Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mol Divers ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240951

RESUMO

Akt1, as an important member of the Akt family, plays a controlled role in cancer cell growth and survival. Inhibition of Akt1 activity can promote cancer cell apoptosis and inhibit tumor growth. Therefore, in this investigation, a multilayer virtual screening approach, including receptor-ligand interaction-based pharmacophore, 3D-QSAR, molecular docking, and deep learning methods, was utilized to construct a virtual screening platform for Akt1 inhibitors. 17 representative compounds with different scaffolds were identified as potential Akt1 inhibitors from three databases. Among these 17 compounds, the Hit9 exhibited the best inhibitory activity against Akt1 with inhibition rate of 33.08% at concentration of 1 µM. The molecular dynamics simulations revealed that Hit9 and Akt1 could form a compact and stable complex. Moreover, Hit9 interacted with some key residues by hydrophobic, electrostatic, and hydrogen bonding interactions and induced substantial conformation changes in the hinge region of the Akt1 active site. The average binding free energies for the Akt1-CQU, Akt1-Ipatasertib, and Akt1-Hit9 systems were - 34.44, - 63.37, and - 39.14 kJ mol-1, respectively. In summary, the results obtained in this investigation suggested that Hit9 with novel scaffold may be a promising lead compound for developing new Akt1 inhibitor for treatment of various cancers with Akt1 overexpressed.

2.
Exp Lung Res ; 48(9-10): 275-290, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36346360

RESUMO

Background: Blast lung injury (BLI) is the most common fatal blast injury induced by overpressure wave in the events of terrorist attack, gas and underground explosion. Our previous work revealed the characteristics of inflammationrelated key proteins involved in BLI, including those regulating inflammatory response, leukocyte transendothelial migration, phagocytosis, and immune process. However, the molecular characteristics of oxidative-related proteins in BLI ar still lacking. Methods: In this study, protein expression profiling of the blast lungs obtained by tandem mass tag (TMT) spectrometry quantitative proteomics were re-analyzed to identify the characteristics of oxidative-related key proteins. Forty-eight male C57BL/6 mice were randomly divided into six groups: control, 12 h, 24 h, 48 h, 72 h and 1 w after blast exposure. The differential protein expression was identified by bioinformatics analysis and verified by western blotting. Results: The results demonstrated that thoracic blast exposure induced reactive oxygen species generation and lipid peroxidation in the lungs. Analysis of global proteins and oxidative-related proteomes showed that 62, 59, 73, 69, 27 proteins (accounted for 204 distinct proteins) were identified to be associated with oxidative stress at 12 h, 24 h, 48 h, 72 h, and 1 week after blast exposure, respectively. These 204 distinct proteins were mainly enriched in response to oxidative stress, oxidation-reduction process and lipid metabolic process. We also validated these results by western blotting. Conclusions: These findings provided new perspectives on blast-induced oxidative injury in lung, which may potentially benefit the development of future treatment of BLI.


Assuntos
Traumatismos por Explosões , Lesão Pulmonar , Animais , Camundongos , Masculino , Lesão Pulmonar/metabolismo , Proteômica , Traumatismos por Explosões/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo/fisiologia , Oxirredução , Pulmão/metabolismo , Lipídeos
3.
Exp Lung Res ; 46(8): 308-319, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32748703

RESUMO

AIM OF THE STUDY: The mechanism by which primary shock wave causes lung injury is unclear. The aim of this study is to find the changes of protein that can be helpful in understanding blast-induced lung injury. MATERIAL AND METHODS: A quantitative analysis of their global proteome was conducted in lung from mice with blast injury using LC-MS/MS. Protein annotation, unsupervised hierarchical clustering, functional classification, functional enrichment and cluster, and protein-protein interaction analyses were performed. Furthermore, western blotting was used to validate the changed protein levels. RESULTS: A total of 6498 proteins were identified, of which 5520 proteins were quantified. The fold-change cutoff was set at 1.2; 132 proteins were upregulated, and 104 proteins were downregulated. The bioinformatics analysis indicated that the differentially expressed proteins were involved in the cholesterol metabolism, asthma, nonalcoholic fatty liver disease. Remarkably, the processes related to the change of oxidative phosphorylation including the NADH dehydrogenase, Cytochrome C reductase, Cytochrome C oxidase and F-type ATPase were significantly upregulated, which were further verified by western blotting. CONCLUSION: These results confirmed that the oxidative phosphorylation is critical to blast-induced lung injury. LC/MS-based profiling presented candidate target/pathways that could be explored for future therapeutic development.


Assuntos
Traumatismos por Explosões/metabolismo , Lesão Pulmonar/metabolismo , Pulmão/metabolismo , Proteoma/metabolismo , Animais , Asma/metabolismo , Colesterol/metabolismo , Regulação para Baixo/fisiologia , Estudos de Avaliação como Assunto , Perfilação da Expressão Gênica/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosforilação Oxidativa , Proteômica/métodos
4.
Mol Carcinog ; 58(5): 749-759, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30604893

RESUMO

The carnitine shuttle system (CSS) plays a crucial role in the transportation of fatty acyls during fatty acid ß-oxidation for energy supplementation, especially in cases of high energy demand, such as in cancer. In this study, to systematically characterize alterations of the CSS in hepatocellular carcinoma (HCC), acylcarnitine metabolic profiling was carried out on 80 pairs of HCC tissues and adjacent noncancerous tissues (ANTs) by using ultra-performance liquid chromatography coupled to mass spectrometry. Twenty-four acylcarnitines classified into five categories were identified and characterized between HCCs and ANTs. Notably, increased saturated long-chain acylcarnitines (LCACs) and decreased short- and medium-chain acylcarnitines (S/MCACs) were simultaneously observed in HCC samples. Subsequent correlation network and heatmap analysis indicated low correlations between LCACs and S/MCACs. The mRNA and protein expressions of carnitine palmitoyltransferase 2 (CPT2) was significantly downregulated in HCC samples, whereas CPT1A expression was not significantly changed. Correspondingly, the relative levels of S/MCACs were reduced and those of LCACs were increased in BEL-7402/CPT2-knockdown cells compared to negative controls. Both results suggested that decreased shuttling efficiency in HCC might be associated with downregulation of CPT2. In addition, decreases in the mRNA expression of acetyl-CoA acyltransferase 2 were also observed in HCC tissues and BEL-7402/CPT2-knockdown cells, suggesting potential low ß-oxidation efficiency, which was consistent with the increased expression of stearoyl-CoA desaturase 1 in both samples. The systematic strategy applied in our study illustrated decreased shuttling efficiency of the carnitine shuttle system in HCC and can provide biologists with an in-depth understanding of ß-oxidation in HCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina/análogos & derivados , Carnitina/metabolismo , Metaboloma , Apoptose , Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Carnitina O-Palmitoiltransferase/genética , Estudos de Casos e Controles , Proliferação de Células , Seguimentos , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Prognóstico , RNA Interferente Pequeno/genética , Células Tumorais Cultivadas
5.
BMC Cardiovasc Disord ; 18(1): 36, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29448942

RESUMO

BACKGROUND: Exposure to cold weather is associated with infaust cardiovascular responses, including myocardial infarction and arrhythmias. However, the exact mechanisms of these adverse changes in the myocardium under cold stress are unknown. This study was designed to investigate the mechanisms of cardiac injury induced by cold stress in mice. METHODS: The mice were randomly divided into three groups, normal control (no handling), 1-week cold stress and 2-week cold stress. We observed physiological changes of the mice and morphological changes of myocardium tissues, and we measured the changes of 3'-nitrotyrosine and 4-hydroxynonenal, the expression levels of superoxide dismutase-1, superoxide dismutase-2, Bax, Bad, Bcl-2, Nuclear factor erythroid-derived 2-like 2 (Nrf2) and Kelch like-ECH-associated protein 1 (Keap1) in myocardium by western blot. Besides, we detected mRNA of superoxide dismutase-1, superoxide dismutase-2, Bax, Bad, Bcl-2, Nrf2 and Keap1 by real-time PCR. One-way analysis of variance, followed by LSD-t test, was used to compare each variable for differences among the groups. RESULTS: Echocardiography analyses demonstrated left ventricle dysfunction in the groups receiving cold stress. Histological analyses witnessed inflammation, vacuolar and eosinophilic degeneration occurred in left ventricle tissues. Western blotting results showed increased 3'-nitrotyrosine and 4-hydroxynonenal and decreased antioxidant enzymes (superoxide dismutase-1 and superoxide dismutase-2) in the myocardium. Expression of Nrf2 and Keap1 followed a downward trend under cold exposure, as indicated by western blotting and real-time PCR. Expression of anti-apoptotic protein Bcl-2 also showed the same trend. In contrast, expression of pro-apoptotic proteins Bax and Bad followed an upward trend under cold exposure. The results of real-time PCR were consistent with those of western blotting. CONCLUSIONS: These findings were very significant, showing that cold exposure induced cardiac injury by inhibiting the Nrf2-Keap1 signaling pathway.


Assuntos
Apoptose , Temperatura Baixa , Resposta ao Choque Frio , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Miocárdio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Disfunção Ventricular Esquerda/etiologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Miocárdio/patologia , Transdução de Sinais , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda
6.
Oxid Med Cell Longev ; 2022: 8407635, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620579

RESUMO

Explosion-induced injury is the most commonly encountered wound in modern warfare and incidents. The vascular inflammatory response and subsequent oxidative stress are considered the key causes of morbidity and mortality among those in blast lung injury. It has been reported dimethylarginine dimethylaminohydrolase 1 (DDAH1) plays important roles in regulating vascular endothelial injury repair and angiogenesis, but its role in explosion-induced injury remains to be explained. To explore the mechanism of vascular injury in blast lung, 40 C57BL/6 wild type mice and 40 DDAH1 knockout mice were randomly equally divided into control group and blast group, respectively. Body weight, lung weight, and dry weight of the lungs were recorded. Diffuse vascular leakage was detected by Evans blue test. The serum inflammatory factors, nitric oxide (NO) contents, and ADMA level were determined through ELISA. Hematoxylin-eosin staining and ROS detection were performed for histopathological changes. Western blot was used to detect the proteins related to oxidative stress, cell adhesion molecules and leukocyte transendothelial migration, vascular injury, endothelial barrier dysfunction, and the DDAH1/ADMA/eNOS signaling pathway. We found that DDAH1 deficiency aggravated explosion-induced body weight reduction, lung weight promotion, diffuse vascular leakage histopathological changes, and the increased levels of inflammatory-related factors. Additionally, DDAH1 deficiency also increased ROS generation, MDA, and IRE-1α expression. Regarding vascular endothelial barrier dysfunction, DDAH1 deficiency increased the expression of ICAM-1, Itgal, Rac2, VEGF, MMP9, vimentin, and N-cadherin, while lowering the expression of occludin, CD31, and dystrophin. DDAH1 deficiency also exacerbated explosion-induced increase of ADMA and decrease of eNOS activity and NO contents. Our results indicated that explosion could induce severe lung injury and pulmonary vascular insufficiency, whereas DDAH1 could promote lung endothelial barrier repair and reduce inflammation and oxidative stress by inhibiting ADMA signaling which in turn increased eNOS activity.


Assuntos
Lesão Pulmonar , Lesões do Sistema Vascular , Amidoidrolases/metabolismo , Animais , Explosões , Leucócitos/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio , Migração Transendotelial e Transepitelial
7.
Front Public Health ; 10: 1054617, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530663

RESUMO

Introduction: The dramatic decrease in the number of reported cases of pertussis during COVID-19 pandemic has been underestimated. The objective was to compare the estimated incidence rate of pertussis in populations pre- and post-COVID-19 pandemic by analyzing the anti-pertussis toxin (anti-PT) IgG and anti-filamentous hemagglutininant (anti-FHA) IgG antibodies in healthy Chinese population from 2018 to 2021. Methods: All serum samples (N = 1,000) were collected from healthy population (aged ≥ 15 years) who attended an annual monitoring project of antibody levels in Jiangsu province in 2018-2021 were measured by ELISA. Results: The positive rates of anti-PT IgG and anti-FHA IgG antibodies were 11.4% (114/1,000) and 20.2% (202/1,000) (≥40 IU/ml), the GMC were 17.25 (95% CI: 15.49-19.03) IU/mL and 24.94 (95% CI: 22.73-27.16) IU/mL in the study population, respectively. The percentage of participants with anti-PT IgG antibodies higher than 40 IU/mL was 5.20% (11/212) in 2018, 5.5% (19/348) in 2019, 21.2% (46/217) in 2020 and 17.0% (38/223) in 2021, respectively. The non-detectable rate (<5 IU/mL) of anti-PT IgG antibodies was 16.9, 17.7, 28.1, and 37.3% in 2018, 2019, 2020, and 2021, respectively. We assumed that the infection occurred within 58.6 days, and based on the overall proportion (2.9%) of individuals with anti-PT IgG antibody ≥100 IU/ml, the incidence rate (/100) was estimated by the formula to be 18.08 (95% CI: 12.40-26.11). In addition, the estimated incidence of Post-COVID-19 was higher than that of Pre-COVID-19 (36.33/100 vs. 12.84/100), and the difference was statistically significant (p < 0.05). Conclusions: Our results suggest a high rate of under-reporting of pertussis in Jiangsu Province both pre- and post-COVID-19 pandemic, and there are a large number of adults of childbearing age who are susceptible to pertussis. It seems imperative that vaccination of adolescents and adults should be considered for inclusion in vaccination programs.


Assuntos
COVID-19 , Coqueluche , Adulto , Adolescente , Humanos , Incidência , Estudos Soroepidemiológicos , Pandemias , Anticorpos Antibacterianos , Imunoglobulina G , COVID-19/epidemiologia , Coqueluche/epidemiologia , Toxina Pertussis , China/epidemiologia
8.
Oxid Med Cell Longev ; 2021: 8899274, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34007409

RESUMO

Previous studies found that blast injury caused a significant increased expression of interleukin-1, IL-6, and tumor necrosis factor, a significant decrease in the expression of IL-10, an increase in Evans blue leakage, and a significant increase in inflammatory cell infiltration in the lungs. However, the molecular characteristics of lung injury at different time points after blast exposure have not yet been reported. Therefore, in this study, tandem mass spectrometry (TMT) quantitative proteomics and bioinformatics analysis were used for the first time to gain a deeper understanding of the molecular mechanism of lung blast injury at different time points. Forty-eight male C57BL/6 mice were randomly divided into six groups: control, 12 h, 24 h, 48 h, 72 h, and 1 w after low-intensity blast exposure. TMT quantitative proteomics and bioinformatics analysis were performed to analyze protein expression profiling in the lungs from control and blast-exposed mice, and differential protein expression was verified by Western blotting. The results demonstrated that blast exposure induced severe lung injury, leukocyte infiltration, and the production of inflammatory factors in mice. After analyzing the expression changes in global proteins and inflammation-related proteomes after blast exposure, the results showed that a total of 6861 global proteins and 608 differentially expressed proteins were identified, of which 215, 128, 187, 232, and 65 proteins were identified at 12 h, 24 h, 48 h, 72 h, and 1 week after blast exposure, respectively. Moreover, blast exposure-induced 177 differentially expressed proteins were associated with inflammatory responses, which were enriched in the inflammatory response regulation, leukocyte transendothelial migration, phagocytosis, and immune response. Therefore, blast exposure may induce early inflammatory response of lung tissue by regulating the expression of key proteins in the inflammatory process, suggesting that early inflammatory response may be the initiating factor of lung blast injury. These data can provide potential therapeutic candidates or approaches for the development of future treatment of lung blast injury.


Assuntos
Traumatismos por Explosões/fisiopatologia , Inflamação/fisiopatologia , Leucócitos/metabolismo , Lesão Pulmonar/fisiopatologia , Fagocitose/fisiologia , Proteômica/métodos , Migração Transendotelial e Transepitelial/fisiologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos
9.
Front Mol Neurosci ; 14: 688050, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630032

RESUMO

Recurrent chest blast exposure can lead to brain inflammation, oxidative stress, and mental disorders in soldiers. However, the mechanism that underlies brain injury caused indirectly by chest blasts remains unclear. It is urgent to find additional reliable biomarkers to reveal the intimate details of the pathogenesis of this phenomenon. We used the term tandem mass tag (TMT) labeling combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to screen for differentially expressed proteins in rat brain at different time points after a chest blast. Data are available via ProteomeXchange with the identifier PXD025204. Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), the Database for Annotation, Visualization and Integrated Discovery (DAVID), and Cytoscape analyses were used to analyze the proteomic profiles of blast-exposed rats. In addition, we performed Western blotting to verify protein levels. We identified 6,931 proteins, of which 255 were differentially expressed and 43, 84, 52, 97, and 49 were identified in brain tissues at 12, 24, 48, and 72 h and 1 week after chest blast exposure, respectively. In this study, the GO, KEGG, Clusters of Orthologous Groups of proteins, and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) analyses indicated that brain damage caused by chest blast exposure involved many important biological processes and signaling pathways, such as inflammation, cell adhesion, phagocytosis, neuronal and synaptic damage, oxidative stress, and apoptosis. Furthermore, Western blotting confirmed that these differentially expressed proteins and affected signaling pathways were associated with brain damage caused by chest blast exposure. This study identifies potential protein biomarkers of brain damage caused indirectly by chest blast and new targets for the treatment of this condition.

10.
Bioengineered ; 12(1): 4946-4961, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34365894

RESUMO

The solute carrier family has been reported to play critical roles in the progression of several cancers; however, the relationship between solute carrier family 12 member 8 (SLC12A8) and bladder cancer (BC) has not been clearly confirmed. This study explores the prognostic value of SLC12A8 for BC and its correlation with immune cell infiltration. We found that the expression of SLC12A8 mRNA was significantly overexpressed in BC tissues compared with noncancerous tissues in multiple public databases, and the result was validated using real-time PCR and immunohistochemistry (IHC). The Kaplan-Meier method and Cox proportional hazards models were used to evaluate the prognostic value of SLC12A8 for BC. The high expression of SLC12A8 led to a shorter overall survival time and was an unfavorable prognostic biomarker for BC. The mechanisms of SLC12A8 promoting tumorigenesis were investigated by Gene Set Enrichment Analysis (GSEA). Moreover, the correlations of SLC12A8 expression with the tumor-infiltrating immune cells (TICs) in BC were explored using TIMER 2.0 and CIBERSORT. SLC12A8 was associated with CD4+ T cells, dendritic cells, neutrophils, and macrophages infiltration. The expression of SLC12A8 was positively correlated with crucial immune checkpoint molecules. In conclusion, SLC12A8 might be an unfavorable prognostic biomarker in BC related to tumor immune cell infiltration.


Assuntos
Simportadores de Cloreto de Sódio-Potássio , Neoplasias da Bexiga Urinária , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Bases de Dados Genéticas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Simportadores de Cloreto de Sódio-Potássio/genética , Simportadores de Cloreto de Sódio-Potássio/imunologia , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/mortalidade , Neoplasias da Bexiga Urinária/patologia
11.
Injury ; 52(10): 2795-2802, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34454721

RESUMO

Blast injuries include the various types of internal and external trauma caused by the impact force of high-speed blast waves with multiple mechanisms involved. Thoracic blast exposure could induce neurotrauma as well, but effective therapies are lacking. Resveratrol is a polyphenol flavonoid secreted by plants and has been shown to provide cardiovascular protection and play anti-inflammatory, anti-oxidation and anti-cancer roles. However, the effects of resveratrol on thoracic blast exposure-induced brain injury have not been investigated. To explore this, a mouse model of thoracic blast exposure-induced brain injury was established. Sixty C57BL/6 wild type mice were randomly divided equally into four groups (one control group, one model group, and model groups with 25 or 50 mg/kg resveratrol injected intraperitoneally). As traumatic brain injury often accompanied by mental symptoms, cognitive dysfunction and anxious behavior were evaluated by Y maze, elevated plus maze and open field test. We also examined the mice for histopathological changes by hematoxylin-eosin staining; the expressions of inflammatory-related factors by ELISA; endoplasmic reticulum stress in brain tissue via the generation of reactive oxygen species (ROS) and the expressions of inositol-requiring enzyme-α (IRE-α) and C/EBP homologous protein (CHOP); apoptosis by measuring levels of Bax, p53 and Bcl-2. In addition, proteins of related pathways were also studied by western blotting. We found that resveratrol significantly reduced the levels of inflammatory-related factors, including interleukin (IL)-1ß, IL-4, and high mobility group box protein 1(HMGB1), and increased the level of anti-inflammatory-related factor, IL-10, under thoracic blast exposure (P < 0.05). Cognitive dysfunction and anxious behavior were also ameliorated by resveratrol. In brain tissue, resveratrol significantly attenuated thoracic blast exposure-induced generation of ROS and expressions of IRE-α and CHOP, lowered the expressions of Bax and p53, and maintained Bcl-2 expression (P < 0.05). Additionally, resveratrol significantly ameliorated thoracic blast exposure-induced increases of Kelch-like ECH-associated protein 1 (Keap1) and nuclear factor (NF)-κB and the decrease in nuclear factor erythroid 2-related factor 2(Nrf2) expression in the brain (P < 0.05). Our results indicate that resveratrol has a protective effect on thoracic blast exposure-induced brain injury that is likely mediated through the Nrf2/Keap1 and NF-κB signaling pathways.


Assuntos
Fator 2 Relacionado a NF-E2 , NF-kappa B , Animais , Camundongos , Apoptose , Encéfalo , Estresse do Retículo Endoplasmático , Inflamação , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Resveratrol/farmacologia , Transdução de Sinais
12.
Free Radic Biol Med ; 152: 52-60, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32131025

RESUMO

Although Tanshinone IIA (Tan IIA) has been associated with inflammation, oxidative stress and apoptosis, the effects of Tan IIA on lung blast injury remain uncertain. In this study, we explored the effects of Tan IIA on lung blast injury, studied its possible molecular mechanisms. Fifty C57BL/6 mice were randomly divided into the control, blast, blast + Tan IIA, blast + LY294002 (a PI3K inhibitor), or blast + Tan IIA + LY294002 groups. Serum and lung samples were collected 48 h after blast injury. The data showed that Tan IIA significantly inhibited blast-induced increases in the lung weight/body weight and wet/dry (W/D) weight ratios, decreased the CD44-and CD163-positive inflammatory cell infiltration in the lungs, reduced the IL-1ß, TNF-α and IL-6 expression, and enhanced IL-10 expression. Tan IIA also significantly alleviated the increases in MDA5 and IRE-a and the decrease in SOD-1 and reversed the low Bcl-2 expression and the high Bax and Caspase-3 expressions. Additionally, Tan IIA significantly decreased p-PI3K and p-Akt expression and increased p-FoxO1 expression. More importantly, both LY294002 and Tan IIA pretreatment markedly protected against blast-induced inflammation, oxidative stress and apoptosis in lung blast injury. These results suggest that Tan IIA protects against lung blast injury, which may be partly mediated by inhibiting the PI3K/Akt/FoxO1 signaling pathway.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Abietanos , Animais , Apoptose , Proteína Forkhead Box O1/genética , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
13.
J Cancer ; 11(16): 4641-4651, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32626510

RESUMO

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive human malignancies. The metabolomic approaches are developed to discover the novel biomarkers of PDAC. Methods: 550 preoperative, postoperative PDAC and normal controls (NCs) serums were employed to characterize metabolic alterations in training and validation sets by LC-MS. Results: The results of PLS-DA analysis indicated that three groups could be distinguished clearly and the post-PDAC group is adjacent to a normal group as compared with pre-PDAC group. Further results showed that histidinyl-lysine significantly increased whereas docosahexaenoic acid and LysoPC (14:0) decreased in pre-PDAC patients as compared with NCs. And these three markers had a significant tendency to recover after tumor resection. The validation set results revealed that for CA19-9 negative patients, 92.3% (12/13) of them can be screened using these three metabolites. The combination of these markers could significantly improve the diagnostic performance for PDAC, with higher sensitivity (0.93), specificity (0.92) and AUC (0.97). Moreover, network and pathways analyses explored the latent relationship among differential metabolites. The glycerolipid metabolism and primary bile acid synthesis showed variation in network and pathway analysis. Conclusions: These three markers combined with CA199 displayed high sensitivity and specificity for detecting PDAC patients from NCs. The results indicated that these three metabolites could be regarded as potential biomarkers to distinguish PDAC from NCs.

14.
Oxid Med Cell Longev ; 2019: 8460290, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31885821

RESUMO

Blast exposure is a worldwide public health concern, but most related research has been focused on direct injury. Thoracic blast exposure-induced neurotrauma is a type of indirect injuries where research is lacking. As CD28 stimulates T cell activation and survival and contributes to inflammation initiation, it may play a role in thoracic blast exposure-induced neurotrauma. However, it has not been investigated. To explore the effects of CD28 on thoracic blast exposure-induced brain injury and its potential molecular mechanisms, a mouse model of thoracic blast exposure-induced brain injury was established. Fifty C57BL/6 wild-type (WT) and fifty CD28 knockout (CD28-/-) mice were randomly divided into five groups (one control group and four model groups), with ten mice (from each of the two models) for each group. Lung and brain tissue and serum samples were collected at 12 h, 24 h, 48 h, and 1 week after thoracic blast exposure. Histopathological changes were detected by hematoxylin-eosin staining. The expressions of inflammatory-related factors were detected by ELISA. Oxidative stress in the brain tissue was evaluated by determining the generation of reactive oxygen species (ROS) and the expressions of thioredoxin (TRX), malondialdehyde (MDA), SOD-1, and SOD-2. Apoptosis in the brain tissue was evaluated by TUNEL staining and the levels of Bax, Bcl-xL, Bad, Cytochrome C, and caspase-3. In addition, proteins of related pathways were also studied by western blotting and immunofluorescence. We found that CD28 deficiency significantly reduced thoracic blast exposure-induced histopathological changes and decreased the levels of inflammatory-related factors, including IL-1ß, TNF-α, and S100ß. In the brain tissue, CD28 deficiency also significantly attenuated thoracic blast exposure-induced generation of ROS and expressions of MDA, TRX, SOD-1, and SOD-2; lowered the number of apoptotic cells and the expression of Bax, cleaved caspase-3, Cytochrome C, and Bad; and maintained Bcl-xL expression. Additionally, CD28 deficiency significantly ameliorated thoracic blast exposure-induced increases of p-PI3K and Keap1 and the decrease of Nrf2 expression in the brain. Our results indicate that CD28 deficiency has a protective effect on thoracic blast exposure-induced brain injury that might be associated with the PI3K/Nrf2/Keap1 signaling pathway.


Assuntos
Traumatismos por Explosões/metabolismo , Encéfalo/fisiologia , Antígenos CD28/metabolismo , Traumatismos Torácicos/metabolismo , Animais , Apoptose/genética , Traumatismos por Explosões/genética , Antígenos CD28/genética , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/genética , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Traumatismos Torácicos/genética
15.
Carbohydr Polym ; 205: 312-321, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30446110

RESUMO

In situ injectable hydrogels for wound healing based on carboxymethyl chitosan (CMCS) and alginate were developed in this work. The liquid mixture of CMCS and alginate solutions formed a gel by polyelectrolyte complexation after addition of d-glucono-δ-lactone (GDL), which slowly hydrolyzed and donated protons. When chitosan oligosaccharide (COS) was added into the mixture, a two-stage gelling process occurred. The primary gelling process was similar to that of the hydrogel without COS, while the secondary gelling process appeared about 20 min later, and much stronger hydrogels with storage modulus G' about 1 MPa, 104 times higher, were obtained. COS also significantly influenced the microstructure of hydrogels as well as their biological activities. The hydrogels with 0.5% of COS significantly promoted proliferation of human umbilical cord mesenchymal stem cells (HUMSCs). These injectable hydrogels, especially when COS was added, remarkably accelerated the wound healing process in a mouse skin defect model. Microscopic wound analysis showed an increase of the thickness and integrity of epidermal tissue, increased formation of collagen fibers, and enhanced expression of vascular endothelial growth factor as compared to the control group.

16.
Oxid Med Cell Longev ; 2019: 4848560, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31565151

RESUMO

Although CD28 is associated with the expression of inflammatory mediators, apoptosis-related protein, immunosuppression, and tumorigenesis, the effects of CD28 deficiency on blast exposure-induced lung injury have not been investigated. In this study, we have explored the effects of CD28 on blast exposure-induced lung injury and studied its potential molecular mechanisms. A mouse model of blast exposure-induced acute lung injury was established. Sixty C57BL/6 wild-type (WT) and CD28 knockout (CD28-/-) mice were randomly divided into control or model groups. Lung tissue samples were collected 24 h and 48 h after blast injury. Histopathological changes and the expressions of inflammatory-related proteins were detected by hematoxylin-eosin, immunohistochemistry, and immunofluorescence staining. Apoptosis and oxidative stress were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and reactive oxygen species (ROS). Inflammation, apoptosis, oxidative stress, and related pathway protein expression were studied by western blotting. In addition, the levels of CD3 and CD28 proteins were measured by flow cytometry. In the current study, we found that CD28 deficiency significantly inhibited blast exposure-induced increases in the lung weight/body weight ratio and wet weight/dry weight ratio; decreased the infiltration of CD44+ leukocytes, CD163+ macrophages, and CD3+ T cells into the lungs; reduced the expressions of proinflammatory cytokines including IL-1ß, TNF-α, and IL-6; and markedly increased IL-10 expression. CD28 deficiency also significantly attenuated blast exposure-induced ROS, MDA5, and IREα expressions; increased SOD-1 expression; lowered the number of apoptotic cells and Bax, Caspase-3, and active Caspase-8 expressions; and increased Bcl-2 expression. Additionally, CD28 deficiency significantly ameliorated blast exposure-induced increases of p-PI3K and p-Akt and ameliorated the decrease in the p-FoxO1 expression. Our results suggest that CD28 deficiency has a protective effect on blast exposure-induced lung injury, which might be associated with the PI3K/Akt/FoxO1 signaling pathway.


Assuntos
Traumatismos por Explosões/imunologia , Antígenos CD28/deficiência , Proteína Forkhead Box O1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Pneumonia/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linfócitos T/imunologia , Animais , Apoptose/fisiologia , Traumatismos por Explosões/metabolismo , Traumatismos por Explosões/patologia , Antígenos CD28/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/fisiologia , Pneumonia/metabolismo , Distribuição Aleatória , Transdução de Sinais , Linfócitos T/patologia
17.
Exp Biol Med (Maywood) ; 243(11): 934-944, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29984607

RESUMO

Severe lung damage is a major cause of death in blast victims, but the mechanisms of pulmonary blast injury are not well understood. Therefore, it is important to study the injury mechanism of pulmonary blast injury. A model of lung injury induced by blast exposure was established by using a simulation blast device. The effectiveness and reproducibility of the device were investigated. Eighty mice were randomly divided into eight groups: control group and 3 h, 6 h, 12 h, 24 h, 48 h, 7 days and 14 days post blast. The explosive device induced an explosion injury model of a single lung injury in mice. The success rate of the model was as high as 90%, and the degree of lung injury was basically the same under the same pressure. Under the same conditions, the thickness of the aluminum film can be from 0.8 mm to 1.6 mm, and the peak pressure could be from 95.85 ± 15.61 PSI to 423.32 ± 11.64 PSI. There is no statistical difference in intragroup comparison. A follow-up lung injury experiment using an aluminum film thickness of 1.4 mm showed a pressure of 337.46 ± 18.30 PSI induced a mortality rate of approximately 23.2%. Compared with the control group (372 ± 23 times/min, 85.9 ± 9.4 mmHg, 4.34 ± 0.09), blast exposed mice had decreased heart rate (283 ± 21 times/min) and blood pressure (73.6 ± 3.6 mmHg), and increased lung wet/dry weight ratio(2.67 ± 0.11), marked edematous lung tissue, ruptured blood vessels, infiltrating inflammatory cells, increased NF-κB (4.13 ± 0.01), TNF-α (4.13 ± 0.01), IL-1ß (2.43 ± 0.01) and IL-6 (4.65 ± 0.01) mRNA and protein, decreased IL-10(0.18 ± 0.02) mRNA and protein ( P < 0.05). The formation of ROS and the expression of MDA5 (4.46 ± 0.01) and IREα (3.43 ± 0.00) mRNA and protein were increased and the expression of SOD-1 (0.28 ± 0.02) mRNA and protein was decreased ( P < 0.05). Increased expression of Bax (3.54 ± 0.00) and caspase 3 (4.18 ± 0.01) mRNA and protein inhibited the expression of Bcl-2 (0.39 ± 0.02) mRNA and protein. The changes of pulmonary edema, inflammatory cell infiltration, and cell damage factor expression increased gradually with time, and reached the peak at 12-24 h after the outbreak, and returned to normal at 7-14 days. Detonation injury can lead to edema of lung tissue, pulmonary hemorrhage, rupture of pulmonary vessels, induction of early inflammatory responses accompanied by increased oxidative stress in lung tissue cells and increased apoptosis in mice experiencing blast injury. The above results are consistent with those reported in other literatures. It is showed that the mouse lung blast injury model is successfully modeled, and the device can be used for the study of pulmonary blast injury. Impact statement The number of patients with explosive injury has increased year by year, but there is no better treatment. However, the research on detonation injury is difficult to carry out. One of the factors is the difficulty in making the model of blast injury. The laboratory successfully developed and produced a simulation device of explosive knocking through a large amount of literature data and preliminary experiments, and verified the preparation of the simulation device through various experimental techniques. The results showed that the device could simulate the shock wave-induced acute lung injury generated, which was similar to the actual knocking injury. The experimental process was controlled. Under the same condition, there was no statistical difference between the groups. It is possible to realize miniaturization and precision of an explosive knocking simulation device, which is a good experimental tool for further research on the mechanism of organ damage caused by detonation and the development of protective drugs.


Assuntos
Traumatismos por Explosões/patologia , Vasos Sanguíneos/efeitos da radiação , Ondas de Choque de Alta Energia/efeitos adversos , Lesão Pulmonar/patologia , Pulmão/efeitos da radiação , Animais , Proteínas Reguladoras de Apoptose/análise , Pressão Sanguínea/efeitos da radiação , Vasos Sanguíneos/patologia , Citocinas/análise , Modelos Animais de Doenças , Edema/patologia , Perfilação da Expressão Gênica , Frequência Cardíaca/efeitos da radiação , Hemorragia/patologia , Camundongos , Pneumonia/patologia , Proteínas/análise , RNA Mensageiro/análise , Espécies Reativas de Oxigênio/análise , Ruptura/patologia , Análise de Sobrevida
18.
PLoS One ; 13(2): e0192135, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29415054

RESUMO

OBJECTIVE: To investigate the protective effect of chitosan oligosaccharide (COS) on acute lung injury (ALI) caused by blast injury, and explore possible molecular mechanisms. METHODS: A mouse model of blast injury-induced ALI was established using a self-made explosive device. Thirty mice were randomly assigned to control, ALI and ALI + COS groups. An eight-channel physiological monitor was used to determine the mouse physiological index. Enzyme linked immunosorbent assay was used to measure serum inflammatory factors. Hematoxylin-eosin staining, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, immunofluorescence staining, real time-polymerase chain reaction and western blot assay were used to detect inflammatory reactions, oxidative stress and apoptosis. RESULTS: Mice were sacrificed 24 hours after successful model induction. Compared with the ALI group, the heart rate, respiration and PCO2 were significantly lower, but the PO2, TCO2 and HCO3- were significantly higher in the ALI + COS group. Compared to ALI alone, COS treatment of ALI caused a significant decrease in the wet/dry lung weight ratio, indicating a reduction in lung edema, inflammatory cell infiltration, levels of tumor necrosis factor-α, interleukin (IL)-1ß, IL-4, IL-6 and nuclear factor kappa B mRNA and protein expression were reduced and IL-10 mRNA and protein expression was increased (P < 0.05). COS significantly inhibited reactive oxygen species, MDA5 and IREα mRNA and protein expressions, cell apoptosis and Bax and Caspase-3 mRNA and protein expressions, and significantly increased superoxide dismutase-1 mRNA expression, and Bcl-2 and Caspase-8 mRNA and protein expression (all P<0.05). COS significantly increased dimethylarginine dimethylaminohydrolase 1 (DDAH1) protein expression, and reduced ADMA and p38 protein expression (P< 0.05). CONCLUSION: Blast injury causes inflammation, oxidative stress and apoptosis in the lung tissues of mice. COS has protective effects on blast injury-induced ALI, possibly by promoting DDAH1 expression and inhibiting ADMA and mitogen-activated protein kinase pathways.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Amidoidrolases/metabolismo , Traumatismos por Explosões/complicações , Quitosana/farmacologia , Lesão Pulmonar Aguda/etiologia , Animais , Apoptose/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Mediadores da Inflamação/sangue , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Wei Sheng Wu Xue Bao ; 47(1): 156-60, 2007 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-17436644

RESUMO

An a-galactosidase-producing fungus was screened out of 26 filamentous fungi isolated from soil by us. Phylogenetic analysis based on the alignment of 18S rDNA sequences, combined with the morphological identification, indicated that the strain F63 was a member of the genus Penicillium. The a-galactosidase from Penicillium sp. F63 was purified to apparent homogeneity by ammonium sulfate precipitation, ion-exchange and gel filtration chromatography. The molecular size of the purified enzyme is approximately 82kDa estimated by SDS-PAGE. The a-galactosidase has an optimum pH of 5.0 and an optimum temperature of 45 degrees C. The enzyme is stable between pH5.0 and 6.0 below 40 degrees C. The a-galactosidase activity is slightly inhibited by Ag+ , which is dissimilar to other a-galactosidases. Kinetic studies of the a-galactosidase showed that the Km and the Vmax for pNPG are 1.4mmol/L and 1.556mmol/L. min(-1) x mg- 1, respectively. The enzyme is able to degrade natural substrates such as melibiose, raffinose and stachyose but not galactose-containing polysaccharides. The alpha-galactosidase was identified by MALDI-TOF-MS and its inner peptides were sequenced by ESI-MS/MS. The results show that the a-galactosidase is a novel one.


Assuntos
Penicillium/enzimologia , alfa-Galactosidase/isolamento & purificação , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Temperatura , alfa-Galactosidase/química , alfa-Galactosidase/metabolismo
20.
Brain Res ; 1670: 201-207, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28669718

RESUMO

Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel that interacts with several intracellular proteins in vivo, including calmodulin and Phosphatidylinositol-3-Kinase/Protein Kinase B (PI3K/Akt). TRPV1 activation has been reported to exert neuroprotective effects. The aim of this study was to examine the impact of cold stress on the mouse brain and the underlying mechanisms of TRPV1 involvement. Adult male C57BL/6 mice were subjected to cold stress (4°C for 8h per day for 2weeks). The behavioral deficits of the mice were then measured using the Morris water maze. Expression levels of brain injury-related proteins and mRNA were measured by western blot, immunofluorescence or RT-PCR analysis. The mice displayed behavioral deficits, inflammation and changes in brain injury markers following cold stress. As expected, upregulated TRPV1 expression levels and changes in PI3K/Akt expression were found. The TRPV1 inhibitor reduced the levels of brain injury-related proteins and inflammation. These data suggest that cold stress can induce brain injury, possibly through TRPV1 activation and the PI3K/Akt signaling pathway. Suppression of inflammation by inhibition of TRPV1 and the PI3K/Akt pathway may be helpful to prevent cold stress-induced brain injury.


Assuntos
Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estresse Fisiológico/fisiologia , Canais de Cátion TRPV/metabolismo , Animais , Encéfalo/metabolismo , Lesões Encefálicas/genética , Lesões Encefálicas/metabolismo , Temperatura Baixa , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA