Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nucleic Acids Res ; 50(5): 2509-2521, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35234938

RESUMO

Upon SARS-CoV-2 infection, viral intermediates specifically activate the IFN response through MDA5-mediated sensing and accordingly induce ADAR1 p150 expression, which might lead to viral A-to-I RNA editing. Here, we developed an RNA virus-specific editing identification pipeline, surveyed 7622 RNA-seq data from diverse types of samples infected with SARS-CoV-2, and constructed an atlas of A-to-I RNA editing sites in SARS-CoV-2. We found that A-to-I editing was dynamically regulated, varied between tissue and cell types, and was correlated with the intensity of innate immune response. On average, 91 editing events were deposited at viral dsRNA intermediates per sample. Moreover, editing hotspots were observed, including recoding sites in the spike gene that affect viral infectivity and antigenicity. Finally, we provided evidence that RNA editing accelerated SARS-CoV-2 evolution in humans during the epidemic. Our study highlights the ability of SARS-CoV-2 to hijack components of the host antiviral machinery to edit its genome and fuel its evolution, and also provides a framework and resource for studying viral RNA editing.


Assuntos
COVID-19/imunologia , Imunidade Inata/imunologia , Edição de RNA/imunologia , SARS-CoV-2/imunologia , Adenosina Desaminase/genética , Adenosina Desaminase/imunologia , Adenosina Desaminase/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Sequência de Bases , Sítios de Ligação/genética , COVID-19/genética , COVID-19/virologia , Evolução Molecular , Expressão Gênica/imunologia , Humanos , Imunidade Inata/genética , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/imunologia , Helicase IFIH1 Induzida por Interferon/metabolismo , Mutação , Ligação Proteica , Edição de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Homologia de Sequência do Ácido Nucleico , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
2.
Genome Res ; 30(5): 661-672, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32424073

RESUMO

Antisense transcription of protein-coding genes has been increasingly recognized as an important regulatory mechanism of gene expression. However, less is known about the extent and importance of antisense transcription of noncoding genes. Here, we investigate the breadth and dynamics of antisense transcription of miRNAs, a class of important noncoding RNAs. Because the antisense transcript of a miRNA is likely to form a hairpin suitable as the substrate of ADARs, which convert adenosine to inosine in double-stranded RNAs, we used A-to-I RNA editing as ultrasensitive readout for antisense transcription of the miRNAs. Through examining the unstranded targeted RNA-seq libraries covering all miRNA loci in 25 types of human tissues, we identified 7275 editing events located in 81% of the antisense strand of the miRNA loci, thus uncovering the previously unknown prevalent antisense transcription of the miRNAs. We found that antisense transcripts are tightly regulated, and a substantial fraction of miRNAs and their antisense transcripts are coexpressed. Sense miRNAs have been shown to down-regulate the coexpressed antisense transcripts, whereas the act of antisense transcription, rather than the transcripts themselves, regulates the expression of sense miRNAs. RNA editing tends to decrease the miRNA accessibility of the antisense transcripts, therefore protecting them from being degraded by the sense-mature miRNAs. Altogether, our study reveals the landscape of antisense transcription and editing of miRNAs, as well as a previously unknown reciprocal regulatory circuit of sense-antisense miRNA pairs.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/biossíntese , RNA Antissenso/biossíntese , Adenosina/metabolismo , Humanos , Inosina/metabolismo , MicroRNAs/química , MicroRNAs/genética , MicroRNAs/metabolismo , Edição de RNA , RNA Antissenso/química , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA-Seq
3.
BMC Plant Biol ; 23(1): 618, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057735

RESUMO

BACKGROUND: Cytoplasmic male sterility (CMS) plays a crucial role in hybrid production. K-type CMS, a cytoplasmic male sterile line of wheat with the cytoplasms of Aegilops kotschyi, is widely used due to its excellent characteristics of agronomic performance, easy maintenance and easy restoration. However, the mechanism of its pollen abortion is not yet clear. RESULTS: In this study, wheat K-type CMS MS(KOTS)-90-110 (MS line) and it's fertile near-isogenic line MR (KOTS)-90-110 (MR line) were investigated. Cytological analysis indicated that the anthers of MS line microspore nucleus failed to divide normally into two sperm nucleus and lacked starch in mature pollen grains, and the key abortive period was the uninucleate stage to dinuclear stage. Then, we compared the transcriptome of MS line and MR line anthers at these two stages. 11,360 and 5182 differentially expressed genes (DEGs) were identified between the MS and MR lines in the early uninucleate and binucleate stages, respectively. Based on GO enrichment and KEGG pathways analysis, it was evident that significant transcriptomic differences were "plant hormone signal transduction", "MAPK signaling pathway" and "spliceosome". We identified 17 and 10 DEGs associated with the IAA and ABA signal transduction pathways, respectively. DEGs related to IAA signal transduction pathway were downregulated in the early uninucleate stage of MS line. The expression level of DEGs related to ABA pathway was significantly upregulated in MS line at the binucleate stage compared to MR line. The determination of plant hormone content and qRT-PCR further confirmed that hormone imbalance in MS lines. Meanwhile, 1 and 2 DEGs involved in ABA and Ethylene metabolism were also identified in the MAPK cascade pathway, respectively; the significant up regulation of spliceosome related genes in MS line may be another important factor leading to pollen abortion. CONCLUSIONS: We proposed a transcriptome-mediated pollen abortion network for K-type CMS in wheat. The main idea is hormone imbalance may be the primary factor, MAPK cascade pathway and alternative splicing (AS) may also play important regulatory roles in this process. These findings provided intriguing insights for the molecular mechanism of microspore abortion in K-type CMS, and also give useful clues to identify the crucial genes of CMS in wheat.


Assuntos
Redes Reguladoras de Genes , Triticum , Triticum/metabolismo , Infertilidade das Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Sementes , Perfilação da Expressão Gênica , Transcriptoma , Citoplasma/genética , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas
4.
J Exp Bot ; 74(18): 5591-5605, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37471263

RESUMO

VQ motif-containing proteins play important roles in plant abiotic and biotic stresses. In this study, we cloned the VQ protein gene TaVQ4-D that is induced by drought stress. Arabidopsis and wheat plants overexpressing TaVQ4-D showed increased tolerance to drought stress. In contrast, wheat lines in which TaVQ4-D expression had been silenced showed decreased drought tolerance. Under drought stress conditions, the contents of superoxide dismutase and proline increased and the content of malondialdehyde decreased in transgenic wheat plants overexpressing TaVQ4-D compared with the wild type. At the same time, the expression of reactive oxygen species-scavenging-related genes and stress-related genes was up-regulated. However, plants of TaVQ4-D-silenced wheat lines showed decreased activities of antioxidant enzymes and reduced expression of some stress-related and antioxidant-related genes. In addition, the TaVQ4-D protein physically interacts with two mitogen-activated protein kinases (MPK3 and MPK6) and plays a role in plant drought stress as the phosphorylated substrates of MPK3 and MPK6. In summary, the results of our study suggest that TaVQ4-D can positively regulate drought stress tolerance in wheat.


Assuntos
Arabidopsis , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Resistência à Seca , Triticum/metabolismo , Antioxidantes/metabolismo , Arabidopsis/metabolismo , Secas , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
5.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834145

RESUMO

Chlorophyll is an indispensable photoreceptor in plant photosynthesis. Its anabolic imbalance is detrimental to individual growth and development. As an essential epigenetic modification, DNA methylation can induce phenotypic variations, such as leaf color transformation, by regulating gene expression. Albino line XN1376B is a natural mutation of winter wheat cultivar XN1376; however, the regulatory mechanism of its albinism is still unclear. In this study, we found that low temperatures induced albinism in XN1376B. The number of chloroplasts decreased as the phenomenon of bleaching intensified and the fence tissue and sponge tissue slowly dissolved. We identified six distinct TaPOR (protochlorophyllide oxidoreductase) genes in the wheat genome, and TaPOR2D was deemed to be related to the phenomenon of albinism based on the expression in different color leaves (green leaves, white leaves and returned green leaves) and the analysis of promoters' cis-acting elements. TaPOR2D was localized to chloroplasts. TaPOR2D overexpression (TaPOR2D-OE) enhanced the chlorophyll significantly in Arabidopsis, especially at two weeks; the amount of chlorophyll was 6.46 mg/L higher than in WT. The methylation rate of the TaPOR2D promoter in low-temperature albino leaves is as high as 93%, whereas there was no methylation in green leaves. Correspondingly, three DNA methyltransferase genes (TaMET1, TaDRM and TaCMT) were up-regulated in white leaves. Our study clarified that the expression of TaPOR2D is associated with its promoter methylation at a low temperature; it affects the level of chlorophyll accumulation, which probably causes the abnormal development of plant chloroplasts in albino wheat XN1376B. The results provide a theoretical basis for in-depth analysis of the regulation of development of plant chloroplasts and color variation in wheat XN1376B leaves.


Assuntos
Albinismo , Arabidopsis , Clorofila/metabolismo , Triticum/metabolismo , Temperatura , Fotossíntese/genética , Metilação de DNA , Arabidopsis/metabolismo , Albinismo/genética , Albinismo/metabolismo , Folhas de Planta/metabolismo
6.
Theor Appl Genet ; 135(6): 1879-1891, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35377004

RESUMO

KEY MESSAGE: A superior allele of wheat gene TaGL3.3-5B was identified and could be used in marker-assisted breeding in wheat. Identifying the main genes which mainly regulate the yield-associated traits can significantly increase the wheat production. In this study, gene TaGL3.3 was cloned from common wheat according to the sequence of OsPPKL3. A SNP in the 8th exon of TaGL3.3-5B, T/C in coding sequence (CDS), which resulted in an amino acid change (Val/Ala), was identified between the low 1000-kernel weight (TKW) wheat Chinese Spring and the high TKW wheat Xinong 817 (817). Subsequently, association analysis in the mini-core collection (MCC) and the recombinant inbred lines (RIL) revealed that the allele TaGL3.3-5B-C (from 817) was significantly correlated with higher TKW. The high frequency of TaGL3.3-5B-C in the Chinese modern wheat cultivars indicated that it was selected positively in wheat breeding programs. The overexpression of TaGL3.3-5B-C in Arabidopsis resulted in shorter pods and longer grains than those of wild-type counterparts. Additionally, TaGL3.3 expressed a tissue-specific pattern in wheat as revealed by qRT-PCR. We also found that 817 showed higher expression of TaGL3.3 than that in Chinese Spring (CS) during the seed development. These results demonstrate that TaGL3.3 plays an important role in the formation of seed size and weight. Allele TaGL3.3-5B-C is associated with larger and heavier grains that are beneficial to wheat yield improvement.


Assuntos
Melhoramento Vegetal , Triticum , Alelos , Fenótipo , Sementes/genética
7.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35887343

RESUMO

Pollen fertility plays an important role in the application of heterosis in wheat (Triticum aestivum L.). However, the key genes and mechanisms underlying pollen abortion in K-type male sterility remain unclear. TAA1a is an essential gene for pollen development in wheat. Here, we explored the mechanism involved in its transcriptional regulation during pollen development, focusing on a 1315-bp promoter region. Several cis-acting elements were identified in the TAA1a promoter, including binding motifs for Arabidopsis thaliana AtAMS and AtMYB103 (CANNTG and CCAACC, respectively). Evolutionary analysis indicated that TaTDRL and TaMYB103 were the T. aestivum homologs of AtAMS and AtMYB103, respectively, and encoded nucleus-localized transcription factors containing 557 and 352 amino acids, respectively. TaTDRL and TaMYB103 were specifically expressed in wheat anthers, and their expression levels were highest in the early uninucleate stage; this expression pattern was consistent with that of TAA1a. Meanwhile, we found that TaTDRL and TaMYB03 directly interacted, as evidenced by yeast two-hybrid and bimolecular fluorescence complementation assays, while yeast one-hybrid and dual-luciferase assays revealed that both TaTDRL and TaMYB103 could bind the TAA1a promoter and synergistically increase its transcriptional activity. Furthermore, TaTDRL-EAR and TaMYB103-EAR transgenic Arabidopsis plants displayed abnormal microspore morphology, reduced pollen viability, and lowered seed setting rates. Additionally, the expression of AtMS2, a TAA1a homolog, was significantly lower in the two repressor lines than in the corresponding overexpression lines or WT plants. In summary, we identified a potential transcriptional regulatory mechanism associated with wheat pollen development.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Infertilidade das Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/genética , Triticum/metabolismo
8.
Genome Res ; 28(1): 132-143, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29233923

RESUMO

Adenosine-to-inosine (A-to-I) RNA editing regulates miRNA biogenesis and function. To date, fewer than 160 miRNA editing sites have been identified. Here, we present a quantitative atlas of miRNA A-to-I editing through the profiling of 201 pri-miRNA samples and 4694 mature miRNA samples in human, mouse, and Drosophila. We identified 4162 sites present in ∼80% of the pri-miRNAs and 574 sites in mature miRNAs. miRNA editing is prevalent in many tissue types in human. However, high-level editing is mostly found in neuronal tissues in mouse and Drosophila Interestingly, the edited miRNAs in neuronal and non-neuronal tissues in human gain two distinct sets of new targets, which are significantly associated with cognitive and organ developmental functions, respectively. Furthermore, we reveal that miRNA editing profoundly affects asymmetric strand selection. Altogether, these data provide insight into the impact of RNA editing on miRNA biology and suggest that miRNA editing has recently gained non-neuronal functions in human.


Assuntos
MicroRNAs/biossíntese , MicroRNAs/genética , Edição de RNA/fisiologia , Animais , Drosophila melanogaster , Feminino , Humanos , Masculino , Camundongos
9.
Int J Mol Sci ; 21(7)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252420

RESUMO

Heterosis has been widely accepted as an effective strategy to increase yields in plant breeding. Notably, the chemical hybridization agent SQ-1 induces male sterility in wheat, representing a critical potential tool in hybrid seed production. However, the mechanisms underlying the male sterility induced by SQ-1 still remain poorly understood. In this study, a cyclin-dependent kinase inhibitor gene, TaICK1, which encodes a 229 amino acid protein, was identified as a potential contributor to male sterility in common wheat. The expression of TaICK1 was upregulated during the development of anthers in Xinong1376 wheat treated with SQ-1. Meanwhile, the seed setting rate was found to be significantly decreased in TaICK1 transgenic rice. Furthermore, we identified two cyclin proteins, TaCYCD2;1 and TaCYCD6;1, as interactors through yeast two-hybrid screening using TaICK1 as the bait, which were validated using bimolecular fluorescence complementation. Subcellular localization revealed that the proteins encoded by TaICK1, TaCYCD2;1, and TaCYCD6;1 were localized in the cell nucleus. The expression levels of TaCYCD2;1 and TaCYCD6;1 were lower in Xinong1376 treated with SQ-1. A further analysis demonstrated that the expression levels of OsCYCD2;1 and OsCYCD6;1 were lower in transgenic TaICK1 rice lines as well. Taken together, these results suggest that the upregulation of TaICK1, induced by SQ-1, may subsequently suppress the expression of TaCYCD2;1 and TaCYCD6;1 in anthers, resulting in male sterility. This study provides new insights into the understanding of SQ-1-induced wheat male sterility, as well as the developmental mechanisms of anthers.


Assuntos
Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Vigor Híbrido/efeitos dos fármacos , Vigor Híbrido/genética , Infertilidade das Plantas/efeitos dos fármacos , Infertilidade das Plantas/genética , Triticum/efeitos dos fármacos , Triticum/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Di-Hidroxiacetona/análogos & derivados , Expressão Gênica , Glucose/análogos & derivados , Humanos , Hibridização Genética , Fenótipo , Filogenia , Melhoramento Vegetal , Plantas Geneticamente Modificadas , Ligação Proteica , Transporte Proteico , Proteínas Recombinantes , Triticum/classificação
10.
Int J Mol Sci ; 21(2)2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963591

RESUMO

Chlorophyll biosynthesis plays a vital role in chloroplast development and photosynthesis in plants. In this study, we identified an orthologue of the rice gene TDR (Oryza sativa L., Tapetum Degeneration Retardation) in wheat (Triticum aestivum L.) called TaTDR-Like (TaTDRL) by sequence comparison. TaTDRL encodes a putative 557 amino acid protein with a basic helix-loop-helix (bHLH) conserved domain at the C-terminal (295-344 aa). The TaTDRL protein localised to the nucleus and displayed transcriptional activation activity in a yeast hybrid system. TaTDRL was expressed in the leaf tissue and expression was induced by dark treatment. Here, we revealed the potential function of TaTDRL gene in wheat by utilizing transgenic Arabidopsis plants TaTDRL overexpressing (TaTDRL-OE) and TaTDRL-EAR (EAR-motif, a repression domain of only 12 amino acids). Compared with wild-type plants (WT), both TaTDRL-OE and TaTDRL-EAR were characterized by a deficiency of chlorophyll. Moreover, the expression level of the chlorophyll-related gene AtPORC (NADPH:protochlorophyllide oxidoreductase C) in TaTDRL-OE and TaTDRL-EAR was lower than that of WT. We found that TaTDRL physically interacts with wheat Phytochrome Interacting Factor 1 (PIF1) and Arabadopsis PIF1, suggesting that TaTDRL regulates light signaling during dark or light treatment. In summary, TaTDRL may respond to dark or light treatment and negatively regulate chlorophyll biosynthesis by interacting with AtPIF1 in transgenic Arabidopsis.


Assuntos
Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Clorofila/biossíntese , Oryza/metabolismo , Fotossíntese , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ritmo Circadiano , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/crescimento & desenvolvimento , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Fitocromo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Domínios Proteicos , Plântula/genética , Homologia de Sequência , Triticum/genética , Triticum/crescimento & desenvolvimento
11.
Int J Mol Sci ; 21(5)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111029

RESUMO

The WUSCHEL-related homeobox (WOX) is a family of plant-specific transcription factors, with important functions, such as regulating the dynamic balance of division and differentiation of plant stem cells and plant organ development. We identified 14 distinct TaWOX genes in the wheat (Triticum aestivum L.) genome, based on a genome-wide scan approach. All of the genes under evaluation had positional homoeologs on subgenomes A, B and D except TaWUS and TaWOX14. Both TaWOX14a and TaWOX14d had a paralogous copy on the same genome due to tandem duplication events. A phylogenetic analysis revealed that TaWOX genes could be divided into three groups. We performed functional characterization of TaWOX genes based on the evolutionary relationships among the WOX gene families of wheat, rice (Oryza sativa L.), and Arabidopsis. An overexpression analysis of TaWUS in Arabidopsis revealed that it affected the development of outer floral whorl organs. The overexpression analysis of TaWOX9 in Arabidopsis revealed that it promoted the root development. In addition, we identified some interaction between the TaWUS and TaWOX9 proteins by screening wheat cDNA expression libraries, which informed directions for further research to determine the functions of TaWUS and TaWOX9. This study represents the first comprehensive data on members of the WOX gene family in wheat.


Assuntos
Genes Homeobox/genética , Genes de Plantas/genética , Proteínas de Homeodomínio/genética , Proteínas de Plantas/genética , Triticum/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes Homeobox/fisiologia , Proteínas de Homeodomínio/classificação , Proteínas de Homeodomínio/metabolismo , Família Multigênica , Oryza/genética , Filogenia , Proteínas de Plantas/metabolismo , Poaceae/genética , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
12.
Plant Cell Physiol ; 60(7): 1604-1618, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31076750

RESUMO

K-type cytoplasmic male sterility (KCMS) lines were ideal material for three-line hybrid wheat system due to the major role in hybrid wheat production. In this study, the morphology of developing microspore and mature pollen was compared between a KCMS line and its near-isogenic restorer line (KCMS-NIL). The most striking difference is that the microspore was unable to develop into tricellular pollen in the KCMS line. MicroRNA plays vital roles in flowering and gametophyte development. Small RNA sequencing identified a total of 274 known and 401 novel miRNAs differentially expressed between two lines or two developmental stages. Most of miRNAs with high abundance were differentially expressed at the uninucleate stage, and their expression level recovered or remained at the binucleate stage. Further degradome sequencing identified target genes which were mainly enriched in transcription regulation, phytohormone signaling and RNA degradation pathways. Combining with the transcriptome data, a correlation was found between the abnormal anther development, such as postmeiotic mitosis cessation, deformative pollen wall and the chromosome condensation of the vegetative cell, and the alterations in the related miRNA and their targets expression profiles. According to the correlation and pathway analysis, we propose a hypothetic miRNA-mediated network for the control of KCMS restoration.


Assuntos
MicroRNAs/genética , Infertilidade das Plantas/genética , Triticum/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Biblioteca Gênica , Ontologia Genética , Genes de Plantas/genética , Genes de Plantas/fisiologia , MicroRNAs/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reprodução/genética , Análise de Sequência de RNA , Triticum/metabolismo
13.
BMC Plant Biol ; 19(1): 175, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31046676

RESUMO

BACKGROUND: DUOII is a multi-ovary wheat (Triticum aestivum L.) line with two or three pistils and three stamens in each floret. The multi-ovary trait of DUOII is controlled by a dominant gene, whose expression can be suppressed by the heterogeneous cytoplasm of TeZhiI (TZI), a line with the nucleus of common wheat and the cytoplasm of Aegilops. Crosses between female DUOII plants and male TZI plants resulted in multi-ovary F1s; whereas, the reciprocal crosses resulted in mono-ovary F1s. Although the multi-ovary trait is inherited as single trait controlled by a dominant allele in lines with a Triticum cytoplasm, the mechanism by which the special heterogeneous cytoplasm suppresses the expression of multi-ovary is not well understood. RESULTS: Observing the developmental process, we found that the critical stage of additional pistil primordium development was when the young spikes were 2-6 mm long. Then, we compared the quantitative proteomic profiles of 2-6 mm long young spikes obtained from the reciprocal crosses between DUOII and TZI. A total of 90 differentially expressed proteins were identified and analyzed based on their biological functions. These proteins had obvious functional pathways mainly implicated in chloroplast metabolism, nuclear and cell division, plant respiration, protein metabolism, and flower development. Importantly, we identified two key proteins, Flowering Locus K Homology Domain and PEPPER, which are known to play an essential role in the specification of pistil organ identity. By drawing relationships between the 90 differentially expressed proteins, we found that these proteins revealed a complex network which is associated with multi-ovary gene expression under heterogeneous cytoplasmic suppression. CONCLUSIONS: Our proteomic analysis has identified certain differentially expressed proteins in 2-6 mm long young spikes, which was the critical stage of additional primordium development. This paper provided a universal proteomic profiling involved in the cytoplasmic suppression of wheat floral meristems; and our findings have laid a solid foundation for further mechanistic studies on the underlying mechanisms that control the heterogeneous cytoplasm-induced suppression of the nuclear multi-ovary gene in wheat.


Assuntos
Citoplasma/metabolismo , Triticum/metabolismo , Cruzamentos Genéticos , Flores/anatomia & histologia , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Proteômica , Triticum/anatomia & histologia , Triticum/genética
14.
Int J Mol Sci ; 20(17)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484454

RESUMO

CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptides are post-translationally cleaved and modified peptides from their corresponding pre-propeptides. Although they are only 12 to 13 amino acids in length, they are important ligands involved in regulating cell proliferation and differentiation in plant shoots, roots, vasculature, and other tissues. They function by interacting with their corresponding receptors. CLE peptides have been studied in many plants, but not in wheat. We identified 104 TaCLE genes in the wheat genome based on a genome-wide scan approach. Most of these genes have homologous copies distributed on sub-genomes A, B, and D. A few genes are derived from tandem duplication and segmental duplication events. Phylogenetic analysis revealed that TaCLE genes can be divided into five different groups. We obtained functional characterization of the peptides based on the evolutionary relationships among the CLE peptide families of wheat, rice, and Arabidopsis, and expression pattern analysis. Using chemically synthesized peptides (TaCLE3p and TaCLE34p), we found that TaCLE3 and TaCLE34 play important roles in regulating wheat and Arabidopsis root development, and wheat stem development. Overexpression analysis of TaCLE3 in Arabidopsis revealed that TaCLE3 not only affects the development of roots and stems, but also affects the development of leaves and fruits. These data represent the first comprehensive information on TaCLE family members.


Assuntos
Triticum/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/classificação , Triticum/genética
15.
Int J Mol Sci ; 20(7)2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939734

RESUMO

In plants, pollen grain transfers the haploid male genetic material from anther to stigma, both between flowers (cross-pollination) and within the same flower (self-pollination). In order to better understand chemical hybridizing agent (CHA) SQ-1-induced pollen abortion in wheat, comparative cytological and proteomic analyses were conducted. Results indicated that pollen grains underwent serious structural injury, including cell division abnormality, nutritional deficiencies, pollen wall defect and pollen grain malformations in the CHA-SQ-1-treated plants, resulting in pollen abortion and male sterility. A total of 61 proteins showed statistically significant differences in abundance, among which 18 proteins were highly abundant and 43 proteins were less abundant in CHA-SQ-1 treated plants. 60 proteins were successfully identified using MALDI-TOF/TOF mass spectrometry. These proteins were found to be involved in pollen maturation and showed a change in the abundance of a battery of proteins involved in multiple biological processes, including pollen development, carbohydrate and energy metabolism, stress response, protein metabolism. Interactions between these proteins were predicted using bioinformatics analysis. Gene ontology and pathway analyses revealed that the majority of the identified proteins were involved in carbohydrate and energy metabolism. Accordingly, a protein-protein interaction network involving in pollen abortion was proposed. These results provide information for the molecular events underlying CHA-SQ-1-induced pollen abortion and may serve as an additional guide for practical hybrid breeding.


Assuntos
Infertilidade das Plantas , Pólen/genética , Proteoma/metabolismo , Triticum/genética , Estresse Oxidativo , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Proteoma/genética , Triticum/fisiologia
16.
BMC Plant Biol ; 18(1): 7, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29304738

RESUMO

BACKGROUND: Heterosis is widely used to increase the yield of many crops. However, as wheat is a self-pollinating crop, hybrid breeding is not so successful in this organism. Even though male sterility induced by chemical hybridizing agents is an important aspect of crossbreeding, the mechanisms by which these agents induce male sterility in wheat is not well understood. RESULTS: We performed proteomic analyses using the wheat Triticum aestivum L.to identify those proteins involved in physiological male sterility (PHYMS) induced by the chemical hybridizing agent CHA SQ-1. A total of 103 differentially expressed proteins were found by 2D-PAGE and subsequently identified by MALDI-TOF/TOF MS/MS. In general, these proteins had obvious functional tendencies implicated in carbohydrate metabolism, oxidative stress and resistance, protein metabolism, photosynthesis, and cytoskeleton and cell structure. In combination with phenotypic, tissue section, and bioinformatics analyses, the identified differentially expressed proteins revealed a complex network behind the regulation of PHYMS and pollen development. Accordingly, we constructed a protein network of male sterility in wheat, drawing relationships between the 103 differentially expressed proteins and their annotated biological pathways. To further validate our proposed protein network, we determined relevant physiological values and performed real-time PCR assays. CONCLUSIONS: Our proteomics based approach has enabled us to identify certain tendencies in PHYMS anthers. Anomalies in carbohydrate metabolism and oxidative stress, together with premature tapetum degradation, may be the cause behind carbohydrate starvation and male sterility in CHA SQ-1 treated plants. Here, we provide important insight into the mechanisms underlying CHA SQ-1-induced male sterility. Our findings have practical implications for the application of hybrid breeding in wheat.


Assuntos
Flores/metabolismo , Melhoramento Vegetal , Infertilidade das Plantas/fisiologia , Proteínas de Plantas/genética , Proteoma , Triticum/fisiologia , Eletroforese em Gel Bidimensional , Infertilidade das Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Triticum/efeitos dos fármacos
17.
Sensors (Basel) ; 18(4)2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-29690610

RESUMO

This paper presents a particle swarm tracking algorithm with improved inertia weight based on color features. The weighted color histogram is used as the target feature to reduce the contribution of target edge pixels in the target feature, which makes the algorithm insensitive to the target non-rigid deformation, scale variation, and rotation. Meanwhile, the influence of partial obstruction on the description of target features is reduced. The particle swarm optimization algorithm can complete the multi-peak search, which can cope well with the object occlusion tracking problem. This means that the target is located precisely where the similarity function appears multi-peak. When the particle swarm optimization algorithm is applied to the object tracking, the inertia weight adjustment mechanism has some limitations. This paper presents an improved method. The concept of particle maturity is introduced to improve the inertia weight adjustment mechanism, which could adjust the inertia weight in time according to the different states of each particle in each generation. Experimental results show that our algorithm achieves state-of-the-art performance in a wide range of scenarios.

18.
Appl Environ Microbiol ; 83(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28500044

RESUMO

Some bacteria are capable of forming flocs, in which bacterial cells become self-flocculated by secreted extracellular polysaccharides and other biopolymers. The floc-forming bacteria play a central role in activated sludge, which has been widely utilized for the treatment of municipal sewage and industrial wastewater. Here, we use a floc-forming bacterium, Aquincolatertiaricarbonis RN12, as a model to explore the biosynthesis of extracellular polysaccharides and the regulation of floc formation. A large gene cluster for exopolysaccharide biosynthesis and a gene encoding the alternative sigma factor RpoN1, one of the four paralogues, have been identified in floc formation-deficient mutants generated by transposon mutagenesis, and the gene functions have been further confirmed by genetic complementation analyses. Interestingly, the biosynthesis of exopolysaccharides remained in the rpoN1-disrupted flocculation-defective mutants, but most of the exopolysaccharides were secreted and released rather than bound to the cells. Furthermore, the expression of exopolysaccharide biosynthesis genes seemed not to be regulated by RpoN1. Taken together, our results indicate that RpoN1 may play a role in regulating the expression of a certain gene(s) involved in the self-flocculation of bacterial cells but not in the biosynthesis and secretion of exopolysaccharides required for floc formation.IMPORTANCE Floc formation confers bacterial resistance to predation of protozoa and plays a central role in the widely used activated sludge process. In this study, we not only identified a large gene cluster for biosynthesis of extracellular polysaccharides but also identified four rpoN paralogues, one of which (rpoN1) is required for floc formation in A. tertiaricarbonis RN12. In addition, this RpoN sigma factor regulates the transcription of genes involved in biofilm formation and swarming motility, as previously shown in other bacteria. However, this RpoN paralogue is not required for the biosynthesis of exopolysaccharides, which are released and dissolved into culture broth by the rpoN1 mutant rather than remaining tightly bound to cells, as observed during the flocculation of the wild-type strain. These results indicate that floc formation is a regulated complex process, and other yet-to-be identified RpoN1-dependent factors are involved in self-flocculation of bacterial cells via exopolysaccharides and/or other biopolymers.


Assuntos
Proteínas de Bactérias/metabolismo , Betaproteobacteria/metabolismo , Polissacarídeos Bacterianos/biossíntese , Fator sigma/metabolismo , Proteínas de Bactérias/genética , Betaproteobacteria/química , Betaproteobacteria/genética , Floculação , Regulação Bacteriana da Expressão Gênica , Fator sigma/genética
19.
Metabolites ; 14(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38786761

RESUMO

Depression is associated with pathological changes and metabolic abnormalities in multiple brain regions. The simultaneous comprehensive and in situ detection of endogenous molecules in all brain regions is essential for a comprehensive understanding of depression pathology, which is described in this paper. A method based on desorption electrospray ionization mass spectrometry imaging (DESI-MSI) technology was developed to classify mouse brain regions using characteristic lipid molecules and to detect the metabolites in mouse brain tissue samples simultaneously. The results showed that characteristic lipid molecules can be used to clearly distinguish each subdivision of the mouse brain, and the accuracy of this method is higher than that of the conventional staining method. The cerebellar cortex, medial prefrontal cortex, hippocampus, striatum, nucleus accumbens-core, and nucleus accumbens-shell exhibited the most significant differences in the chronic social defeat stress model. An analysis of metabolic pathways revealed that 13 kinds of molecules related to energy metabolism and purine metabolism exhibited significant changes. A DESI-MSI method was developed for the detection of pathological brain sections. We found, for the first time, that there are characteristic changes in the energy metabolism in the cortex and purine metabolism in the striatum, which is highly important for obtaining a deeper and more comprehensive understanding of the pathology of depression and discovering regulatory targets.

20.
Chem Sci ; 15(20): 7789-7794, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38784739

RESUMO

Addition reactions of molecules with conjugated or non-conjugated multiple unsaturated C-C bonds are very attractive yet challenging due to the versatile issues of chemo-, regio-, and stereo-selectivities. Especially for the readily available conjugated allenyne compounds, the reactivities have not been explored. The first example of copper-catalyzed 2,5-hydrofunctionalization and 2,5-difunctionalization of allenynes, which provides a facile access to versatile conjugated vinylic allenes with a C-B or C-Si bond, has been developed. This mild protocol has a broad substrate scope tolerating many synthetically useful functional groups. Due to the highly functionalized nature of the products, they have been demonstrated as platform molecules for the efficient syntheses of monocyclic products including poly-substituted benzenes, bicyclic compounds, and highly functionalized allene molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA