Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(2): e202113657, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34748268

RESUMO

Two-dimensional fused aromatic networks (2D FANs) have emerged as a highly versatile alternative to holey graphene. The synthesis of 2D FANs with increasingly larger lattice dimensions will enable new application perspectives. However, the synthesis of larger analogues is mostly limited by lack of appropriate monomers and methods. Herein, we describe the synthesis, characterisation and properties of an expanded 2D FAN with 90-ring hexagons, which exceed the largest 2D FAN lattices reported to date.

2.
Angew Chem Int Ed Engl ; 60(18): 9941-9946, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33555658

RESUMO

Three-dimensional covalent organic frameworks (3D COFs) with a pcu topology have been obtained from distorted polycyclic aromatic hydrocarbons acting as triangular antiprismatic (D3d ) nodes. Such 3D COFs are six-fold interpenetrated as the result of interframework π-stacking, which enable charge transport properties that are not expected for 3D COFs.

3.
Angew Chem Int Ed Engl ; 59(51): 22922-22927, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-32918781

RESUMO

Porous graphene has shown promise as a new generation of selective membrane for sieving atoms, ions and molecules. However, the atomistic mechanisms of permeation through defects in the graphenic lattice are still unclear and remain unobserved in action, at the atomic level. Here, the direct observation of palladium atoms from a nanoparticle passing through a defect in a single-walled carbon nanotube one-by-one has been achieved with atomic resolution in real time, revealing key stages of the atomic permeation. Bonding between the moving atom and dangling bonds around the orifice, immediately before and after passing through the subnano-pore, plays an important role in the process. Curvature of the graphenic lattice crucially defines the direction of permeation from concave to convex side due to a difference in metal-carbon bonding at the curved surfaces as confirmed by density functional theory calculations, demonstrating the potential of porous carbon nanotubes for atom sieving.

4.
J Am Chem Soc ; 141(36): 14403-14410, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31478367

RESUMO

A high degree of crystallinity is an essential aspect in two-dimensional covalent organic frameworks, as many properties depend strongly on the structural arrangement of the different layers and their constituents. We introduce herein a new design strategy based on core-twisted polycyclic aromatic hydrocarbon as rigid nodes that give rise to a two-dimensional covalent organic framework with a wavy honeycomb (chairlike) lattice. The concave-convex self-complementarity of the wavy two-dimensional lattice guides the stacking of framework layers into a highly stable and ordered covalent organic framework that allows a full 3D analysis by transmission electron microscopy revealing its chairlike honeycomb facets and aligned mesoporous channels. Remarkably, the waviness of the framework does not disrupt the interlayer π-π stacking that shows charge transporting properties similar to those of planar covalent organic frameworks. The implementation of core-twisted aromatics as building blocks for covalent organic frameworks brings new possibilities in the design of highly ordered organic materials.

5.
Angew Chem Int Ed Engl ; 58(29): 9928-9932, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31059175

RESUMO

We present the synthesis of metal nanowires in a multiplexed device configuration using single-walled carbon nanotubes (SWNTs) as nanoscale vector templates. The SWNT templates control the dimensionality of the wires, allowing precise control of their size, shape, and orientation; moreover, a solution-processable approach enables their linear deposition between specific electrode pairs in electronic devices. Electrical characterization demonstrated the successful fabrication of metal nanowire electronic devices, while multiscale characterization of the different fabrication steps revealed details of the structure and charge transfer between the material encapsulated and the carbon nanotube. Overall the strategy presented allows facile, low-cost, and direct synthesis of multiplexed metal nanowire devices for nanoelectronic applications.

6.
J Am Chem Soc ; 138(26): 8175-83, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27258384

RESUMO

In organic synthesis, the composition and structure of products are predetermined by the reaction conditions; however, the synthesis of well-defined inorganic nanostructures often presents a significant challenge yielding nonstoichiometric or polymorphic products. In this study, confinement in the nanoscale cavities of single-walled carbon nanotubes (SWNTs) provides a new approach for multistep inorganic synthesis where sequential chemical transformations take place within the same nanotube. In the first step, SWNTs donate electrons to reactant iodine molecules (I2), transforming them to iodide anions (I(-)). These then react with metal hexacarbonyls (M(CO)6, M = Mo or W) in the next step, yielding anionic nanoclusters [M6I14](2-), the size and composition of which are strictly dictated by the nanotube cavity, as demonstrated by aberration-corrected high resolution transmission electron microscopy, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy. Atoms in the nanoclusters [M6I14](2-) are arranged in a perfect octahedral geometry and can engage in further chemical reactions within the nanotube, either reacting with each other leading to a new polymeric phase of molybdenum iodide [Mo6I12]n or with hydrogen sulfide gas giving rise to nanoribbons of molybdenum/tungsten disulfide [MS2]n in the third step of the synthesis. Electron microscopy measurements demonstrate that the products of the multistep inorganic transformations are precisely controlled by the SWNT nanoreactor with complementary Raman spectroscopy revealing the remarkable property of SWNTs to act as a reservoir of electrons during the chemical transformation. The electron transfer from the host nanotube to the reacting guest molecules is essential for stabilizing the anionic metal iodide nanoclusters and for their further transformation to metal disulfide nanoribbons synthesized in the nanotubes in high yield.

7.
ACS Nano ; 18(4): 2958-2971, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38251654

RESUMO

Single-atom dynamics of noble-gas elements have been investigated using time-resolved transmission electron microscopy (TEM), with direct observation providing for a deeper understanding of chemical bonding, reactivity, and states of matter at the nanoscale. We report on a nanoscale system consisting of endohedral fullerenes encapsulated within single-walled carbon nanotubes ((Kr@C60)@SWCNT), capable of the delivery and release of krypton atoms on-demand, via coalescence of host fullerene cages under the action of the electron beam (in situ) or heat (ex situ). The state and dynamics of Kr atoms were investigated by energy dispersive X-ray spectroscopy (EDS), electron energy loss spectroscopy (EELS), and X-ray photoelectron spectroscopy (XPS). Kr atom positions were measured precisely using aberration-corrected high-resolution TEM (AC-HRTEM), aberration-corrected scanning TEM (AC-STEM), and single-atom spectroscopic imaging (STEM-EELS). The electron beam drove the formation of 2Kr@C120 capsules, in which van der Waals Kr2 and transient covalent [Kr2]+ bonding states were identified. Thermal coalescence led to the formation of longer coalesced nested nanotubes containing more loosely bound Krn chains (n = 3-6). In some instances, delocalization of Kr atomic positions was confirmed by STEM analysis as the transition to a one-dimensional (1D) gas, as Kr atoms were constrained to only one degree of translational freedom within long, well-annealed, nested nanotubes. Such nested nanotube structures were investigated by Raman spectroscopy. This material represents a highly compressed and dimensionally constrained 1D gas stable under ambient conditions. Direct atomic-scale imaging has revealed elusive bonding states and a previously unseen 1D gaseous state of matter of this noble gas element, demonstrating TEM to be a powerful tool in the discovery of chemistry at the single-atom level.

8.
ACS Nano ; 18(9): 7148-7160, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38383159

RESUMO

Room-temperature magnetically switchable materials play a vital role in current and upcoming quantum technologies, such as spintronics, molecular switches, and data storage devices. The increasing miniaturization of device architectures produces a need to develop analytical tools capable of precisely probing spin information at the single-particle level. In this work, we demonstrate a methodology using negatively charged nitrogen vacancies (NV-) in fluorescent nanodiamond (FND) particles to probe the magnetic switching of a spin crossover (SCO) metal-organic framework (MOF), [Fe(1,6-naphthyridine)2(Ag(CN)2)2] material (1), and a single-molecule photomagnet [X(18-crown-6)(H2O)3]Fe(CN)6·2H2O, where X = Eu and Dy (materials 2a and 2b, respectively), in response to heat, light, and electron beam exposure. We employ correlative light-electron microscopy using transmission electron microscopy (TEM) finder grids to accurately image and sense spin-spin interacting particles down to the single-particle level. We used surface-sensitive optically detected magnetic resonance (ODMR) and magnetic modulation (MM) of FND photoluminescence (PL) to sense spins to a distance of ca. 10-30 nm. We show that ODMR and MM sensing was not sensitive to the temperature-induced SCO of FeII in 1 as formation of paramagnetic FeIII through surface oxidation (detected by X-ray photoelectron spectroscopy) on heating obscured the signal of bulk SCO switching. We found that proximal FNDs could effectively sense the chemical transformations induced by the 200 keV electron beam in 1, namely, AgI → Ag0 and FeII → FeIII. However, transformations induced by the electron beam are irreversible as they substantially disrupt the structure of MOF particles. Finally, we demonstrate NV- sensing of reversible photomagnetic switching, FeIII + (18-crown-6) ⇆ FeII + (18-crown-6)+ •, triggered in 2a and 2b by 405 nm light. The photoredox process of 2a and 2b proved to be the best candidate for room-temperature single-particle magnetic switching utilizing FNDs as a sensor, which could have applications into next-generation quantum technologies.

9.
Nanoscale Adv ; 5(23): 6423-6434, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38024305

RESUMO

Spin-active nanomaterials play a vital role in current and upcoming quantum technologies, such as spintronics, data storage and computing. To advance the design and application of these materials, methods to link size, shape, structure, and chemical composition with functional magnetic properties at the nanoscale level are needed. In this work, we combine the power of two local probes, namely, Nitrogen Vacancy (NV) spin-active defects in diamond and an electron beam, within experimental platforms used in electron microscopy. Negatively charged NVs within fluorescent nanodiamond (FND) particles are used to sense the local paramagnetic environment of Rb0.5Co1.3[Fe(CN)6]·3.7H2O nanoparticles (NPs), a Prussian blue analogue (PBA), as a function of FND-PBA distance (order of 10 nm) and local PBA concentration. We demonstrate perturbation of NV spins by proximal electron spins of transition metals within NPs, as detected by changes in the photoluminescence (PL) of NVs. Workflows are reported and demonstrated that employ a Transmission Electron Microscope (TEM) finder grid to spatially correlate functional and structural features of the same unique NP studied using NV sensing, based on a combination of Optically Detected Magnetic Resonance (ODMR) and Magnetic Modulation (MM) of NV PL, within TEM imaging modalities. Significantly, spin-spin dipole interactions were detected between NVs in a single FND and paramagnetic metal centre spin fluctuations in NPs through a carbon film barrier of 13 nm thickness, evidenced by TEM tilt series imaging and Electron Energy-Loss Spectroscopy (EELS), opening new avenues to sense magnetic materials encapsulated in or between thin-layered nanostructures. The measurement strategies reported herein provide a pathway towards solid-state quantitative NV sensing with atomic-scale theoretical spatial resolution, critical to the development of quantum technologies, such as memory storage and molecular switching nanodevices.

10.
ACS Nano ; 17(6): 6062-6072, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36916820

RESUMO

Indium selenides (InxSey) have been shown to retain several desirable properties, such as ferroelectricity, tunable photoluminescence through temperature-controlled phase changes, and high electron mobility when confined to two dimensions (2D). In this work we synthesize single-layer, ultrathin, subnanometer-wide InxSey by templated growth inside single-walled carbon nanotubes (SWCNTs). Despite the complex polymorphism of InxSey we show that the phase of the encapsulated material can be identified through comparison of experimental aberration-corrected transmission electron microscopy (AC-TEM) images and AC-TEM simulations of known structures of InxSey. We show that, by altering synthesis conditions, one of two different stoichiometries of sub-nm InxSey, namely InSe or ß-In2Se3, can be prepared. Additionally, in situ AC-TEM heating experiments reveal that encapsulated ß-In2Se3 undergoes a phase change to γ-In2Se3 above 400 °C. Further analysis of the encapsulated species is performed using X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), energy dispersive X-ray analysis (EDX), and Raman spectroscopy, corroborating the identities of the encapsulated species. These materials could provide a platform for ultrathin, subnanometer-wide phase-change nanoribbons with applications as nanoelectronic components.

11.
ACS Appl Nano Mater ; 5(2): 2075-2086, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35571534

RESUMO

A method of pore fabrication in the walls of carbon nanotubes has been developed, leading to porous nanotubes that have been filled with catalysts and utilized in liquid- and gas-phase reactions. Chromium oxide nanoparticles have been utilized as highly effective etchants of carbon nanotube sidewalls. Tuning the thermal profile and loading of this nanoscale oxidant, both of which influence the localized oxidation of the carbon, have allowed the controlled formation of defects and holes with openings of 40-60 nm, penetrating through several layers of the graphitic carbon nanotube sidewall, resulting in templated nanopore propagation. The porous carbon nanotubes have been demonstrated as catalytic nanoreactors, effectively stabilizing catalytic nanoparticles against agglomeration and modulating the reaction environment around active centers. CO2 sorption on ruthenium nanoparticles (RuNPs) inside nanoreactors led to distinctive surface-bound intermediates (such as carbonate species), compared to RuNPs on amorphous carbon. Introducing pores in nanoreactors modulates the strength of absorption of these intermediates, as they bond more strongly on RuNPs in porous nanoreactors as compared to the nanoreactors without pores. In the liquid-phase hydrosilylation of phenylacetylene, the confinement of Rh4(CO)12 catalyst centers within the porous nanoreactors changes the distribution of the products relative to those observed in the absence of the additional pores. These changes have been attributed to the enhanced local concentration of phenylacetylene and the environment in which the catalytic centers reside within the porous carbon host.

12.
Nanoscale ; 14(5): 1978-1989, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35060988

RESUMO

Molecular magnetism and specifically magnetic molecules have recently gained plenty of attention as key elements for quantum technologies, information processing, and spintronics. Transition to the nanoscale and implementation of ordered structures with defined parameters is crucial for advanced applications. Single-walled carbon nanotubes (SWCNTs) provide natural one-dimensional confinement that can be implemented for encapsulation, nanosynthesis, and polymerization of molecules into nanoribbons. Recently, the formation of atomically precise graphene nanoribbons inside SWCNTs has been reported. However, there have been only a limited amount of approaches to form ordered magnetic structures inside the nanotube channels and the creation of magnetic nanoribbons is still lacking. In this work we synthesize and reveal the properties of cobalt-phthalocyanine based nanoribbons (CoPcNRs) encapsulated in SWCNTs. Raman spectroscopy, transmission electron microscopy, absorption spectroscopy, and density functional theory calculations allowed us to confirm the encapsulation and to reveal the specific fingerprints of CoPcNRs. The magnetic properties were studied by transverse magnetooptical Kerr effect measurements, which indicated a strong difference in comparison with the pristine unfilled SWCNTs due to the impact of Co incorporated atoms. We anticipate that this approach of polymerization of encapsulated magnetic molecules inside SWCNTs will result in a diverse class of protected low-dimensional ordered magnetic materials for various applications.

13.
Nanoscale ; 13(14): 6829-6833, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33620062

RESUMO

Understanding charge transport in 2D covalent organic frameworks is crucial to increase their performance. Herein a new wavy 2D covalent organic framework has been designed, synthesized and studied to shine light on the structural factors that dominate charge transport.

14.
Sci Adv ; 6(3): eaay5849, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32010771

RESUMO

Metallic bonds remain one of the most important and least understood of the chemical bonds. In this study, we generated Re2 molecules in which the Re-Re core is unsupported by ligands. Real-time imaging of the atomic-scale dynamics of Re2 adsorbed on a graphitic lattice allows direct measurement of Re-Re bond lengths for individual molecules that changes in discrete steps correlating with bond order from one to four. Direct imaging of the Re-Re bond breaking process reveals a new bonding state with the bond order less than one and a high-amplitude vibrational stretch, preceding the bond dissociation. The methodology, based on aberration-corrected transmission electron microscopy imaging, is shown to be a powerful analytical tool for the investigation of dynamics of metallic bonding at the atomic level.

15.
ACS Nano ; 14(9): 11178-11189, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32816453

RESUMO

Molecular motion and bond dissociation are two of the most fundamental phenomena underpinning the properties of molecular materials. We entrapped HF and H2O molecules within the fullerene C60 cage, encapsulated within a single-walled carbon nanotube (X@C60)@SWNT, where X = HF or H2O. (X@C60)@SWNT represents a class of molecular nanomaterial composed of a guest within a molecular host within a nanoscale host, enabling investigations of the interactions of isolated single di- or triatomic molecules with the electron beam. The use of the electron beam simultaneously as a stimulus of chemical reactions in molecules and as a sub-angstrom resolution imaging probe allows investigations of the molecular dynamics and reactivity in real time and at the atomic scale, which are probed directly by chromatic and spherical aberration-corrected high-resolution transmission electron microscopy imaging, or indirectly by vibrational electron energy loss spectroscopy in situ during scanning transmission electron microscopy experiments. Experimental measurements indicate that the electron beam triggers homolytic dissociation of the H-F or H-O bonds, respectively, causing the expulsion of the hydrogen atoms from the fullerene cage, leaving fluorine or oxygen behind. Because of a difference in the mechanisms of penetration through the carbon lattice available for F or O atoms, atomic fluorine inside the fullerene cage appears to be more stable than the atomic oxygen under the same conditions. The use of (X@C60)@SWNT, where each molecule X is "packaged" separately from each other, in combination with the electron microscopy methods and density functional theory modeling in this work, enable bond dynamics and reactivity of individual atoms to be probed directly at the single-molecule level.

16.
Nat Chem ; 12(10): 921-928, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32859955

RESUMO

Knowing how crystals nucleate at the atomic scale is crucial for understanding, and in turn controlling, the structure and properties of a wide variety of materials. However, because of the scale and highly dynamic nature of nuclei, the formation and early growth of nuclei are very difficult to observe. Here, we have employed single-walled carbon nanotubes as test tubes, and an 'atomic injector' coupled with aberration-corrected transmission electron microscopy, to enable in situ imaging of the initial steps of nucleation at the atomic scale. With three different metals we observed three main processes prior to heterogeneous nucleation: formation of crystal nuclei directly from an atomic seed (Fe), from a pre-existing amorphous nanocluster (Au) or by coalescence of two separate amorphous sub-nanometre clusters (Re). We demonstrate the roles of the amorphous precursors and the existence of an energy barrier before nuclei formation. In all three cases, crystal nucleus formation occurred through a two-step nucleation mechanism.

17.
Nanoscale ; 11(6): 2848-2854, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30681119

RESUMO

The integrated analytical approach developed in this study offers a powerful methodology for the structural characterisation of complex molecular nanomaterials. Structures of a covalent organic framework based on boronate esters (COF-5) and a conjugated microporous polymer (Aza-CMP) have been investigated by a combination of several electron microscopy techniques elucidating the three-dimensional topology of the complex polycrystalline (COF) and non-crystalline (CMP) materials. Unexpected, aperiodic mesoporous channels of 20-50 nm in diameter were found to be penetrating the COF and CMP particles, which cannot be detected by X-ray diffraction techniques. The mesopores appear to be stable under a range of different conditions and accessible to gas molecules, exhibiting a particular bonding capability with CO2 in the case of the CMP. The mesoporosity is unrelated to the intrinsic chemical structures of the COF or CMP but rather it reflects the mechanisms of polymer particle formation in a polycondensation reaction. The mesopores may be templated by clusters of solvent molecules during the COF or CMP synthesis, leaving cavities within the polymer particles. The unexpected mesoporosity discovered in COF and CMP materials begs for re-assessment of the nature of framework materials and may open new opportunities for applications of these molecular materials in gas sorption or catalysis.

18.
Adv Mater ; 31(41): e1904182, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31448465

RESUMO

The development of next-generation molecular-electronic, electrocatalytic, and energy-storage systems depends on the availability of robust materials in which molecular charge-storage sites and conductive hosts are in intimate contact. It is shown here that electron transfer from single-walled carbon nanotubes (SWNTs) to polyoxometalate (POM) clusters results in the spontaneous formation of host-guest POM@SWNT redox-active hybrid materials. The SWNTs can conduct charge to and from the encapsulated guest molecules, allowing electrical access to >90% of the encapsulated redox species. Furthermore, the SWNT hosts provide a physical barrier, protecting the POMs from chemical degradation during charging/discharging and facilitating efficient electron transfer throughout the composite, even in electrolytes that usually destroy POMs.

19.
Nat Commun ; 9(1): 3382, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30139935

RESUMO

Catalysis of chemical reactions by nanosized clusters of transition metals holds the key to the provision of sustainable energy and materials. However, the atomistic behaviour of nanocatalysts still remains largely unknown due to uncertainties associated with the highly labile metal nanoclusters changing their structure during the reaction. In this study, we reveal and explore reactions of nm-sized clusters of 14 technologically important metals in carbon nano test tubes using time-series imaging by atomically-resolved transmission electron microscopy (TEM), employing the electron beam simultaneously as an imaging tool and stimulus of the reactions. Defect formation in nanotubes and growth of new structures promoted by metal nanoclusters enable the ranking of the different metals both in order of their bonding with carbon and their catalytic activity, showing significant variation across the Periodic Table of Elements. Metal nanoclusters exhibit complex dynamics shedding light on atomistic workings of nanocatalysts, with key features mirroring heterogeneous catalysis.

20.
ChemistryOpen ; 7(2): 144-158, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29435400

RESUMO

The encapsulation of CdSe nanocrystals within single-walled carbon nanotube (SWNT) cavities of varying dimensions at elevated temperatures under strictly air-tight conditions is described for the first time. The structures of CdSe nanocrystals under confinement inside SWNTs was established in a comprehensive study, combining both experimental and DFT theoretical investigations. The calculated binding energies show that all considered polymorphs [(3:3), (4:4), and (4:2)] may be obtained experimentally. The most thermodynamically stable structure (3:3) is directly compared to the experimentally observed CdSe structures inside carbon nanotubes. The gas-phase DFT-calculated energy difference between "free" 3:3 and 4:2 structures (whereby 3:3 models a novel tubular structure in which both Cd and Se form three coordination, as observed experimentally for HgTe inside SWNT, and 4:2 is a motif derived from the hexagonal CuI bulk structure in which both Cd and Se form 4 or 2 coordination) is surprisingly small, only 0.06 eV per formula unit. X-ray powder diffraction, Raman spectroscopy, high-resolution transmission electron microscopy, and energy-dispersive X-ray analyses led to the full characterization of the SWNTs filled with the CdSe nanocrystals, shedding light on the composition, structure, and electronic interactions of the new nanohybrid materials on an atomic level. A new emerging hybrid nanomaterial, simultaneously filled and beta-d-glucan coated, was obtained by using pristine nanotubes and bulk CdSe powder as starting materials. This displayed fluorescence in water dispersions and unexpected biocompatibility was found to be mediated by beta-d-glucan (a biopolymer extracted from barley) with respect to that of the individual inorganic material components. For the first time, such supramolecular nanostructures are investigated by life-science techniques applied to functional nanomaterial characterization, opening the door for future nano-biotechnological applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA