Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Anal Bioanal Chem ; 413(18): 4619-4623, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33547481

RESUMO

Nowadays, the diagnosis of viral infections is receiving broad attention. We have developed a non-competitive fluorescence polarization immunoassay (NC-FPIA), which is a separation-free immunoassay, for a virus detection. H5 subtype avian influenza virus (H5-AIV) was used as a model virus for the proof of concept. The fluorescein-labeled Fab fragment that binds to H5 hemagglutinin was used for NC-FPIA. The purified H5-AIV which has H5 hemagglutinin was mixed with the fluorescein-labeled Fab fragment. After that, the degree of fluorescence polarization was measured with a portable FPIA analyzer. H5-AIV was successfully detected with an incubation time of 15 min. In addition, the portable FPIA analyzer enables performance of on-site NC-FPIA with a sample volume of 20 µL or less. This is the first research of detecting a virus particle by FPIA. This NC-FPIA can be applied to rapid on-site diagnosis of various viruses.


Assuntos
Imunoensaio de Fluorescência por Polarização/métodos , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Influenza Aviária/virologia , Animais , Galinhas , Imunoensaio de Fluorescência por Polarização/instrumentação , Virus da Influenza A Subtipo H5N1/genética , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade
2.
Sens Actuators B Chem ; 316: 128160, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32322135

RESUMO

A rapid, facile and selective detection of anti-H5 subtype avian influenza virus (AIV) antibody in serum by fluorescence polarization immunoassay (FPIA) was achieved. A fragment of recombinant H5 subtype AIV hemagglutinin was produced and labeled with fluorescein to use it as a labeled antigen in FPIA. This labeled antigen was mixed with anti-AIV sera (H1-H16 subtypes) and FP of the mixture was measured using a portable FP analyzer on a microdevice. It was found that FP increased in proportion to the concentration of anti-H5 AIV antibody (serum) and was significantly higher than FP obtained with the other sera. The selective detection of anti-H5 subtype AIV antibody was confirmed. The required volume of original sample was 2 µL and analysis time was within 20 min. This detection system realizes an efficient on-site diagnosis and surveillance of AIV.

3.
Analyst ; 144(15): 4589-4595, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31237262

RESUMO

We present an ultrasensitive immunoassay system for disease biomarkers utilizing the immuno-wall device and an enzymatic amplification reaction. The immuno-wall device consisted of 40 microchannels, each of which contained an antibody-modified wall-like structure along the longitudinal axis of the microchannel. The wall was fabricated with a water-soluble photopolymer containing streptavidin by photolithography, and biotinylated capture antibodies were immobilized on the sides through streptavidin-biotin interaction. For an assay, introducing the target biomarker and secondary and labeled antibodies produced a sandwich complex anchored on the sides of the wall. A conventional immuno-wall device uses a fluorescence-labeled antibody as a labeling antibody. To achieve an ultrasensitive detection of a trace biomarker, we used an enzyme label and amplified the signal with the enzymatic reaction with a fluorogenic substrate in the microchannel. The highest signal/background ratio was obtained by using alkaline phosphatase-labeled antibody and 9H-(1,3-dichloro-9,9-dimethylacridin-2-one-7-yl) phosphate. To evaluate the device performance, we detected human C-reactive protein (CRP) as a model biomarker. The detection limit (LOD) of CRP in phosphate-buffered saline was 2.5 pg mL-1 with a sample volume of 0.25 µL. This LOD was approximately 3 orders of magnitude lower than that obtained with fluorescent-dye (DyLight 650)-labeled antibody. In addition, the present device provided a wide detection range of 0.0025-10 ng mL-1 for CRP. We successfully developed an ultrasensitive immunoassay system with simple operation and only a small sample volume.


Assuntos
Proteína C-Reativa/análise , Imunoensaio/métodos , Dispositivos Lab-On-A-Chip , Acridinas/química , Fosfatase Alcalina/química , Animais , Anticorpos Imobilizados/imunologia , Biomarcadores/sangue , Proteína C-Reativa/imunologia , Corantes Fluorescentes/química , Cabras , Humanos , Imunoensaio/instrumentação , Limite de Detecção , Camundongos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Coelhos
4.
Analyst ; 141(24): 6598-6603, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27858015

RESUMO

The development of a competitive immunoassay system for colorimetric detection on microfluidic paper-based analytical devices (µPADs) is reported. The µPADs were fabricated via photolithography to define hydrophilic flow channels and consisted of three main elements: the control and test zones, where target detection was performed, the sample introduction zone, and the competitive capture zone located between the sample introduction zone and the test zone. The chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) was deposited at the control and test zones. µPAD surface modification was performed at the capture zone first via chitosan activation, then the BSA-conjugated target compound was immobilized. The sample solution consisting of the target compound, the peroxidase-conjugated antibody, and the hydrogen peroxide oxidizing agent was introduced into the device and competition occurred at the capture zone, allowing only the target-bound peroxidase-conjugated antibody to travel past the capture zone and into the test zone via capillary action. The developed competitive immunoassay system was successfully demonstrated on the µPAD detection of biotin as a model compound with a detection limit of 0.10 µg mL-1. The applicability of the proposed immunoassay system for point-of-need testing was further demonstrated using aflatoxin B1, a highly toxic foodborne substance, with a detection limit of 1.31 ng mL-1. The µPAD with the competitive immunoassay format showed promising results for practical applications in point-of-need testing involving small molecular weight targets in food and water safety and quality monitoring, environmental analysis, and clinical diagnostics.


Assuntos
Colorimetria , Imunoensaio , Técnicas Analíticas Microfluídicas , Papel , Dispositivos Lab-On-A-Chip , Limite de Detecção
5.
Analyst ; 141(24): 6507-6509, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27830841

RESUMO

The combination of a microfluidic paper-based analytical device (µPAD) and digital image analysis is widely used for quantitative analysis with µPADs because of its easy and simple operation. Herein, we have demonstrated a quantitative analysis based on multiple color changes on a µPAD. The CIE L*a*b* color system was employed to analyse the digital images obtained with the µPAD. We made pH measurements using a universal pH-indicator showing multiple color changes for various pH values of aqueous test solutions. The detectable pH range of this method was wider than the typical grayscale-based image analysis, and we succeeded in the measurements for a wide pH range of 2-9.

6.
Anal Bioanal Chem ; 408(27): 7559-7563, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27544520

RESUMO

A novel washing technique for microfluidic paper-based analytical devices (µPADs) that is based on the spontaneous capillary action of paper and eliminates unbound antigen and antibody in a sandwich immunoassay is reported. Liquids can flow through a porous medium (such as paper) in the absence of external pressure as a result of capillary action. Uniform results were achieved when washing a paper substrate in a PDMS holder which was integrated with a cartridge absorber acting as a porous medium. Our study demonstrated that applying this washing technique would allow µPADs to become the least expensive microfluidic device platform with high reproducibility and sensitivity. In a model µPAD assay that utilized this novel washing technique, C-reactive protein (CRP) was detected with a limit of detection (LOD) of 5 µg mL-1. Graphical Abstract A novel washing technique for microfluidic paper-based analytical devices (µPADs) that is based on the spontaneous capillary action of paper and eliminates unbound antigen and antibody in a sandwich immunoassay is reported.


Assuntos
Proteína C-Reativa/análise , Imunoensaio/instrumentação , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Adsorção , Anticorpos/química , Complexo Antígeno-Anticorpo/química , Antígenos/química , Ação Capilar , Humanos , Imunoensaio/métodos , Limite de Detecção , Papel
7.
Anal Chem ; 87(19): 9647-52, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26352939

RESUMO

The detection system which enables simultaneous fluorescence polarization (FP) measurement of multiple samples was proposed and proven by a proof-of-concept experiment on the viscosity dependence of FP of fluorescein sample in water-ethylene glycol solution and another experiment on the FP immunoassay of prostaglandin E2 sample. The measurement principle of FP is based on the synchronization between the orientation of the liquid crystal molecules and the sampling frequency of a CCD. This report is the first description of the simultaneous FP measurement of multiple samples. This system has a great potential for equipment miniaturization and price reduction as well as providing simultaneous FP measurement of multiple samples.


Assuntos
Polarização de Fluorescência/instrumentação , Cristais Líquidos/química , Dinoprostona/análise , Fluoresceína/análise
8.
Analyst ; 140(19): 6493-9, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26207925

RESUMO

This paper describes a simple and instrument-free screen-printing method to fabricate hydrophilic channels by patterning polydimethylsiloxane (PDMS) onto chromatography paper. Clearly recognizable border lines were formed between hydrophilic and hydrophobic areas. The minimum width of the printed channel to deliver an aqueous sample was 600 µm, as obtained by this method. Fabricated microfluidic paper-based analytical devices (µPADs) were tested for several colorimetric assays of pH, glucose, and protein in both buffer and artificial urine samples and results were obtained in less than 30 min. The limits of detection (LODs) for glucose and bovine serum albumin (BSA) were 5 mM and 8 µM, respectively. Furthermore, the pH values of different solutions were visually recognised with the naked eye by using a sensitive ink. Ultimately, it is expected that this PDMS-screen-printing (PSP) methodology for µPADs can be readily translated to other colorimetric detection and hydrophilic channels surrounded by a hydrophobic polymer can be formed to transport fluids toward target zones.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas de Química Analítica/instrumentação , Dispositivos Lab-On-A-Chip , Papel , Impressão , Animais , Soluções Tampão , Bovinos , Glucose/análise , Concentração de Íons de Hidrogênio , Soroalbumina Bovina/análise , Urinálise
9.
Carbohydr Polym ; 332: 121907, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431393

RESUMO

Low-concentration alkali treatments at low temperatures facilitate the crystal transition of cellulose I to II. However, the transition mechanism remains unclear. Hence, in this study, we traced the transition using in situ solid-state 13C CP/MAS NMR, WAXS, and 23Na NMR relaxation measurements. In situ solid-state 13C CP/MAS NMR and WAXS measurements revealed that soaking cellulose in NaOH at low temperatures disrupts the intramolecular hydrogen bonds and lowers the crystallinity of cellulose. The dynamics of Na ions (NaOH) play a crucial role in causing these phenomena. 23Na NMR relaxation measurements indicated that the Na-ion correlation time becomes longer during the crystal transition. This transition requires the penetration of Na ions (NaOH) into the cellulose crystal and a reduction in Na-ion mobility, which occurs at low temperatures or high NaOH concentrations. The interactions between cellulose and NaOH disrupt intramolecular hydrogen bonds, inducing a conformational change in the cellulose molecules into a more stable arrangement. This weakens the hydrophobic interactions of cellulose, and facilitates the penetration of NaOH and water into the crystal, leading to the formation of alkali cellulose. Our findings suggest that a strategy to control NaOH dynamics could lead to the discovery of a novel preparation method for cellulose II.

10.
J Chromatogr A ; 1706: 464272, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37595418

RESUMO

Recently, there has been a growing demand for miniaturized analytical instruments, including portable HPLC systems, that can enable rapid analysis in the field. This study aimed to develop chip-based separation/detection modules with replaceable detection units for constructing compact HPLC systems to minimize the dead volume. This module provides a tubing-free connection between the column and the detection unit. This study also built detection units for conductivity detection and ultraviolet-visible (UV-Vis) detection to cover a wide variety of inorganic and organic compounds. Furthermore, UV- and Vis-light-emitting diodes were employed for the absorbance detection unit. In addition, portable all-in-one HPLC systems and a handy HPLC system were constructed for ion chromatography and reversed-phase chromatography, demonstrating the successful separation and detection of inorganic ions and several organic compounds.


Assuntos
Cromatografia de Fase Reversa , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão , Condutividade Elétrica
11.
PLoS One ; 17(8): e0271050, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35925917

RESUMO

The realization of poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) from laboratory to clinical applications remains slow, partly because of the lack of precise control of each condition in the preparation process and the rich selectivity of nanoparticles with diverse characteristics. Employing PLGA NPs to establish a large range of size-controlled drug delivery systems and achieve size-selective drug delivery targeting remains a challenge for therapeutic development for different diseases. In this study, we employed a microfluidic device to control the size of PLGA NPs. PLGA, poly (ethylene glycol)-methyl ether block poly (lactic-co-glycolide) (PEG-PLGA), and blend (PLGA + PEG-PLGA) NPs were engineered with defined sizes. Blend NPs exhibit the widest size range (40-114 nm) by simply changing the flow rate conditions without changing the precursor (polymer molecular weight, concentration, and chain segment composition). A model hydrophobic drug, paclitaxel (PTX), was encapsulated in the NPs, and the PTX-loaded NPs maintained a large range of controllable NP sizes. Furthermore, size-controlled NPs were used to investigate the effect of particle size of sub-200 nm NPs on tumor cell growth. The 52 nm NPs showed higher cell growth inhibition than 109 nm NPs. Our method allows the preparation of biodegradable NPs with a large size range without changing polymer precursors as well as the nondemanding fluid conditions. In addition, our model can be applied to elucidate the role of particle sizes of sub-200 nm particles in various biomedical applications, which may help develop suitable drugs for different diseases.


Assuntos
Nanopartículas , Neoplasias , Portadores de Fármacos/química , Humanos , Ácido Láctico/química , Microfluídica , Nanopartículas/química , Neoplasias/tratamento farmacológico , Paclitaxel/uso terapêutico , Tamanho da Partícula , Polietilenoglicóis/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
12.
ACS Omega ; 7(37): 33079-33086, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36157756

RESUMO

The translation of nanoparticles (NPs) from laboratory to clinical settings is limited, which is not ideal. One of the reasons for this is that we currently have limited ability to precisely regulate various physicochemical parameters of nanoparticles. This has made it difficult to rapidly perform targeted screening of drug preparation conditions. In this study, we attempted to broaden the range of preparation conditions for particle size-modulated poly(lactic-co-glycolic-acid) (PLGA) NP to enhance their applicability for drug delivery systems (DDS). This was done using a variety of organic solvents and a glass-based microfluidic device. Furthermore, we compared the PDMS-based microfluidic device to the glass-based microfluidic device in terms of the possibility of a wider range of preparation conditions, especially the effect of different solvents on the size of the PLGA NPs. PLGA NPs with different sizes (sub-200 nm) were successfully prepared, and three different types of taxanes were employed for encapsulation. The drug-loaded NPs showed size-dependent cytotoxicity in cellular assays, regardless of the taxane drug used.

13.
J Vis Exp ; (181)2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35404350

RESUMO

The development of functional lipid nanoparticles (LNPs) is one of the major challenges in the field of drug delivery systems (DDS). Recently, LNP-based RNA delivery systems, namely, RNA-loaded LNPs have attracted attention for RNA therapy. In particular, mRNA-loaded LNP vaccines were approved to prevent COVID-19, thereby leading to the paradigm shift toward the development of next-generation nanomedicines. For the LNP-based nanomedicines, the LNP size is a significant factor in controlling the LNP biodistribution and LNP performance. Therefore, a precise LNP size control technique is indispensable for the LNP production process. Here, we report a protocol for size controlled LNP production using a microfluidic device, named iLiNP. siRNA loaded LNPs are also produced using the iLiNP device and evaluated by in vitro experiment. Representative results are shown for the LNP size, including siRNA-loaded LNPs, Z-potential, siRNA encapsulation efficiency, cytotoxicity, and target gene silencing activity.


Assuntos
COVID-19 , Nanopartículas , Humanos , Dispositivos Lab-On-A-Chip , Lipídeos , Lipossomos , RNA Interferente Pequeno/metabolismo , Distribuição Tecidual
14.
Biosens Bioelectron ; 198: 113832, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34856516

RESUMO

This study aimed to develop an electrochemical system for measuring blood ATP and lactate levels in a single format. The ratio of lactate to ATP levels was previously reported to provide an alternative illness severity score. Although severity evaluation is crucial to treat patients with acute disease admitted to intensive care units, no sensors are currently available to simply and rapidly measure ATP and lactate levels using the same detection method. Therefore, we constructed an integrated sensing system for ATP and lactate using enzymatic reactions and two sets of electrodes integrated into a chip connected to a single potentiostat operated by a microcontroller. The enzymatic system involves adenylate kinase, pyruvate kinase, and pyruvate oxidase for ATP, and lactate oxidase for lactate, both of which produce hydrogen peroxide. Multiplex enzyme-based reactions were designed to minimize the corresponding operations significantly without enzyme immobilization onto the electrodes. The system was robust in the presence of potentially interfering blood components, such as ascorbate, pyruvate, ADP, urate, and potassium ions. The ATP and lactate levels in the blood were successfully measured using the new sensor with good recoveries. The analytical results of blood samples obtained using our sensor were in good agreement with those using conventional methods. Integrating electrode-based analysis and a microcontroller-based system saved further operations, enabling the straightforward measurement of ATP and lactate levels within 5 min. The proposed sensor may serve as a useful tool in the management of serious infectious diseases.


Assuntos
Técnicas Biossensoriais , Ácido Láctico , Trifosfato de Adenosina , Eletrodos , Humanos , Gravidade do Paciente
15.
Lab Chip ; 22(16): 2971-2977, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35713150

RESUMO

This paper is the first report of a non-competitive fluorescence polarization immunoassay (NC-FPIA) using a peptide as a tracer. The NC-FPIA can easily and quickly quantify the target after simply mixing them together. This feature is desirable for point-of-need applications such as clinical diagnostics, infectious disease screening, on-site analysis for food safety, etc. In this study, the NC-FPIA was applied to detect CD9, which is one of the exosome markers. We succeeded in detecting not only CD9 but also CD9 expressing exosomes derived from HeLa cells. This method can be applied to various targets if a tracer for the target can be prepared, and expectations are high for its future uses.


Assuntos
Peptídeos , Polarização de Fluorescência , Imunoensaio de Fluorescência por Polarização/métodos , Células HeLa , Humanos , Tetraspanina 29
16.
ACS Appl Bio Mater ; 4(2): 1783-1793, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014524

RESUMO

Size-controlled lipid nanoparticle (LNP)-based DNA/RNA delivery is a leading technology for gene therapies. For DNA/RNA delivery, typically, a cationic lipid is used to encapsulate DNA/RNA into LNPs. However, the use of the cationic lipid leads to cytotoxicity. In contrast, noncationic NPs, such as exosomes, are ideal nanocarriers for DNA/RNA delivery. However, the development of a simple one-step method for the production of size-controlled noncationic NPs encapsulating DNA/RNA is still challenging because of the lack of electrostatic interactions between the cationic lipid and negatively charged DNA/RNA. Herein, we report a microfluidic-based one-step method for the production of size-controlled noncationic NPs encapsulating small interfering RNA (siRNA). Our microfluidic device, named iLiNP, enables the efficient encapsulation of siRNA, as well as control over the NP size, by varying the flow conditions. We applied this method to produce size-controlled exosome-like NPs. The siRNA-loaded exosome-like NPs did not show in vitro cytotoxicity at a high siRNA dosage. In addition, we investigated the effect of the size of the exosome-like NPs on the target gene silencing and found that the 40-50 nm-sized NPs suppressed target protein expression at a dose of 20 nM siRNA. The iLiNP-based one-step production method for size-controlled noncationic-NP-encapsulated RNA is a promising method for the production of artificial exosomes and functionally modified exosomes for gene and cell therapies.


Assuntos
Materiais Biocompatíveis/química , Dispositivos Lab-On-A-Chip , Nanopartículas/química , RNA Interferente Pequeno/química , Exossomos/química , Células HeLa , Humanos , Teste de Materiais , Tamanho da Partícula , Células Tumorais Cultivadas
17.
Anal Chim Acta ; 1144: 85-95, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33453801

RESUMO

Competitive immunoassays comprise the standard means of detecting small molecules. However, conventional methods using microwells are difficult to apply during point-of-care tests (POCT) because they require complicated handling and are time consuming. Although paper-based analytical devices (PAD) have received considerable focus because of their rapid and straightforward operation, only a few devices have been proposed for competitive immunoassays. Herein, we describe a novel universal PAD format with a 3-dimensional configuration for competitive immunoassays that rapidly and sensitively detects small molecules. The proposed device comprised a layered structure with uniform color formation and high capture efficiency between antigen and antibody that results in rapid and reproducible results. The device rapidly (90 s) assayed biotin as a model target, with a limit of detection (LOD) of 5.08 ng mL-1, and detected progesterone with an LOD of 84 pg mL-1 within 5 min. Moreover, sample volumes and reagent consumption rates were minimized. Thus, our device could be applied to competitive immunoassays of various small molecules in POCT.


Assuntos
Anticorpos , Biotina , Imunoensaio , Indicadores e Reagentes , Limite de Detecção
18.
ACS Omega ; 6(12): 8340-8345, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33817494

RESUMO

Analytical methods with fluorescence detection are in widespread use for detecting low abundance analytes. Here, we report a simple method for fluorescence signal amplification utilizing a structure of an azide-unit pendant water-soluble photopolymer (AWP) in a microchannel. The AWP is a poly(vinyl alcohol)-based photocross-linkable polymer, which is often used in biosensors. We determined that the wall-like structure of the AWP (AWP-wall) constructed in a microchannel functioned as an amplifier of a fluorescence signal. When a solution of fluorescent molecules was introduced into the microchannel having the AWP-wall, the fluorescent molecules accumulated inside the AWP-wall by diffusion. Consequently, the fluorescence intensity inside the AWP-wall increased locally. Among the fluorescent molecules considered in this paper, 9H-(1,3-dichloro-9,9-dimethylacridin-2-one-7-yl) (DDAO) showed the highest efficiency of fluorescence signal amplification. We prepared a calibration curve for DDAO using the fluorescence intensity inside the AWP-wall, and the sensitivity was 5-fold that for the microchannel without the AWP-wall. This method realizes the improved sensitivity of fluorescence detection easily because the fluorescence signal was amplified only by injecting the solution into the microchannel having the AWP-wall. Furthermore, since this method is not limited to only the use of microchannel, we expect it to be applicable in various fields.

19.
ACS Sens ; 6(3): 1094-1102, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33660502

RESUMO

The development of low-cost, user-friendly paper-based analytical devices (PADs) that can easily measure target chemicals is attracting attention. However, most PADs require manipulation of the sample using sophisticated micropipettes for quantitative analyses, which restricts their user-friendliness. In addition, immobilization of detection molecules to cellulose fibers is essential for achieving good measuring ability as it ensures the homogeneity of color development. Here, we have described a dip-type PAD that does not require pipette manipulation for sample introduction and immobilization of detection molecules to cellulose fibers and its application to ascorbic acid (AA) and pH assays. The PAD consisted of a dipping area and two channels, each with two detection zones. The developed PADs show color distribution in the two detection zones depending on the sample flow from the dipping area. In comparison with a PAD that has one detection zone at the end of the channel, our developed device achieved higher sensitivity (limit of detection (LOD), 0.22 mg/mL) and reproducibility (maximum coefficient of variation (CV), 2.4%) in AA detection. However, in pH detection, the reproducibility of the PAD with one detection zone at the end of the channel (maximum CV, 21%) was worse than that with two zones (maximum CV, 11%). Furthermore, a dipping time over 3 s did not affect color formation or calibration curves in AA detection: LODs at 3 and 30 s dipping time were 18 and 5.8 µg/mL, respectively. The simultaneous determination of AA and pH in various beverages was performed with no significant difference compared to results of the conventional method.


Assuntos
Colorimetria , Calibragem , Limite de Detecção , Reprodutibilidade dos Testes
20.
RSC Adv ; 11(3): 1430-1439, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35424092

RESUMO

Sub 100 nm-sized lipid nanoparticles (LNPs) have been widely used in drug delivery systems (DDSs). The size of the LNPs is an important parameter for the DDS performance, such as biodistribution and gene silencing using siRNAs. However, the LNPs prepared by the conventional preparation method show a wide size distribution. To improve the LNP size distribution, we developed a microfluidic device, named the iLiNP™ device, in a previous study. This device could produce LNPs in the size range of 20 to 150 nm, but the size distribution of the large-sized LNPs needs to be further improved. From the viewpoint of the LNP formation process, a homogeneous and slow rate dilution of ethanol plays an important role in improving the large-size LNP size distribution. In this study, we developed a three-dimensional, symmetrically assembled microfluidic device named the 3D-iLiNP device with the aim of precise size control of large-sized LNPs. We designed the 3D-iLiNP device using a computational fluid dynamics simulation and demonstrated that the 3D-iLiNP device can improve the LNP size distribution. The gene silencing activity of four kinds of siRNA-loaded LNPs was investigated via in vitro and in vivo experiments to elucidate the effect of the LNP size distribution. The results revealed that the LNPs with a size between 90 and 120 nm showed higher gene silencing activity than those with other sizes. The 3D-iLiNP device is expected to improve DDS performance by precisely controlling the size of LNPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA