Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Am J Pathol ; 193(11): 1694-1705, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37330004

RESUMO

CreTrp1 mice are widely used for conditional retinal pigment epithelium (RPE) gene function studies. Like other Cre/LoxP models, phenotypes in CreTrp1 mice can be affected by Cre-mediated cellular toxicity, leading to RPE dysfunction, altered morphology and atrophy, activation of innate immunity, and consequent impairment of photoreceptor function. These effects are common among the age-related alterations of RPE that feature in early/intermediate forms of age-related macular degeneration. This article characterizes Cre-mediated pathology in the CreTrp1 line to elucidate the impact of RPE degeneration on both developmental and pathologic choroidal neovascularization. Nonredundant roles of the two major components of the hypoxia-inducible factor (HIF) family of transcription regulators, HIF1α and HIF2α, were identified. Genetic ablation of Hif1a protected against Cre-induced degeneration of RPE and choroid, whereas ablation of Hif2a exacerbated this degeneration. Furthermore, HIF1α deficiency protected CreTrp1 mice against laser-induced choroidal neovascularization, whereas HIF2α deficiency exacerbated the phenotype. Cre-mediated degeneration of the RPE in CreTrp1 mice offers an opportunity to investigate the impact of hypoxia signaling in the context of RPE degeneration. These findings indicate that HIF1α promotes Cre recombinase-mediated RPE degeneration and laser-induced choroidal neovascularization, whereas HIF2α is protective.

2.
J Biol Chem ; 298(6): 101944, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35447116

RESUMO

Mechanistic target of rapamycin (mTOR) and mTOR complex 1 (mTORC1), linchpins of the nutrient sensing and protein synthesis pathways, are present at relatively high levels in the ganglion cell layer (GCL) and retinal ganglion cells (RGCs) of rodent and human retinas. However, the role of mTORCs in the control of protein synthesis in RGC is unknown. Here, we applied the SUrface SEnsing of Translation (SUnSET) method of nascent protein labeling to localize and quantify protein synthesis in the retinas of adult mice. We also used intravitreal injection of an adeno-associated virus 2 vector encoding Cre recombinase in the eyes of mtor- or rptor-floxed mice to conditionally knockout either both mTORCs or only mTORC1, respectively, in cells within the GCL. A novel vector encoding an inactive Cre mutant (CreΔC) served as control. We found that retinal protein synthesis was highest in the GCL, particularly in RGC. Negation of both complexes or only mTORC1 significantly reduced protein synthesis in RGC. In addition, loss of mTORC1 function caused a significant reduction in the pan-RGC marker, RNA-binding protein with multiple splicing, with little decrease of the total number of cells in the RGC layer, even at 25 weeks after adeno-associated virus-Cre injection. These findings reveal that mTORC1 signaling is necessary for maintaining the high rate of protein synthesis in RGCs of adult rodents, but it may not be essential to maintain RGC viability. These findings may also be relevant to understanding the pathophysiology of RGC disorders, including glaucoma, diabetic retinopathy, and optic neuropathies.


Assuntos
Glaucoma , Células Ganglionares da Retina , Animais , Glaucoma/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Retina/metabolismo , Células Ganglionares da Retina/metabolismo
3.
Hum Mol Genet ; 29(22): 3706-3716, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33355362

RESUMO

Mutations in retinitis pigmentosa GTPase regulator (RPGR) cause severe retinal ciliopathy, X-linked retinitis pigmentosa. Although two major alternatively spliced isoforms, RPGRex1-19 and RPGRORF15, are expressed, the relative importance of these isoforms in disease pathogenesis is unclear. Here, we analyzed fibroblast samples from eight patients and found that all of them form longer cilia than normal controls, albeit to different degrees. Although all mutant RPGRORF15 messenger RNAs (mRNAs) are unstable, their steady-state levels were similar or higher than those in the control cells, suggesting there may be increased transcription. Three of the fibroblasts that had higher levels of mutant RPGRORF15 mRNA also exhibited significantly higher levels of RPGRex1-19 mRNA. Four samples with unaltered RPGRex1-19 levels carried mutations in RPGRORF15 that resulted in this isoform being relatively less stable. Thus, in all cases, the RPGRex1-19/RPGRORF15 isoform ratio was increased, and this was highly correlative to the cilia extension defect. Moreover, overexpression of RPGRex1-19 (mimicking the increase in RPGRex1-19 to RPGRORF15 isoform ratio) or RPGRORF15 (mimicking reduction of the ratio) resulted in significantly longer or shorter cilia, respectively. Notably, the cilia length defect appears to be attributable to both the loss of the wild-type RPGRORF15 protein and to the higher levels of the RPGRex1-19 isoform, indicating that the observed defect is due to the altered isoform ratios. These results suggest that maintaining the optimal RPGRex1-9 to RPGRORF15 ratio is critical for cilia growth and that designing strategies that focus on the best ways to restore the RPGRex1-19/RPGRORF15 ratio may lead to better therapeutic outcomes.


Assuntos
Proteínas do Olho/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Retinose Pigmentar/genética , Processamento Alternativo/genética , Proteínas de Transporte/genética , Cílios/genética , Cílios/patologia , Éxons/genética , Feminino , Fibroblastos , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Masculino , Mutação/genética , Isoformas de Proteínas/genética , Retina/metabolismo , Retina/patologia , Retinose Pigmentar/patologia
4.
EMBO Rep ; 22(11): e53732, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34494703

RESUMO

Neuronal communication is typically mediated via synapses and gap junctions. New forms of intercellular communication, including nanotubes (NTs) and extracellular vesicles (EVs), have been described for non-neuronal cells, but their role in neuronal communication is not known. Recently, transfer of cytoplasmic material between donor and host neurons ("material transfer") was shown to occur after photoreceptor transplantation. The cellular mechanism(s) underlying this surprising finding are unknown. Here, using transplantation, primary neuronal cultures and the generation of chimeric retinae, we show for the first time that mammalian photoreceptor neurons can form open-end NT-like processes. These processes permit the transfer of cytoplasmic and membrane-bound molecules in culture and after transplantation and can mediate gain-of-function in the acceptor cells. Rarely, organelles were also observed to transfer. Strikingly, use of chimeric retinae revealed that material transfer can occur between photoreceptors in the intact adult retina. Conversely, while photoreceptors are capable of releasing EVs, at least in culture, these are taken up by glia and not by retinal neurons. Our findings provide the first evidence of functional NT-like processes forming between sensory neurons in culture and in vivo.


Assuntos
Vesículas Extracelulares , Nanotubos , Animais , Comunicação Celular , Mamíferos , Neurônios , Retina
5.
Mar Drugs ; 21(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37367692

RESUMO

Marinolides A and B, two new 24- and 26-membered bacterial macrolactones, were isolated from the marine-derived actinobacterium AJS-327 and their stereostructures initially assigned by bioinformatic data analysis. Macrolactones typically possess complex stereochemistry, the assignments of which have been one of the most difficult undertakings in natural products chemistry, and in most cases, the use of X-ray diffraction methods and total synthesis have been the major methods of assigning their absolute configurations. More recently, however, it has become apparent that the integration of bioinformatic data is growing in utility to assign absolute configurations. Genome mining and bioinformatic analysis identified the 97 kb mld biosynthetic cluster harboring seven type I polyketide synthases. A detailed bioinformatic investigation of the ketoreductase and enoylreductase domains within the multimodular polyketide synthases, coupled with NMR and X-ray diffraction data, allowed for the absolute configurations of marinolides A and B to be determined. While using bioinformatics to assign the relative and absolute configurations of natural products has high potential, this method must be coupled with full NMR-based analysis to both confirm bioinformatic assignments as well as any additional modifications that occur during biosynthesis.


Assuntos
Produtos Biológicos , Policetídeo Sintases , Policetídeo Sintases/genética , Macrolídeos/química , Biologia Computacional , Bactérias
6.
Environ Manage ; 71(2): 432-438, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36471001

RESUMO

New York State Department of Environmental Conservation (NYSDEC) has developed a robust citizen science macroinvertebrate sampling method. The metric relies on the presence and not the absence of key macroinvertebrates and therefore is resistant to collection and sorting errors. It identifies unimpaired streams with high confidence (0.1% type 1 errors) and at a reasonable efficiency compared to NYSDEC's multimetric index of biological integrity (54%). We rank remaining stream samples for further investigation using a calculated probability of impairment. This method is valuable as a tool for large monitoring programs with limited resources for quality assurance checks. The value of this method goes beyond data collection, however, as data of known quality is an effective communication tool between citizen scientists and state regulatory agencies and/or local decision makers.


Assuntos
Monitoramento Ambiental , Qualidade da Água , Monitoramento Ambiental/métodos , New York , Rios , Humanos
7.
Hum Mol Genet ; 29(8): 1310-1318, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32196553

RESUMO

Rhodopsin misfolding caused by the P23H mutation is a major cause of autosomal dominant retinitis pigmentosa (adRP). To date, there are no effective treatments for adRP. The BiP co-chaperone and reductase ERdj5 (DNAJC10) is part of the endoplasmic reticulum (ER) quality control machinery, and previous studies have shown that overexpression of ERdj5 in vitro enhanced the degradation of P23H rhodopsin, whereas knockdown of ERdj5 increased P23H rhodopsin ER retention and aggregation. Here, we investigated the role of ERdj5 in photoreceptor homeostasis in vivo by using an Erdj5 knockout mouse crossed with the P23H knock-in mouse and by adeno-associated viral (AAV) vector-mediated gene augmentation of ERdj5 in P23H-3 rats. Electroretinogram (ERG) and optical coherence tomography of Erdj5-/- and P23H+/-:Erdj5-/- mice showed no effect of ERdj5 ablation on retinal function or photoreceptor survival. Rhodopsin levels and localization were similar to those of control animals at a range of time points. By contrast, when AAV2/8-ERdj5-HA was subretinally injected into P23H-3 rats, analysis of the full-field ERG suggested that overexpression of ERdj5 reduced visual function loss 10 weeks post-injection (PI). This correlated with a significant preservation of photoreceptor cells at 4 and 10 weeks PI. Assessment of the outer nuclear layer (ONL) morphology showed preserved ONL thickness and reduced rhodopsin retention in the ONL in the injected superior retina. Overall, these data suggest that manipulation of the ER quality control and ER-associated degradation factors to promote mutant protein degradation could be beneficial for the treatment of adRP caused by mutant rhodopsin.


Assuntos
Proteínas de Choque Térmico HSP40/genética , Chaperonas Moleculares/genética , Retinose Pigmentar/genética , Rodopsina/genética , Animais , Modelos Animais de Doenças , Eletrorretinografia , Retículo Endoplasmático/genética , Técnicas de Introdução de Genes , Camundongos , Camundongos Knockout , Mutação/genética , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Ratos , Retina/metabolismo , Retina/patologia , Retinose Pigmentar/patologia , Rodopsina/metabolismo , Transfecção
8.
Glob Chang Biol ; 28(10): 3236-3245, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35239211

RESUMO

Coastal marshes are globally important, carbon dense ecosystems simultaneously maintained and threatened by sea-level rise. Warming temperatures may increase wetland plant productivity and organic matter accumulation, but temperature-modulated feedbacks between productivity and decomposition make it difficult to assess how wetlands and their thick, organic-rich soils will respond to climate warming. Here, we actively increased aboveground plant-surface and belowground soil temperatures in two marsh plant communities, and found that a moderate amount of warming (1.7°C above ambient temperatures) consistently maximized root growth, marsh elevation gain, and belowground carbon accumulation. Marsh elevation loss observed at higher temperatures was associated with increased carbon mineralization and increased microtopographic heterogeneity, a potential early warning signal of marsh drowning. Maximized elevation and belowground carbon accumulation for moderate warming scenarios uniquely suggest linkages between metabolic theory of individuals and landscape-scale ecosystem resilience and function, but our work indicates nonpermanent benefits as global temperatures continue to rise.


Assuntos
Ecossistema , Áreas Alagadas , Carbono , Humanos , Solo , Temperatura
9.
Glia ; 69(9): 2272-2290, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34029407

RESUMO

Gliosis is a complex process comprising upregulation of intermediate filament (IF) proteins, particularly glial fibrillary acidic protein (GFAP) and vimentin, changes in glial cell morphology (hypertrophy) and increased deposition of inhibitory extracellular matrix molecules. Gliosis is common to numerous pathologies and can have deleterious effects on tissue function and regeneration. The role of IFs in gliosis is controversial, but a key hypothesized function is the stabilization of glial cell hypertrophy. Here, we developed RNAi approaches to examine the role of GFAP and vimentin in vivo in a murine model of inherited retinal degeneration, the Rhodopsin knockout (Rho-/- ) mouse. Specifically, we sought to examine the role of these IFs in the establishment of Müller glial hypertrophy during progressive degeneration, as opposed to (more commonly assessed) acute injury. Prevention of Gfap upregulation had a significant effect on the morphology of reactive Müller glia cells in vivo and, more strikingly, the reduction of Vimentin expression almost completely prevented these cells from undergoing degeneration-associated hypertrophy. Moreover, and in contrast to studies in knockout mice, simultaneous suppression of both GFAP and vimentin expression led to severe changes in the cytoarchitecture of the retina, in both diseased and wild-type eyes. These data demonstrate a crucial role for Vimentin, as well as GFAP, in the establishment of glial hypertrophy and support the further exploration of RNAi-mediated knockdown of vimentin as a potential therapeutic approach for modulating scar formation in the degenerating retina.


Assuntos
Células Ependimogliais , Proteína Glial Fibrilar Ácida , Degeneração Retiniana , Vimentina , Animais , Células Ependimogliais/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Hipertrofia/metabolismo , Hipertrofia/patologia , Filamentos Intermediários/metabolismo , Camundongos , Neuroglia/metabolismo , Interferência de RNA , Retina/metabolismo , Degeneração Retiniana/patologia , Vimentina/metabolismo
10.
Hum Mol Genet ; 28(23): 3867-3879, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31807779

RESUMO

The neuronal ceroid lipofuscinoses (NCLs), more commonly referred to as Batten disease, are a group of inherited lysosomal storage disorders that present with neurodegeneration, loss of vision and premature death. There are at least 13 genetically distinct forms of NCL. Enzyme replacement therapies and pre-clinical studies on gene supplementation have shown promising results for NCLs caused by lysosomal enzyme deficiencies. The development of gene therapies targeting the brain for NCLs caused by defects in transmembrane proteins has been more challenging and only limited therapeutic effects in animal models have been achieved so far. Here, we describe the development of an adeno-associated virus (AAV)-mediated gene therapy to treat the neurodegeneration in a mouse model of CLN6 disease, a form of NCL with a deficiency in the membrane-bound protein CLN6. We show that neonatal bilateral intracerebroventricular injections with AAV9 carrying CLN6 increase lifespan by more than 90%, maintain motor skills and motor coordination and reduce neuropathological hallmarks of Cln6-deficient mice up to 23 months post vector administration. These data demonstrate that brain-directed gene therapy is a valid strategy to treat the neurodegeneration of CLN6 disease and may be applied to other forms of NCL caused by transmembrane protein deficiencies in the future.


Assuntos
Vetores Genéticos/administração & dosagem , Proteínas de Membrana/genética , Lipofuscinoses Ceroides Neuronais/terapia , Animais , Animais Recém-Nascidos , Encéfalo/crescimento & desenvolvimento , Dependovirus/genética , Modelos Animais de Doenças , Terapia Genética , Humanos , Injeções Intraventriculares , Proteínas de Membrana/metabolismo , Camundongos , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Resultado do Tratamento
11.
Development ; 145(8)2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29615467

RESUMO

In the adult central nervous system, endothelial and neuronal cells engage in tight cross-talk as key components of the so-called neurovascular unit. Impairment of this important relationship adversely affects tissue homeostasis, as observed in neurodegenerative conditions including Alzheimer's and Parkinson's disease. In development, the influence of neuroprogenitor cells on angiogenesis is poorly understood. Here, we show in mouse that these cells interact intimately with the growing retinal vascular network, and we identify a novel regulatory mechanism of vasculature development mediated by hypoxia-inducible factor 2a (Hif2a). By Cre-lox gene excision, we show that Hif2a in retinal neuroprogenitor cells upregulates the expression of the pro-angiogenic mediators vascular endothelial growth factor and erythropoietin, whereas it locally downregulates the angiogenesis inhibitor endostatin. Importantly, absence of Hif2a in retinal neuroprogenitor cells causes a marked reduction of proliferating endothelial cells at the angiogenic front. This results in delayed retinal vascular development, fewer major retinal vessels and reduced density of the peripheral deep retinal vascular plexus. Our findings demonstrate that retinal neuroprogenitor cells are a crucial component of the developing neurovascular unit.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Vasos Retinianos/crescimento & desenvolvimento , Vasos Retinianos/inervação , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proliferação de Células , Endostatinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neovascularização Fisiológica/genética , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Epitélio Pigmentado da Retina/crescimento & desenvolvimento , Epitélio Pigmentado da Retina/metabolismo , Vasos Retinianos/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
Angiogenesis ; 23(2): 83-90, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31583505

RESUMO

The retinal vasculature is tightly organized in a structure that provides for the high metabolic demand of neurons while minimizing interference with incident light. The adverse impact of retinal vascular insufficiency is mitigated by adaptive vascular regeneration but exacerbated by pathological neovascularization. Aberrant growth of neovessels in the retina is responsible for impairment of sight in common blinding disorders including retinopathy of prematurity, proliferative diabetic retinopathy, and age-related macular degeneration. Myeloid cells are key players in this process, with diverse roles that can either promote or protect against ocular neovascularization. We have previously demonstrated that myeloid-derived VEGF, HIF1, and HIF2 are not essential for pathological retinal neovascularization. Here, however, we show by cell-specific depletion of Vhl in a mouse model of retinal ischemia (oxygen-induced retinopathy, OIR) that myeloid-derived HIFs promote VEGF and bFGF expression and enhance vascular regeneration in association with improved density and organization of the astrocytic network.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Isquemia/genética , Células Mieloides/metabolismo , Regeneração/genética , Vasos Retinianos/fisiologia , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia Celular/genética , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isquemia/metabolismo , Isquemia/patologia , Camundongos , Camundongos Transgênicos , Retina/patologia , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
13.
J Nat Prod ; 82(8): 2262-2267, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31368305

RESUMO

Photopiperazines A-D (1-4), unsaturated diketopiperazine derivatives, were isolated from the culture broth of a rare, marine-derived actinomycete bacterium, strain AJS-327. This strain shows very poor 16S rRNA sequence similarity to other members of the actinomycete family Streptomycetaceae, indicating it is likely a new lineage within this group. The structures of the photopiperazines were defined by analysis of HR-ESI-TOF-MS spectra in conjunction with the interpretation of 1D and 2D NMR data. The photopiperazines are sensitive to light, causing interconversion among the four olefin geometrical isomers, which made purification of each isomer challenging. The photopiperazines are highly cytotoxic metabolites that show selective toxicity toward U87 glioblastoma and SKOV3 ovarian cancer cell lines.


Assuntos
Actinobacteria/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Piperazinas/química , Streptomycetaceae/química , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/patologia , Humanos
14.
Mol Ther ; 26(5): 1343-1353, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29606505

RESUMO

The neuronal ceroid lipofuscinoses (NCLs) are inherited lysosomal storage disorders characterized by general neurodegeneration and premature death. Sight loss is also a major symptom in NCLs, severely affecting the quality of life of patients, but it is not targeted effectively by brain-directed therapies. Here we set out to explore the therapeutic potential of an ocular gene therapy to treat sight loss in NCL due to a deficiency in the transmembrane protein CLN6. We found that, although Cln6nclf mice presented mainly with photoreceptor degeneration, supplementation of CLN6 in photoreceptors was not beneficial. Because the level of CLN6 is low in photoreceptors but high in bipolar cells (retinal interneurons that are only lost in Cln6-deficient mice at late disease stages), we explored the therapeutic effects of delivering CLN6 to bipolar cells using adeno-associated virus (AAV) serotype 7m8. Bipolar cell-specific expression of CLN6 slowed significantly the loss of photoreceptor function and photoreceptor cells. This study shows that the deficiency of a gene normally expressed in bipolar cells can cause the loss of photoreceptors and that this can be prevented by bipolar cell-directed treatment.


Assuntos
Proteínas de Membrana/genética , Lipofuscinoses Ceroides Neuronais/genética , Células Fotorreceptoras/metabolismo , Células Bipolares da Retina/metabolismo , Animais , Dependovirus/genética , Modelos Animais de Doenças , Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos/genética , Humanos , Imuno-Histoquímica , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Lipofuscinoses Ceroides Neuronais/metabolismo , Lipofuscinoses Ceroides Neuronais/patologia , Lipofuscinoses Ceroides Neuronais/terapia , Células Fotorreceptoras/patologia
15.
N Engl J Med ; 372(20): 1887-97, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25938638

RESUMO

BACKGROUND: Mutations in RPE65 cause Leber's congenital amaurosis, a progressive retinal degenerative disease that severely impairs sight in children. Gene therapy can result in modest improvements in night vision, but knowledge of its efficacy in humans is limited. METHODS: We performed a phase 1-2 open-label trial involving 12 participants to evaluate the safety and efficacy of gene therapy with a recombinant adeno-associated virus 2/2 (rAAV2/2) vector carrying the RPE65 complementary DNA, and measured visual function over the course of 3 years. Four participants were administered a lower dose of the vector, and 8 were administered a higher dose. In a parallel study in dogs, we investigated the relationship among vector dose, visual function, and electroretinography (ERG) findings. RESULTS: Improvements in retinal sensitivity were evident, to varying extents, in six participants for up to 3 years, peaking at 6 to 12 months after treatment and then declining. No associated improvement in retinal function was detected by means of ERG. Three participants had intraocular inflammation, and two had clinically significant deterioration of visual acuity. The reduction in central retinal thickness varied among participants. In dogs, RPE65 gene therapy with the same vector at lower doses improved vision-guided behavior, but only higher doses resulted in improvements in retinal function that were detectable with the use of ERG. CONCLUSIONS: Gene therapy with rAAV2/2 RPE65 vector improved retinal sensitivity, albeit modestly and temporarily. Comparison with the results obtained in the dog model indicates that there is a species difference in the amount of RPE65 required to drive the visual cycle and that the demand for RPE65 in affected persons was not met to the extent required for a durable, robust effect. (Funded by the National Institute for Health Research and others; ClinicalTrials.gov number, NCT00643747.).


Assuntos
DNA Complementar/administração & dosagem , Terapia Genética , Vetores Genéticos/administração & dosagem , Amaurose Congênita de Leber/terapia , Retina/fisiologia , cis-trans-Isomerases/genética , Adolescente , Animais , Criança , Dependovirus , Modelos Animais de Doenças , Progressão da Doença , Cães , Humanos , Amaurose Congênita de Leber/genética , Mutação , Células Fotorreceptoras de Vertebrados , Visão Ocular , Adulto Jovem
16.
Br Med Bull ; 126(1): 13-25, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29506236

RESUMO

Introduction: Inherited retinal diseases are the leading cause of sight impairment in people of working age in England and Wales, and the second commonest in childhood. Gene therapy offers the potential for benefit. Sources of data: Pubmed and clinicaltrials.gov. Areas of agreement: Gene therapy can improve vision in RPE65-associated Leber Congenital Amaurosis (RPE65-LCA). Potential benefit depends on efficient gene transfer and is limited by the extent of retinal degeneration. Areas of controversy: The magnitude of vision improvement from RPE65-LCA gene therapy is suboptimal, and its durability may be limited by progressive retinal degeneration. Growing points: The safety and potential benefit of gene therapy for inherited and acquired retinal diseases is being explored in a rapidly expanding number of trials. Areas timely for developing research: Developments in vector design and delivery will enable greater efficiency and safety of gene transfer. Optimization of trial design will accelerate reliable assessment of outcomes.


Assuntos
Terapia Genética/métodos , Amaurose Congênita de Leber/terapia , Degeneração Retiniana/genética , Ensaios Clínicos como Assunto , Medicina Baseada em Evidências , Técnicas de Transferência de Genes , Terapia Genética/tendências , Humanos , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/fisiopatologia , Degeneração Retiniana/fisiopatologia
17.
Ophthalmology ; 125(11): 1765-1775, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29884405

RESUMO

PURPOSE: Transplantation of human embryonic stem cell (hESC)-derived retinal pigment epithelial (RPE) cells offers the potential for benefit in macular degeneration. Previous trials have reported improved visual acuity (VA), but lacked detailed analysis of retinal structure and function in the treated area. DESIGN: Phase 1/2 open-label dose-escalation trial to evaluate safety and potential efficacy (clinicaltrials.gov identifier, NCT01469832). PARTICIPANTS: Twelve participants with advanced Stargardt disease (STGD1), the most common cause of macular degeneration in children and young adults. METHODS: Subretinal transplantation of up to 200 000 hESC-derived RPE cells with systemic immunosuppressive therapy for 13 weeks. MAIN OUTCOME MEASURES: The primary end points were the safety and tolerability of hESC-derived RPE cell administration. We also investigated evidence of the survival of transplanted cells and measured retinal structure and function using microperimetry and spectral-domain OCT. RESULTS: Focal areas of subretinal hyperpigmentation developed in all participants in a dose-dependent manner in the recipient retina and persisted after withdrawal of systemic immunosuppression. We found no evidence of uncontrolled proliferation or inflammatory responses. Borderline improvements in best-corrected VA in 4 participants either were unsustained or were matched by a similar improvement in the untreated contralateral eye. Microperimetry demonstrated no evidence of benefit at 12 months in the 12 participants. In one instance at the highest dose, localized retinal thinning and reduced sensitivity in the area of hyperpigmentation suggested the potential for harm. Participant-reported quality of life using the 25-item National Eye Institute Visual Function Questionnaire indicated no significant change. CONCLUSIONS: Subretinal hyperpigmentation is consistent with the survival of viable transplanted hESC-derived RPE cells, but may reflect released pigment in their absence. The findings demonstrate the value of detailed analysis of spatial correlation of retinal structure and function in determining with appropriate sensitivity the impact of cell transplantation and suggest that intervention in early stage of disease should be approached with caution. Given the slow rate of progressive degeneration at this advanced stage of disease, any protection against further deterioration may be evident only after a more extended period of observation.


Assuntos
Células-Tronco Embrionárias Humanas/transplante , Degeneração Macular/congênito , Epitélio Pigmentado da Retina/transplante , Adulto , Eletrorretinografia , Feminino , Angiofluoresceinografia , Humanos , Imunossupressores/uso terapêutico , Degeneração Macular/diagnóstico por imagem , Degeneração Macular/fisiopatologia , Degeneração Macular/terapia , Masculino , Pessoa de Meia-Idade , Células Fotorreceptoras de Vertebrados/fisiologia , Qualidade de Vida , Perfil de Impacto da Doença , Microscopia com Lâmpada de Fenda , Doença de Stargardt , Tomografia de Coerência Óptica , Acuidade Visual/fisiologia , Testes de Campo Visual , Campos Visuais/fisiologia
18.
Adv Exp Med Biol ; 1074: 91-99, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721932

RESUMO

Neuronal ceroid lipofuscinoses (NCLs) are a group of fatal, inherited lysosomal storage disorders mostly affecting the central nervous system of children. Symptoms include vision loss, seizures, motor deterioration and cognitive decline ultimately resulting in premature death. Studies in animal models showed that the diseases are amenable to gene supplementation therapies, and over the last decade, major advances have been made in the (pre)clinical development of these therapies. This mini-review summarises and discusses current gene therapy approaches for NCL targeting the brain and the eye.


Assuntos
Terapia Genética/métodos , Degeneração Neural/terapia , Lipofuscinoses Ceroides Neuronais/terapia , Transtornos da Visão/terapia , Animais , Encéfalo/enzimologia , Criança , Ensaios Clínicos como Assunto , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/administração & dosagem , Vetores Genéticos/uso terapêutico , Humanos , Lactente , Injeções Intraoculares , Injeções Intraventriculares , Lisossomos/enzimologia , Lipofuscinoses Ceroides Neuronais/complicações , Lipofuscinoses Ceroides Neuronais/enzimologia , Especificidade de Órgãos , Transtornos da Visão/etiologia
19.
Hum Mol Genet ; 24(1): 128-41, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25147295

RESUMO

Understanding phenotype-genotype correlations in retinal degeneration is a major challenge. Mutations in CRB1 lead to a spectrum of autosomal recessive retinal dystrophies with variable phenotypes suggesting the influence of modifying factors. To establish the contribution of the genetic background to phenotypic variability associated with the Crb1(rd8/rd8) mutation, we compared the retinal pathology of Crb1(rd8/rd8)/J inbred mice with that of two Crb1(rd8/rd8) lines backcrossed with C57BL/6JOlaHsd mice. Topical endoscopic fundal imaging and scanning laser ophthalmoscopy fundus images of all three Crb1(rd8/rd8) lines showed a significant increase in the number of inferior retinal lesions that was strikingly variable between the lines. Optical coherence tomography, semithin, ultrastructural morphology and assessment of inflammatory and vascular marker by immunohistochemistry and quantitative reverse transcriptase-polymerase chain reaction revealed that the lesions were associated with photoreceptor death, Müller and microglia activation and telangiectasia-like vascular remodelling-features that were stable in the inbred, variable in the second, but virtually absent in the third Crb1(rd8/rd8) line, even at 12 months of age. This suggests that the Crb1(rd8/rd8) mutation is necessary, but not sufficient for the development of these degenerative features. By whole-genome SNP analysis of the genotype-phenotype correlation, a candidate region on chromosome 15 was identified. This may carry one or more genetic modifiers for the manifestation of the retinal pathology associated with mutations in Crb1. This study also provides insight into the nature of the retinal vascular lesions that likely represent a clinical correlate for the formation of retinal telangiectasia or Coats-like vasculopathy in patients with CRB1 mutations that are thought to depend on such genetic modifiers.


Assuntos
Cromossomos de Mamíferos/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Retina/patologia , Doenças Retinianas/genética , Animais , Angiofluoresceinografia , Estudos de Associação Genética , Humanos , Camundongos , Camundongos Endogâmicos , Mutação , Oftalmoscópios , Células Fotorreceptoras de Vertebrados/metabolismo , Polimorfismo de Nucleotídeo Único , Retina/metabolismo , Vasos Retinianos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA