Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(26): 260801, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37450793

RESUMO

We derive lower bounds on the variance of estimators in quantum metrology by choosing test observables that define constraints on the unbiasedness of the estimator. The quantum bounds are obtained by analytical optimization over all possible quantum measurements and estimators that satisfy the given constraints. We obtain hierarchies of increasingly tight bounds that include the quantum Cramér-Rao bound at the lowest order. In the opposite limit, the quantum Barankin bound is the variance of the locally best unbiased estimator in quantum metrology. Our results reveal generalizations of the quantum Fisher information that are able to avoid regularity conditions and identify threshold behavior in quantum measurements with mixed states, caused by finite data.

2.
Phys Rev Lett ; 131(26): 260601, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38215377

RESUMO

The high-fidelity analysis of many-body quantum states of indistinguishable atoms requires the accurate counting of atoms. Here we report the tomographic reconstruction of an atom-number-resolving detector. The tomography is performed with an ultracold rubidium ensemble that is prepared in a coherent spin state by driving a Rabi coupling between the two hyperfine clock levels. The coupling is followed by counting the occupation number in one level. We characterize the fidelity of our detector and show that a negative-valued Wigner function is associated with it. Our results offer an exciting perspective for the high-fidelity reconstruction of entangled states and can be applied for a future demonstration of Heisenberg-limited atom interferometry.

3.
Phys Rev Lett ; 127(18): 183401, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34767389

RESUMO

We explore the possibility to overcome the standard quantum limit (SQL) in a free-fall atom interferometer using a Bose-Einstein condensate (BEC) in either of the two relevant cases of Bragg or Raman scattering light pulses. The generation of entanglement in the BEC is dramatically enhanced by amplifying the atom-atom interactions via the rapid action of an external trap, focusing the matter waves to significantly increase the atomic densities during a preparation stage-a technique we refer to as delta-kick squeezing (DKS). The action of a second DKS operation at the end of the interferometry sequence allows one to implement a nonlinear readout scheme, making the sub-SQL sensitivity highly robust against imperfect atom counting detection. We predict more than 30 dB of sensitivity gain beyond the SQL for the variance, assuming realistic parameters and 10^{6} atoms.

4.
Phys Rev Lett ; 127(14): 140401, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34652187

RESUMO

The generation and verification of genuine multipartite nonlocality (GMN) is of central interest for both fundamental research and quantum technological applications, such as quantum privacy. To demonstrate GMN in measurement data, the statistics are commonly postselected by neglecting undesired data. Until now, valid postselection strategies have been restricted to local postselection. A general postselection that is decided after communication between parties can mimic nonlocality, even though the complete data are local. Here, we establish conditions under which GMN is demonstrable even if observations are postselected collectively. Intriguingly, certain postselection strategies that require communication among several parties still offer a demonstration of GMN shared between all parties. The results are derived using the causal structure of the experiment and the no-signaling condition imposed by relativity. Finally, we apply our results to show that genuine three-partite nonlocality can be created with independent particle sources.

5.
Phys Rev Lett ; 126(8): 080502, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33709723

RESUMO

We characterize metrologically useful multipartite entanglement by representing partitions with Young diagrams. We derive entanglement witnesses that are sensitive to the shape of Young diagrams and show that Dyson's rank acts as a resource for quantum metrology. Common quantifiers, such as the entanglement depth and k-separability are contained in this approach as the diagram's width and height. Our methods are experimentally accessible in a wide range of atomic systems, as we illustrate by analyzing published data on the quantum Fisher information and spin-squeezing coefficients.

6.
Phys Rev Lett ; 126(23): 230602, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34170156

RESUMO

Excited-state quantum phase transitions extend the notion of quantum phase transitions beyond the ground state. They are characterized by closing energy gaps amid the spectrum. Identifying order parameters for excited-state quantum phase transitions poses, however, a major challenge. We introduce a topological order parameter that distinguishes excited-state phases in a large class of mean-field models and can be accessed by interferometry in current experiments with spinor Bose-Einstein condensates. Our work opens a way for the experimental characterization of excited-state quantum phases in atomic many-body systems.

7.
Phys Rev Lett ; 125(21): 210503, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33274961

RESUMO

We propose a hybrid quantum-classical atomic clock where the interrogation of atoms prepared in a spin-coherent (or weakly squeezed) state is used to feed back one or more highly spin-squeezed atomic states toward their optimal phase-sensitivity point. The hybrid clock overcomes the stability of a single Ramsey clock using coherent or optimal spin-squeezed states and reaches a Heisenberg-limited stability while avoiding nondestructive measurements. When optimized with respect to the total number of particles, the protocol surpasses the state-of-the-art proposals that use Greenberger-Horne-Zeilinger or NOON states. We compare analytical predictions with numerical simulations of clock operations, including correlated 1/f local oscillator noise.

8.
Phys Rev Lett ; 122(9): 090503, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30932524

RESUMO

The well-known metrological linear squeezing parameters (such as quadrature or spin squeezing) efficiently quantify the sensitivity of Gaussian states. Yet, these parameters are insufficient to characterize the much wider class of highly sensitive non-Gaussian states. Here, we introduce a class of metrological nonlinear squeezing parameters obtained by analytical optimization of measurement observables among a given set of accessible (possibly nonlinear) operators. This allows for the metrological characterization of non-Gaussian quantum states of discrete and continuous variables. Our results lead to optimized and experimentally feasible recipes for a high-precision moment-based estimation of a phase parameter and can be used to systematically construct multipartite entanglement and nonclassicality witnesses for complex quantum states.

9.
Proc Natl Acad Sci U S A ; 113(41): 11459-11464, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27681625

RESUMO

Quantum mechanics predicts the existence of correlations between composite systems that, although puzzling to our physical intuition, enable technologies not accessible in a classical world. Notwithstanding, there is still no efficient general method to theoretically quantify and experimentally detect entanglement of many qubits. Here we propose to detect entanglement by measuring the statistical response of a quantum system to an arbitrary nonlocal parametric evolution. We witness entanglement without relying on the tomographic reconstruction of the quantum state, or the realization of witness operators. The protocol requires two collective settings for any number of parties and is robust against noise and decoherence occurring after the implementation of the parametric transformation. To illustrate its user friendliness we demonstrate multipartite entanglement in different experiments with ions and photons by analyzing published data on fidelity visibilities and variances of collective observables.

10.
Phys Rev Lett ; 121(13): 130503, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30312095

RESUMO

We identify precision limits for the simultaneous estimation of multiple parameters in multimode interferometers. Quantum strategies to enhance the multiparameter sensitivity are based on entanglement among particles, modes, or combining both. The maximum attainable sensitivity of particle-separable states defines the multiparameter shot-noise limit, which can be surpassed without mode entanglement. Further enhancements up to the multiparameter Heisenberg limit are possible by adding mode entanglement. Optimal strategies that saturate the precision bounds are provided.

11.
Phys Rev Lett ; 120(5): 050404, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29481206

RESUMO

The controlled generation and identification of quantum correlations, usually encoded in either qubits or continuous degrees of freedom, builds the foundation of quantum information science. Recently, more sophisticated approaches, involving a combination of two distinct degrees of freedom, have been proposed to improve on the traditional strategies. Hyperentanglement describes simultaneous entanglement in more than one distinct degree of freedom, whereas hybrid entanglement refers to entanglement shared between a discrete and a continuous degree of freedom. In this work we propose a scheme that allows us to combine the two approaches, and to extend them to the strongest form of quantum correlations. Specifically, we show how two identical, initially separated particles can be manipulated to produce Bell nonlocality among their spins, among their momenta, as well as across their spins and momenta. We discuss possible experimental realizations with atomic and photonic systems.

12.
Entropy (Basel) ; 20(9)2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-33265717

RESUMO

Frequentist and Bayesian phase estimation strategies lead to conceptually different results on the state of knowledge about the true value of an unknown parameter. We compare the two frameworks and their sensitivity bounds to the estimation of an interferometric phase shift limited by quantum noise, considering both the cases of a fixed and a fluctuating parameter. We point out that frequentist precision bounds, such as the Cramér-Rao bound, for instance, do not apply to Bayesian strategies and vice versa. In particular, we show that the Bayesian variance can overcome the frequentist Cramér-Rao bound, which appears to be a paradoxical result if the conceptual difference between the two approaches are overlooked. Similarly, bounds for fluctuating parameters make no statement about the estimation of a fixed parameter.

13.
Phys Rev Lett ; 119(25): 250401, 2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29303346

RESUMO

We witness multipartite entanglement in the ground state of the Kitaev chain-a benchmark model of a one dimensional topological superconductor-also with variable-range pairing, using the quantum Fisher information. Phases having a finite winding number, for both short- and long-range pairing, are characterized by a power-law diverging finite-size scaling of multipartite entanglement. Moreover, the occurring quantum phase transitions are sharply marked by the divergence of the derivative of the quantum Fisher information, even in the absence of a closing energy gap.

14.
Phys Rev Lett ; 119(13): 130504, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29341700

RESUMO

A quantum theory of multiphase estimation is crucial for quantum-enhanced sensing and imaging and may link quantum metrology to more complex quantum computation and communication protocols. In this Letter, we tackle one of the key difficulties of multiphase estimation: obtaining a measurement which saturates the fundamental sensitivity bounds. We derive necessary and sufficient conditions for projective measurements acting on pure states to saturate the ultimate theoretical bound on precision given by the quantum Fisher information matrix. We apply our theory to the specific example of interferometric phase estimation using photon number measurements, a convenient choice in the laboratory. Our results thus introduce concepts and methods relevant to the future theoretical and experimental development of multiparameter estimation.

15.
Phys Rev Lett ; 116(14): 149901, 2016 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-27104733

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.113.023003.

16.
Phys Rev Lett ; 115(16): 163002, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26550872

RESUMO

Unstable spinor Bose-Einstein condensates are ideal candidates to create nonlinear three-mode interferometers. Our analysis goes beyond the standard SU(1,1) parametric approach and therefore provides the regime of parameters where sub-shot-noise sensitivities can be reached with respect to the input total average number of particles. Decoherence due to particle losses and finite detection efficiency are also considered.

17.
Phys Rev Lett ; 113(2): 023003, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25062174

RESUMO

We design a multimode interferometer with cold atoms confined in a harmonic trap. A first Kapitza-Dirac pulse creates several spatially addressable modes which are coherently recombined by the harmonic potential and mixed again by a second Kapitza-Dirac pulse. A phase shift among the mode is estimated by fitting the density profile or by measuring the number of atoms in each output mode. The expected sensitivity is rigorously calculated with the Fisher information and the Cramér-Rao lower bound. For the measurement of the gravitational acceleration g we predict, with typical parameters of a compact setup, a temperature independent sensitivity which can exceed, by several orders of magnitude, the sensitivity of current atomic interferometers.

18.
Phys Rev Lett ; 110(16): 163604, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23679603

RESUMO

A major challenge of the phase estimation problem is the engineering of high-intensity entangled probe states. The goal is to significantly enhance above the shot-noise limit the sensitivity of two-mode interferometers. Here we show that this can be achieved by squeezing in input, and then measuring in output, the population fluctuations of a single mode. The second input mode can be left as an arbitrary nonvacuum (e.g., a bright coherent) state. This two-mode state belongs to a novel class of particle-entangled states which are not spin squeezed. Already a 2.4 db gain above shot noise can be obtained when just a single-particle Fock state is injected into the empty input port of a classical interferometer configuration. Higher gains, up to the Heisenberg limit, can be reached with squeezed states of a larger number of particles. We finally study the robustness of this protocol with respect to detection noise.

19.
Science ; 382(6675): 1118-1119, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38060665

RESUMO

Controlled molecular connection will advance quantum technologies.

20.
Phys Rev Lett ; 109(15): 150410, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23102286

RESUMO

According to the quantum Zeno effect (QZ), frequent observations of a system can dramatically slow down its dynamical evolution. We show that the QZ is a physical consequence of the statistical indistinguishability of neighboring quantum states. The time scale of the problem is expressed in terms of the Fisher information and we demonstrate that the Zeno dynamics of particle entangled states might require quite smaller measurement intervals than classically correlated states. We propose an interferometric experiment to test the prediction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA