Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 102(5): 2179-2182, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34580868

RESUMO

BACKGROUND: The use of rapeseed protein for human nutrition is primarily limited by its strong bitterness, which is why the key bitter compound, kaempferol 3-O-(2‴-O-sinapoyl-ß-sophoroside), is enzymatically degraded. RESULTS: Mass spectrometry analyses of an extract from an untreated rapeseed protein isolate gave three signals for m/z 815 [M-H]. The predominant compound among the three compounds was confirmed as kaempferol-3-O-(2‴-O-sinapoyl-ß-sophoroside). Enzymatic hydrolysis of this key bitter compound was achieved using a sinapyl ester cleaving side activity of a ferulic acid esterase (FAE) from the basidiomycete Schizophyllum commune (ScoFAE). Recombinant ferulic acid esterases from Streptomyces werraensis (SwFAE) and from Pleurotus eryngii (PeFAE) possessed better cleavage activity towards methyl sinapate but did not hydrolyze the sinapyl ester linkage of the bitter kaempferol sophoroside. CONCLUSION: Kaempferol-3-O-(2‴-O-sinapoyl-ß-sophoroside) was successfully degraded by enzymatic treatment with ScoFAE, which may provide a means to move the status of rapeseed protein from feed additive to food ingredient. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Brassica napus , Brassica rapa , Humanos , Hidrólise , Quempferóis , Paladar
2.
J Sci Food Agric ; 99(14): 6644-6648, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31325326

RESUMO

BACKGROUND: Apple juice is rich in polyphenolic compounds, especially in chlorogenic acid. A sour and bitter taste has been attributed to the compound. Chlorogenic acid in coffee powder was quickly hydrolysed by a p-coumaryl esterase of Rhizoctonia solani (RspCAE) at its optimal pH of 6.0. It was unknown, however, if RspCAE would also degrade chlorogenic acid under the strongly acidic conditions (pH 3.3) present in apple juice. RESULTS: Treatment of apple juice with RspCAE led to a chlorogenic acid degradation from 53.38 ± 0.94 mg L-1 to 21.02 ± 1.47 mg L-1 . Simultaneously, the caffeic acid content increased from 6.72 ± 0.69 mg L-1 to 19.33 ± 1.86 mg/L-1 . The aroma profile of the enzymatically treated sample and a control sample differed in only one volatile. Vitispirane had a higher flavour dilution factor in the treated juice. Sensory analysis showed no significant difference in the taste profile ( p < 0.05). CONCLUSION: These results demonstrated a high stability and substrate specificity of RspCAE. An increase in caffeic acid and a concurrent decrease in chlorogenic acid concentration may exert a beneficial effect on human health. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Ácido Clorogênico/química , Esterases/química , Sucos de Frutas e Vegetais/análise , Proteínas Fúngicas/química , Malus/química , Rhizoctonia/enzimologia , Aromatizantes/química , Concentração de Íons de Hidrogênio , Hidrólise , Odorantes/análise , Especificidade por Substrato
3.
Food Chem ; 258: 124-128, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-29655713

RESUMO

A p-coumaroyl esterase from Rhizoctonia solani was used to decrease 5-O-chlorogenic acid (5-CQA) content in coffee powder. HPLC-UV showed a decline of up to 98% of 5-CQA after the enzyme treatment. Effects on aroma were determined by means of aroma extract dilution analysis. Flavour dilution factors of treated and control extract differed in four volatile compounds only. Effect on aroma and taste was evaluated by sensory tests. No significant differences were perceived, and no off-flavour nor off-taste was noted. As chlorogenic acids are suspected to cause stomach irritating effects in sensitive people, the enzyme treatment offers a technically feasible approach to improve the quality of coffee beverages by reducing 5-CQA concentration without significantly affecting the aroma and taste profile.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Ácido Clorogênico/metabolismo , Café/química , Bebidas/análise , Ácido Clorogênico/análise , Cromatografia Líquida de Alta Pressão , Café/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Rhizoctonia/enzimologia , Espectrofotometria Ultravioleta , Percepção Gustatória , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA