RESUMO
The small intestine represents a complex and understudied gut niche with significant implications for human health. Indeed, many infectious and non-infectious diseases center within the small intestine and present similar clinical manifestations to large intestinal disease, complicating non-invasive diagnosis and treatment. One major neglected aspect of small intestinal diseases is the feedback relationship with the resident collection of commensal organisms, the gut microbiota. Studies focused on microbiota-host interactions in the small intestine in the context of infectious and non-infectious diseases are required to identify potential therapeutic targets dissimilar from those used for large bowel diseases. While sparsely populated, the small intestine represents a stringent commensal bacterial microenvironment the host relies upon for nutrient acquisition and protection against invading pathogens (colonization resistance). Indeed, recent evidence suggests that disruptions to host-microbiota interactions in the small intestine impact enteric bacterial pathogenesis and susceptibility to non-infectious enteric diseases. In this review, we focus on the microbiota's impact on small intestine function and the pathogenesis of infectious and non-infectious diseases of the gastrointestinal (GI) tract. We also discuss gaps in knowledge on the role of commensal microorganisms in proximal GI tract function during health and disease.
Assuntos
Microbioma Gastrointestinal , Intestino Delgado , Humanos , Microbioma Gastrointestinal/fisiologia , Intestino Delgado/microbiologia , Animais , Enteropatias/microbiologia , Interações entre Hospedeiro e Microrganismos , Colo/microbiologia , Simbiose , Bactérias/metabolismoRESUMO
Inflammation boosts the availability of electron acceptors in the intestinal lumen, creating a favorable niche for pathogenic Enterobacteriaceae. However, the mechanisms linking intestinal inflammation-mediated changes in luminal metabolites and pathogen expansion remain unclear. Here, we show that mucosal inflammation induced by Salmonella enterica serovar Typhimurium (S. Tm) infection increases intestinal levels of the amino acid aspartate. S. Tm used aspartate-ammonia lyase (aspA)-dependent fumarate respiration for growth in the murine gut only during inflammation. AspA-dependent growth advantage was abolished in the gut of germ-free mice and restored in gnotobiotic mice colonized with members of the classes Bacteroidia and Clostridia. Reactive oxygen species (ROS) produced during the host response caused lysis of commensal microbes, resulting in the release of microbiota-derived aspartate that was used by S. Tm, in concert with nitrate-dependent anaerobic respiration, to outcompete commensal Enterobacteriaceae. Our findings demonstrate the role of microbiota-derived amino acids in driving respiration-dependent S. Tm expansion during colitis.
Assuntos
Ácido Aspártico , Microbioma Gastrointestinal , Espécies Reativas de Oxigênio , Salmonella typhimurium , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Ácido Aspártico/metabolismo , Colite/microbiologia , Colite/metabolismo , Camundongos Endogâmicos C57BL , Enterobacteriaceae/metabolismo , Vida Livre de Germes , Inflamação/microbiologia , Inflamação/metabolismo , Infecções por Salmonella/microbiologia , Infecções por Salmonella/imunologiaRESUMO
The mouse cecum has emerged as a model system for studying microbe-host interactions, immunoregulatory functions of the microbiome, and metabolic contributions of gut bacteria. Too often, the cecum is falsely considered as a uniform organ with an evenly distributed epithelium. We developed the cecum axis (CecAx) preservation method to show gradients in epithelial tissue architecture and cell types along the cecal ampulla-apex and mesentery-antimesentery axes. We used imaging mass spectrometry of metabolites and lipids to suggest functional differences along these axes. Using a model of Clostridioides difficile infection, we show how edema and inflammation are unequally concentrated along the mesenteric border. Finally, we show the similarly increased edema at the mesenteric border in two models of Salmonella enterica serovar Typhimurium infection as well as enrichment of goblet cells along the antimesenteric border. Our approach facilitates mouse cecum modeling with detailed attention to inherent structural and functional differences within this dynamic organ.
Assuntos
Microbioma Gastrointestinal , Animais , Camundongos , Ceco , Epitélio , Células Caliciformes , Interações entre Hospedeiro e MicrorganismosRESUMO
During intestinal inflammation, host nutritional immunity starves microbes of essential micronutrients, such as iron. Pathogens scavenge iron using siderophores, including enterobactin; however, this strategy is counteracted by host protein lipocalin-2, which sequesters iron-laden enterobactin. Although this iron competition occurs in the presence of gut bacteria, the roles of commensals in nutritional immunity involving iron remain unexplored. Here, we report that the gut commensal Bacteroides thetaiotaomicron acquires iron and sustains its resilience in the inflamed gut by utilizing siderophores produced by other bacteria, including Salmonella, via a secreted siderophore-binding lipoprotein XusB. Notably, XusB-bound enterobactin is less accessible to host sequestration by lipocalin-2 but can be "re-acquired" by Salmonella, allowing the pathogen to evade nutritional immunity. Because the host and pathogen have been the focus of studies of nutritional immunity, this work adds commensal iron metabolism as a previously unrecognized mechanism modulating the host-pathogen interactions and nutritional immunity.
Assuntos
Infecções por Salmonella , Sideróforos , Humanos , Lipocalina-2/metabolismo , Sideróforos/metabolismo , Enterobactina/metabolismo , Bactérias/metabolismo , Ferro/metabolismoRESUMO
During intestinal inflammation, host nutritional immunity starves microbes of essential micronutrients such as iron. Pathogens scavenge iron using siderophores, which is counteracted by the host using lipocalin-2, a protein that sequesters iron-laden siderophores, including enterobactin. Although the host and pathogens compete for iron in the presence of gut commensal bacteria, the roles of commensals in nutritional immunity involving iron remain unexplored. Here, we report that the gut commensal Bacteroides thetaiotaomicron acquires iron in the inflamed gut by utilizing siderophores produced by other bacteria including Salmonella, via a secreted siderophore-binding lipoprotein termed XusB. Notably, XusB-bound siderophores are less accessible to host sequestration by lipocalin-2 but can be "re-acquired" by Salmonella , allowing the pathogen to evade nutritional immunity. As the host and pathogen have been the focus of studies of nutritional immunity, this work adds commensal iron metabolism as a previously unrecognized mechanism modulating the interactions between pathogen and host nutritional immunity.
RESUMO
The mechanisms by which the early-life microbiota protects against environmental factors that promote childhood obesity remain largely unknown. Using a mouse model in which young mice are simultaneously exposed to antibiotics and a high-fat (HF) diet, we show that Lactobacillus species, predominant members of the small intestine (SI) microbiota, regulate intestinal epithelial cells (IECs) to limit diet-induced obesity during early life. A Lactobacillus-derived metabolite, phenyllactic acid (PLA), protects against metabolic dysfunction caused by early-life exposure to antibiotics and a HF diet by increasing the abundance of peroxisome proliferator-activated receptor γ (PPAR-γ) in SI IECs. Therefore, PLA is a microbiota-derived metabolite that activates protective pathways in the small intestinal epithelium to regulate intestinal lipid metabolism and prevent antibiotic-associated obesity during early life.
Assuntos
Microbiota , Obesidade Infantil , Humanos , Criança , Animais , Camundongos , Metabolismo dos Lipídeos , Dieta Hiperlipídica/efeitos adversos , Antibacterianos , Poliésteres , Camundongos Endogâmicos C57BLRESUMO
The gut microbiota benefits the host by limiting enteric pathogen expansion (colonization resistance), partially via the production of inhibitory metabolites. Propionate, a short-chain fatty acid produced by microbiota members, is proposed to mediate colonization resistance against Salmonella enterica serovar Typhimurium (S. Tm). Here, we show that S. Tm overcomes the inhibitory effects of propionate by using it as a carbon source for anaerobic respiration. We determine that propionate metabolism provides an inflammation-dependent colonization advantage to S. Tm during infection. Such benefit is abolished in the intestinal lumen of Salmonella-infected germ-free mice. Interestingly, S. Tm propionate-mediated intestinal expansion is restored when germ-free mice are monocolonized with Bacteroides thetaiotaomicron (B. theta), a prominent propionate producer in the gut, but not when mice are monocolonized with a propionate-production-deficient B. theta strain. Taken together, our results reveal a strategy used by S. Tm to mitigate colonization resistance by metabolizing microbiota-derived propionate.
Assuntos
Anaerobiose/fisiologia , Propionatos/metabolismo , Salmonelose Animal/patologia , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/metabolismo , Animais , Antibiose/fisiologia , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/metabolismo , Feminino , Microbioma Gastrointestinal/fisiologia , Vida Livre de Germes , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Nitratos/metabolismoRESUMO
The intestine is home to a large and complex bacterial ecosystem (microbiota), which performs multiple beneficial functions for the host, including immune education, nutrition, and protection against invasion by enteric pathogens (colonization resistance). The host and microbiome symbiotic interactions occur in part through metabolic crosstalk. Thus, microbiota members have evolved highly diverse metabolic pathways to inhibit pathogen colonization via activation of protective immune responses and nutrient acquisition and utilization. Conversely, pathogenic Enterobacteriaceae actively induce an inflammation-dependent disruption of the gut microbial ecosystem (dysbiosis) to gain a competitive metabolic advantage against the resident microbiota. This review discusses the recent findings on the crucial role of microbiota metabolites in colonization resistance regulation. Additionally, we summarize metabolic mechanisms used by pathogenic Enterobacteriaceae to outcompete commensal microbes and cause disease.
Assuntos
Infecções por Enterobacteriaceae , Microbioma Gastrointestinal , Disbiose , Ecossistema , Enterobacteriaceae/genética , HumanosRESUMO
Have you ever caught family members eating the last piece of your Halloween candy? In this issue of Cell Host & Microbe, Osbelt et al. and Eberl et al. demonstrate how commensal Enterobacteriaceae preempt pathogen carbohydrate utilization, dependent upon the composition of the surrounding gut microbial community.
Assuntos
Enterobacteriaceae , Microbiota , Doces , Carboidratos , SimbioseRESUMO
A Western-style, high-fat diet promotes cardiovascular disease, in part because it is rich in choline, which is converted to trimethylamine (TMA) by the gut microbiota. However, whether diet-induced changes in intestinal physiology can alter the metabolic capacity of the microbiota remains unknown. Using a mouse model of diet-induced obesity, we show that chronic exposure to a high-fat diet escalates Escherichia coli choline catabolism by altering intestinal epithelial physiology. A high-fat diet impaired the bioenergetics of mitochondria in the colonic epithelium to increase the luminal bioavailability of oxygen and nitrate, thereby intensifying respiration-dependent choline catabolism of E. coli In turn, E. coli choline catabolism increased levels of circulating trimethlamine N-oxide, which is a potentially harmful metabolite generated by gut microbiota.