Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Am Chem Soc ; 146(7): 4652-4664, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38265705

RESUMO

Since sodium-ion batteries (SIBs) have become increasingly commercialized in recent years, Na3V2(PO4)2O2F (NVPOF) offers promising economic potential as a cathode for SIBs because of its high operating voltage and energy density. According to reports, NVPOF performs poorly in normal commercial poly(vinylidene fluoride) (PVDF) binder systems and performs best in combination with aqueous binder. Although in line with the concept of green and sustainable development for future electrode preparation, aqueous binders are challenging to achieve high active material loadings at the electrode level, and their relatively high surface tension tends to cause the active material on the electrode sheet to crack or even peel off from the collector. Herein, a cross-linkable and easily commercial hybrid binder constructed by intermolecular hydrogen bonding (named HPP) has been developed and utilized in an NVPOF system, which enables the generation of a stable cathode electrolyte interphase on the surface of active materials. According to theoretical simulations, the HPP binder enhances electronic/ionic conductivity, which greatly lowers the energy barrier for Na+ migration. Additionally, the strong hydrogen-bond interactions between the HPP binder and NVPOF effectively prevent electrolyte corrosion and transition-metal dissolution, lessen the lattice volume effect, and ensure structural stability during cycling. The HPP-based NVPOF offers considerably improved rate capability and cycling performance, benefiting from these benefits. This comprehensive binder can be extended to the development of next-generation energy storage technologies with superior performance.

2.
Anal Chem ; 94(29): 10487-10496, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35839308

RESUMO

The determination of ammonium ions (NH4+) is of significance to environmental, agriculture, and human health. Potentiometric NH4+ sensors based on solid-contact ion selective electrodes (SC-ISEs) feature point-of-care testing and miniaturization. However, the state-of-the-art SC-ISEs of NH4+ during the past 20 years strongly rely on the organic ammonium ionophore-based ion selective membrane (ISM), typically by nonactin for the NH4+ recognition. Herein, we report a Prussian blue analogue of copper(II)-hexacyanoferrate (CuHCF) for an ISM-free potentiometric NH4+ sensor without using the ionophores. CuHCF works as a bifunctional transducer that could realize the ion-to-electron transduction and NH4+ recognition. CuHCF exhibits competitive analytical performances regarding traditional nonactin-based SC-ISEs of NH4+, particularly for the selectivity toward K+. The cost and preparation process have been remarkably reduced. The theoretical calculation combined with electrochemical tests further demonstrate that relatively easier intercalation of NH4+ into the lattices of CuHCF determines its selectivity. This work provides a concept of the ISM-free potentiometric NH4+ sensor beyond the nonactin ionophore through a CuHCF bifunctional transducer.


Assuntos
Compostos de Amônio , Eletrodos Seletivos de Íons , Ferrocianetos , Humanos , Ionóforos , Macrolídeos , Transdutores
3.
Anal Chem ; 93(21): 7588-7595, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34008950

RESUMO

The solid-contact ion-selective electrodes (SC-ISEs) are a type of potentiometric analytical device with features of rapid response, online analysis, and miniaturization. The state-of-the-art SC-ISEs are composed of a solid-contact (SC) layer and an ion-selective membrane (ISM) layer with respective functions of ion-to-electron transduction and ion recognition. Two challenges for the SC-ISEs are the water-layer formation at the SC/ISM phase boundary and the leaking of ISM components, which are both originated from the ISM. Herein, we report a type of SC-ISE based on classic Li-ion battery materials as the SC layer without using the ISM for potentiometric lithium-ion sensing. Both LiFePO4- and LiMn2O4-based SC-ISEs display good Li+ sensing properties (sensitivity, selectivity, and stability). The proposed LiFePO4 electrode exhibits comparable sensitivity and a linear range to conventional SC-ISEs with ISM. Owing to the nonexistence of ISM, the LiFePO4 electrode displays high potential stability. Besides, the LiMn2O4 electrode shows a Nernstian response toward Li+ sensing in a human blood serum solution. This work emphasizes the concept of non-ISM-based SC-ISEs for potentiometric ion sensing.


Assuntos
Eletrodos Seletivos de Íons , Lítio , Fontes de Energia Elétrica , Humanos , Íons , Potenciometria
4.
Small ; 17(32): e2102010, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34216100

RESUMO

There are still many problems that hinder the development of sodium-ion batteries (SIBs), including poor rate performance, short-term cycle lifespan, and inferior low-temperature property. Herein, excellent Na-storage performance in fluorophosphate (Na3 V2 (PO4 )2 F3 ) cathode is achieved by lattice regulation based on charge balance theory. Lattice regulation of aliovalent Mn2+ for V3+ increases both electronic conductivity and Na+ -migration kinetics. Because of the maintaining of electrical neutrality in the material, aliovalent Mn2+ -introduced leads to the coexistence of V3+ and V4+ from charge balance theory. It decreases the particle size and improves the structural stability, suppressing the large lattice distortion during cathode reaction processes. These multiple effects enhance the specific capacity (123.8 mAh g-1 ), outstanding high-rate (68% capacity retention at 20 C), ultralong cycle (only 0.018% capacity attenuation per cycle over 1000 cycles at 1 C) and low-temperature (96.5% capacity retention after 400 cycles at -25 °C) performances of Mn2+ -induced Na3 V1.98 Mn0.02 (PO4 )2 F3 when used as cathode in SIBs. Importantly, a feasible sodium-ion full battery is assembled, achieving outstanding rate capability and cycle stability. The strategy of aliovalent ion-induced lattice regulation constructs cathode materials with superior performances, which is available to improve other electrode materials for energy storage systems.

5.
Small ; 16(19): e1907670, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32307886

RESUMO

Metallic selenides have been widely investigated as promising electrode materials for metal-ion batteries based on their relatively high theoretical capacity. However, rapid capacity decay and structural collapse resulting from the larger-sized Na+ /K+ greatly hamper their application. Herein, a bimetallic selenide (MoSe2 /CoSe2 ) encapsulated in nitrogen, sulfur-codoped hollow carbon nanospheres interconnected reduced graphene oxide nanosheets (rGO@MCSe) are successfully designed as advanced anode materials for Na/K-ion batteries. As expected, the significant pseudocapacitive charge storage behavior substantially contributes to superior rate capability. Specifically, it achieves a high reversible specific capacity of 311 mAh g-1 at 10 A g-1 in NIBs and 310 mAh g-1 at 5 A g-1 in KIBs. A combination of ex situ X-ray diffraction, Raman spectroscopy, and transmission electron microscopy tests reveals the phase transition of rGO@MCSe in NIBs/KIBs. Unexpectedly, they show quite different Na+ /K+ insertion/extraction reaction mechanisms for both cells, maybe due to more sluggish K+ diffusion kinetics than that of Na+ . More significantly, it shows excellent energy storage properties in Na/K-ion full cells when coupled with Na3 V2 (PO4 )2 O2 F and PTCDA@450 °C cathodes. This work offers an advanced electrode construction guidance for the development of high-performance energy storage devices.

6.
Chemistry ; 26(36): 8121-8128, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32162436

RESUMO

Transition metal oxides have vastly limited practical application as electrode materials for lithium-ion batteries (LIBs) due to their rapid capacity decay. Here, a versatile strategy to mitigate the volume expansion and low conductivity of Fe3 O4 by coating a thin carbon layer on the surface of Fe3 O4 nanosheets (NSs) was employed. Owing to the 2D core-shell structure, the Fe3 O4 @C NSs exhibit significantly improved rate performance and cycle capability compared with bare Fe3 O4 NSs. After 200 cycles, the discharge capacity at 0.5 A g-1 was 963 mA h g-1 (93 % retained). Moreover, the reaction mechanism of lithium storage was studied in detail by ex situ XRD and HRTEM. When coupled with a commercial LiFePO4 cathode, the resulting full cell retains a capacity of 133 mA h g-1 after 100 cycles at 0.1 A g-1 , which demonstrates its superior energy storage performance. This work provides guidance for constructing 2D metal oxide/carbon composites with high performance and low cost for the field of energy storage.

7.
Analyst ; 145(17): 5933-5939, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32692325

RESUMO

Nitro groups with a strong electron-withdrawing effect can powerfully influence the fluorescence of fluorophores. In this work, through adjusting the nitro group at the HBT fluorophore to construct a phenylhydrazone structure, two probes (HBTN and HBTH) were synthesized to detect OCl-. Consequently, HBTN with the nitro group quenched the fluorescence of HBT and HBTH without the nitro group causing a redshift of the fluorescence, which resulted in enhanced and ratiometric fluorescence signal changes during the detection process. Among them, HBTN shows good ability to selectively detect OCl- in the concentration range of 0-14 µM with the detection limit of 2.06 nM. Based on HBTN, a portable test strip for detecting OCl- was made for the convenient quantification of the OCl- concentration with a spectrophotometer, and exogenous and endogenous OCl- was successfully imaged in cells.

8.
Mikrochim Acta ; 187(6): 344, 2020 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-32447460

RESUMO

Based on WS2 quantum dots (QDs) as fluorescent signals and MnO2 nanosheets as second-order scattering (SOS) signals, a combination of fluorescence and scattered light was used to construct a ratio sensing platform for glutathione (GSH) detection. When MnO2 nanosheets are added to WS2 QDs, the fluorescence of WS2 QDs is quenched by MnO2 nanosheets through IFE. Large-sized MnO2 nanosheets increase the SOS of the system and gradually approach the fluorescence. After adding GSH to WS2 QDs-MnO2, the MnO2 nanosheets were decomposed into Mn2+. The disappearance of the characteristic absorption peak of the MnO2 nanosheets suppressed the IFE to WS2 QDs, resulting in the fluorescence recovery of WS2 QDs. The reduction in size of MnO2 nanosheets after decomposition results in a decrease in the SOS of the system. Therefore, the ratio detection of GSH is obtained through the fluorescence and SOS dual signal response. Under optimal experimental conditions, the value of F406/S648 is linearly related to the GSH concentration in the range 0 to 60 µM, and the limit of detection (LOD) of GSH is 0.12 µM. In addition, the system is also used for the determination of GSH in real water samples and human serum, with good analytical results. Graphical abstract Schematic principle of fluorescence/scattered light system based on WS2 QDs-MnO2 for GSH ratiometric detection.


Assuntos
Corantes Fluorescentes/química , Glutationa/sangue , Compostos de Manganês/química , Óxidos/química , Pontos Quânticos/química , Espectrometria de Fluorescência/métodos , Água Potável/análise , Fluorescência , Corantes Fluorescentes/efeitos da radiação , Humanos , Limite de Detecção , Pontos Quânticos/efeitos da radiação , Sulfetos/química , Sulfetos/efeitos da radiação , Compostos de Tungstênio/química , Compostos de Tungstênio/efeitos da radiação
9.
Small ; 15(40): e1902491, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31379137

RESUMO

Lithium-sulfur (Li-S) batteries have been disclosed as one of the most promising energy storage systems. However, the low utilization of sulfur, the detrimental shuttling behavior of polysulfides, and the sluggish kinetics in electrochemical processes, severely impede their application. Herein, 3D hierarchical nitrogen-doped carbon nanosheets/molybdenum phosphide nanocrystal hollow nanospheres (MoP@C/N HCSs) are introduced to Li-S batteries via decorating commercial separators to inhibit polysulfides diffusion. It acts not only as a polysulfides immobilizer to provide strong physical trapping and chemical anchoring toward polysulfides, but also as an electrocatalyst to accelerate the kinetics of the polysulfides redox reaction, and to lower the Li2 S nucleation/dissolution interfacial energy barrier and self-discharge capacity loss in working Li-S batteries, simultaneously. As a result, the Li-S batteries with MoP@C/N HCS-modified separators show superior rate capability (920 mAh g-1 at 2 C) and stable cycling life with only 0.04% capacity decay per cycle over 500 cycles at 1 C with nearly 100% Coulombic efficiency. Furthermore, the Li-S battery can achieve a high area capacity of 5.1 mAh cm-2 with satisfied capacity retention when the cathode loading reaches 5.5 mg cm-2 . This work offers a brand new guidance for rational separator design into the energy chemistry of high-stable Li-S batteries.

10.
Mikrochim Acta ; 186(8): 583, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31359150

RESUMO

Carbon dots (CDs) display tunable photoluminescence and excitation-wavelength dependent emission. The color of fluorescence is affected by electronic bandgap transitions of conjugated π-domains, surface defect states, local fluorophores and element doping. In this review (with 145 refs.), the studies performed in the past 5 years on the relationship between the fluorescence mechanism and modes for modulating the emission color of CDs are summarized. The applications of such CDs in sensors and assays are then outlined. A concluding section then gives an outlook and describes current challenges in the design of CDs with different emission colors. Graphical abstract Schematic representation of the relationship between the color-emitting (blue, green, yellow, red and multicolor) modulation of carbon dots and fluorescence mechanism including bandgap transitions of conjugated π-domains and surface defect states.

11.
Photodermatol Photoimmunol Photomed ; 33(1): 58-63, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27982466

RESUMO

BACKGROUND: Xeroderma pigmentosum (XP) is a rare genodermatosis characterized by exaggerated sunburn reactions, freckle-like pigmentation, and a high possibility of developing cutaneous tumors. XP comprised seven complementation groups (from XP-A to XP-G) and a variant form XP-V. METHODS: This study was based on five unrelated Chinese families with six patients clinically suspected to be XP. Mutation screening was performed by direct sequencing of the entire coding region of eight XP genes. RESULTS: All of the pathogenic mutations were identified by mutational analysis, including four novel mutations. CONCLUSIONS: Our study successfully identified the pathogenic mutations in six XP patients (three XP-A, one XP-G, one XP-V, and a rare XP-D group in Chinese population). We reviewed the reported XP cases with mutations in the Chinese population and concluded that four complementation groups (XP-A, XP-C, XP-G, and XP-V) that occupy the major proportion should be considered as a first step in genetic detection (especially, XPA is the most common group, and unlike in other populations, XP-G is not rare in the Chinese population). Moreover, XP-D and XP-F, two rare subgroups, should also be added for further mutational analysis. Further, we provide some information for Chinese dermatologists that, when an early diagnosis is made, XP-C and XP-V patients can have relatively good prognoses.


Assuntos
Povo Asiático/genética , Xeroderma Pigmentoso/genética , Criança , Pré-Escolar , China , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Diagnóstico Precoce , Endonucleases/genética , Feminino , Genótipo , Humanos , Lactente , Masculino , Proteínas Nucleares/genética , Fenótipo , Prognóstico , Fatores de Transcrição/genética , Xeroderma Pigmentoso/diagnóstico , Proteína de Xeroderma Pigmentoso Grupo A/genética , Proteína Grupo D do Xeroderma Pigmentoso/genética
12.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 33(5): 708-12, 2016 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-27577229

RESUMO

Ultraviolet light(UV)-sensitive disorders refer to a group of diseases due to damages to the nucleotide excision repair mechanism which cannot effectively repair DNA damage caused by ultraviolet radiation. The inheritance pattern of such diseases, mainly including xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy, is autosomal recessive and known to involve 13 genes. As proteins encoded by such genes are involved in DNA repair and transcription pathways. There is overlap between the symptoms of such diseases, and their genotype - phenotype correlations are quite complex. To facilitate genetic and prenatal diagnosis for such diseases, a summary of the research progress is provided, which mainly focused on mutation research and genotype - phenotype correlation studies. We also propose a strategy for their genetic diagnosis based on recent findings of our group.


Assuntos
Pesquisa Biomédica/métodos , Síndrome de Cockayne/genética , Predisposição Genética para Doença/genética , Síndromes de Tricotiodistrofia/genética , Xeroderma Pigmentoso/genética , Pesquisa Biomédica/tendências , Dano ao DNA , Reparo do DNA/genética , Humanos , Pele/metabolismo , Pele/patologia , Pele/efeitos da radiação , Raios Ultravioleta
13.
Adv Mater ; 36(4): e2308987, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37883889

RESUMO

Flexible quasi-solid-state sodium ion batteries featuring their low-cost, high safety and excellent mechanical strength have attracted widespread interest in the field of wearable electronic devices. However, the development of such batteries faces great challenges including the construction of interfacial compatible flexible electrode materials and addressing the high safety demands of electrolyte. Here selenium-vacancies regulated bimetallic selenide heterojunctions anchored on waste cotton cloth-derived flexible carbon cloth (FCC) with robust interfacial C-Se-Co/Fe chemical bonds as a flexible anode material (CCFSF) is proposed by ultrafast microwave pyrolysis method. Rich selenium vacancies and CoSe2 /FeSe2-x heterostructures are synchronously formed that can significantly improve ionic and electronic diffusion kinetics. Additionally, a uniform carbon layer coating on the surface of Se-deficient heterostructures endows it with outstanding structural stability. The flexible cathode (PB@FCC) is also fabricated by directly growing Prussian blue nanoparticles on the FCC. Furthermore, an advanced flexible quasi-solid-state Na-ion pouch cell is assembled by coupling CCFSF anode, PB@FCC cathode with P(VDF-HFP)-based gel polymer electrolyte. The full cell not only demonstrates excellent energy storage performance but also robust mechanical flexibility and safety. The present work offers an effective avenue to achieve high safety flexible energy storage device, promoting the development of flexible wearable electronic devices.

14.
Biosensors (Basel) ; 13(9)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37754093

RESUMO

Sesamol (SM) is a potent natural antioxidant that can quench free radicals and modulate the cholinergic system in the brain, thereby ameliorating memory and cognitive impairment in Alzheimer's disease patients. Moreover, the total antioxidant capacity can be amplified by synergistic interactions between different antioxidants. Here, we constructed a ternary heterojunction graphitic carbon nitride/cupric sulfide/titanium dioxide (g-C3N4/CuS/TiO2) photoelectrochemical (PEC) sensor for the quantification of SM and its synergistic interactions with other antioxidants. Crucially, the Schottky barrier in ternary semiconductors considerably enhances electron transfer. The PEC sensor showed a wide linear range for SM detection, ranging from 2 to 1277 µmol L-1, and had a limit of detection of 1.8 µmol L-1. Remarkably, this sensing platform could evaluate the synergism between SM and five typical lipid-soluble antioxidants: tert-butyl hydroquinone, vitamin E, butyl hydroxyanisole, propyl gallate, and butylated hydroxytoluene. Owing to its low redox potential, SM could reduce antioxidant radicals and promote their regeneration, which increased the overall antioxidant performance. The g-C3N4/CuS/TiO2 PEC sensor exhibited high sensitivity, satisfactory selectivity, and stability, and was successfully applied for SM determination in both soybean and peanut oils. The findings of this study provide guidance for the development of nutritional foods, nutrition analysis, and the treatment of diseases caused by free radicals.


Assuntos
Antioxidantes
15.
ACS Appl Mater Interfaces ; 15(36): 42603-42610, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37639524

RESUMO

Organic materials have garnered intensive focus as a new group of electrodes for lithium-ion batteries (LIBs). However, many reported organic electrodes so far still exhibit unsatisfying cycling stability because of the dissolution in the electrolytes. Herein, a novel azo-linked hexaazatrianphthalene (HATN)-based polymer (AZO-HATN-AQ) is designed and fabricated by the polymerization of trinitrodiquinoxalino[2,3-a:2',3'-c]phenazine (HATNTN) and 2,6-diaminoanthraquinone (DAAQ). The abundant redox-active sites, extended π-conjugated planar conformation, and low energy gap endow the AZO-HATN-AQ electrode with high theoretical capacity, excellent solubility resistance, and fast Li-ion transport. In particular, the fully lithiated AZO-HATN-AQ still keeps the planar structure, contributing to the excellent cycling stability. As a result, AZO-HATN-AQ cathodes show high specific capacity (240 mAh g-1 at 0.05 A g-1), prominent rate capability (98 mAh g-1 at 8 A g-1), and outstanding cycling stability (120 mAh g-1 after 2000 cycles at 4 A g-1 with 85.7% capacity retention) simultaneously. This study demonstrates that rational structure design of the polymer electrodes is an effective approach to achieving excellent comprehensive electrochemical performance.

16.
Adv Sci (Weinh) ; 10(25): e2302654, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37381631

RESUMO

Special separation membranes are widely employed for separation and purification purposes under challenging operating conditions due to their low energy consumption, excellent solvent, and corrosion resistance. However, the development of membranes is limited by corrosion-resistant polymer substrates and precise interfacial separation layers. Herein, polyaniline (PANI) is employed to achieve insitu anchoring of multiple interfaces, resulting in the fabrication of polyaniline@graphene oxide/polyether ether ketone (PANI@GO/PEEK) membranes. Insitu growth of PANI achieves the adequate bonding of the PEEK substrate and GO separation interface, which solves the problem of solution processing of PEEK and the instability of GO layers. By bottom-up confined polymerization of aniline, it could control the pore size of the separation layer, correct defects, and anchor among polymer, nano-separation layer, and nano-sheet. The mechanism of membrane construction within the confined domain and micro-nano structure modulation is further explored. The membranes demonstrate exceptional stability realizing over 90% rejection in 2 m HCl, NaOH, and high temperatures. Additionally, -membranes exhibit remarkable durability after 240 days immersion and 100 h long-term operation, which display the methanol flux of 50.2 L m-2 h-1 and 92% rejection of AF (585 g mol-1 ). This method substantially contributes to special separation membranes by offering a novel strategy.

17.
Talanta ; 245: 123481, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35500463

RESUMO

Here, we developed a wearable electrochemical sensor for pH and K+ monitoring in sweat. The sensor was composed of flexible reference electrode, pH response electrode and K+ selective electrode, which were prepared through printing ß-CD functionalized graphene (ß-CD/RGO) water suspension on conductive PET substrate with microelectronic printer. ß-CD/RGO not only served as the pH sensitive material for pH response electrode with good sensitivity, selectivity and reproducibility due to its abundant oxygen-containing functional groups, but also worked as the ion-to-electron transducer for K+ selective electrode with good sensitivity. The wearable sensor exhibited good potential stability at different bending states. On-body sweat pH and K+ measurements showed high accuracy compared with ex-situ analysis.


Assuntos
Técnicas Biossensoriais , Grafite , Dispositivos Eletrônicos Vestíveis , Técnicas Eletroquímicas , Concentração de Íons de Hidrogênio , Íons , Potássio , Reprodutibilidade dos Testes , Suor
18.
Oncol Lett ; 24(2): 254, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35765272

RESUMO

Cutaneous squamous cell carcinoma (CSCC) is one of the most common non-melanoma skin cancers worldwide. Fatty acid-binding protein 7 (FABP7) has been reported to be involved in the occurrence, development, metastasis and prognosis of various tumors. In addition, downregulated FABP7 expression was demonstrated in cutaneous malignant melanoma in a previous study. Therefore, we speculated that FABP7 may be a biomarker for CSCC diagnosis. The aim of the present study was to determine the molecular mechanism underlying the effects of FABP7 in CSCC, which may provide a new diagnostic biomarker or treatment target for CSCC. Reverse transcription-PCR, western blotting and immunohistochemistry assays were performed to detect the expression levels of FABP7 in CSCC tissues and cells. Overexpression of FABP7 was achieved in A431 and colo-16 cell lines by transfection with an overexpression vector (oeFABP7). Cell proliferation, colony formation, migration and invasion were detected by Cell Counting Kit-8, crystal violet, scratch and Transwell assays, respectively. Following FABP7 overexpression, western blotting was used to determine the expression levels of proliferation-, invasion- and Notch pathway-associated proteins, including Snail, N-cadherin, Twist, matrix metalloproteinase (MMP)-2, MMP-7, Notch 1 and Notch 3. In addition a CSCC model in nude mice was constructed. Immunohistochemistry was used to determine the expression levels of FABP7, Ki67, Notch 1 and Notch 3. It was demonstrated that FABP7 expression levels were significantly reduced in human CSCC tissues and cells compared with normal samples. Overexpression of FABP7 inhibited the proliferation, invasion and migration abilities of A431 and colo-16 cells compared with those in the negative control group. In addition, transfection with oeFABP7 reduced the expression levels of proliferation-, invasion- and Notch pathway-associated proteins compared with those in the negative control group. Overexpression of FABP7 also reduced the growth of CSCC tumors in vivo and inhibited the expression of Ki67, Notch 1 and Notch 3. Therefore, the results of the present study suggested that FABP7 may inhibit the proliferation and invasion of CSCC cells via the Notch signaling pathway.

19.
Adv Sci (Weinh) ; 9(1): e2103706, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34766471

RESUMO

Confined polymerization is an effective method for precise synthesis, which can further control the micro-nano structure inside the composite material. Polyaniline (PANI)-based composites are usually prepared by blending and original growth methods. However, due to the strong rigidity and hydrogen bonding of PANI, the content of PANI composites is low and easy to agglomerate. Here, based on confined polymerization, it is reported that polyaniline /polyether ether ketone (PANI/PEEK) film with high PANI content is synthesized in situ by a one-step method. The micro-nano structure of the two polymers in the confined space is further explored and it is found that PANI grows in the free volume of the PEEK chain, making the arrangement of the PEEK chain more orderly. Under the best experimental conditions, the prepared 16 µm-PANI/PEEK film has a dielectric constant of 205.4 (dielectric loss 0.401), the 75 µm-PANI/PEEK film has a conductivity of 3.01×10-4 S m-1 . The prepared PANI/PEEK composite film can be further used as electronic packaging materials, conductive materials, and other fields, which has potential application prospects in anti-static, electromagnetic shielding materials, corrosion resistance, and other fields.

20.
Anal Methods ; 14(32): 3079-3086, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35916293

RESUMO

p-Cresol is a harmful phenolic substance that can cause serious effects on human health even at a low concentration in water. Therefore, the detection of p-cresol in a water environment is particularly important. In this paper, a novel zeolite imidazolate framework-67 (ZIF-67) material with regular morphology was prepared on the surface of graphene oxide doped with silver nanoparticles. The composite was modified on the glassy carbon electrode surface to increase the specific surface area, accelerate the electron transfer rate, enhance the current response and improve the performance of electrochemical sensors. Furthermore, a layer of p-cresol-molecularly imprinted polymer was prepared on the surface of the modified electrode by electropolymerization for the selective, rapid and sensitive detection of p-cresol, which greatly improved the specific recognition of p-cresol. Under optimal conditions, the prepared sensor had a good linear range of 1.0 × 10-10 M to 1.0 × 10-5 M with a detection limit as low as 5.4 × 10-11 M, and it presented excellent reproducibility, stability and selectivity. Moreover, the sensor was successfully applied for the detection of trace p-cresol in a real water environment, providing a reliable assay for sensitive, rapid and selective detection of p-cresol in complex samples.


Assuntos
Nanopartículas Metálicas , Impressão Molecular , Zeolitas , Cresóis , Técnicas Eletroquímicas , Humanos , Limite de Detecção , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Prata , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA