of developing ALS, and this was replicated in an independent cohort. These variants in the IL18RAP 3'UTR reduce mRNA stability and the binding of double-stranded RNA (dsRNA)-binding proteins. Finally, the variants of the IL18RAP 3'UTR confer a survival advantage for motor neurons because they dampen neurotoxicity of human induced pluripotent stem cell (iPSC)-derived microglia bearing an ALS-associated expansion in C9orf72, and this depends on NF-κB signaling. This study reveals genetic variants that protect against ALS by reducing neuroinflammation and emphasizes the importance of noncoding genetic association studies.