Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Eur J Nucl Med Mol Imaging ; 51(4): 1085-1096, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37982850

RESUMO

Glioma are clinically challenging tumors due to their location and invasiveness nature, which often hinder complete surgical resection. The evaluation of the isocitrate dehydrogenase mutation status has become crucial for effective patient stratification. Through a transdisciplinary approach, we have developed an 18F-labeled ligand for non-invasive assessment of the IDH1R132H variant by using positron emission tomography (PET) imaging. In this study, we have successfully prepared diastereomerically pure [18F]AG-120 by copper-mediated radiofluorination of the stannyl precursor 6 on a TRACERlab FX2 N radiosynthesis module. In vitro internalization studies demonstrated significantly higher uptake of [18F]AG-120 in U251 human high-grade glioma cells with stable overexpression of mutant IDH1 (IDH1R132H) compared to their wild-type IDH1 counterpart (0.4 vs. 0.013% applied dose/µg protein at 120 min). In vivo studies conducted in mice, exhibited the excellent metabolic stability of [18F]AG-120, with parent fractions of 85% and 91% in plasma and brain at 30 min p.i., respectively. Dynamic PET studies with [18F]AG-120 in naïve mice and orthotopic glioma rat model reveal limited blood-brain barrier permeation along with a low uptake in the brain tumor. Interestingly, there was no significant difference in uptake between mutant IDH1R132H and wild-type IDH1 tumors (tumor-to-blood ratio[40-60 min]: ~1.7 vs. ~1.3). In conclusion, our preclinical evaluation demonstrated a target-specific internalization of [18F]AG-120 in vitro, a high metabolic stability in vivo in mice, and a slightly higher accumulation of activity in IDH1R132H-glioma compared to IDH1-glioma. Overall, our findings contribute to advancing the field of molecular imaging and encourage the evaluation of [18F]AG-120 to improve diagnosis and management of glioma and other IDH1R132H-related tumors.


Assuntos
Neoplasias Encefálicas , Glioma , Glicina/análogos & derivados , Piridinas , Humanos , Camundongos , Ratos , Animais , Isocitrato Desidrogenase/genética , Glioma/genética , Tomografia por Emissão de Pósitrons/métodos , Neoplasias Encefálicas/genética
2.
J Labelled Comp Radiopharm ; 65(6): 162-166, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35288969

RESUMO

[18 F]FLUDA is a selective radiotracer for in vivo imaging of the adenosine A2A receptor (A2A R) by positron emission tomography (PET). Promising preclinical results obtained by neuroimaging of mice and piglets suggest the translation of [18 F]FLUDA to human PET studies. Thus, we report herein a remotely controlled automated radiosynthesis of [18 F]FLUDA using a GE TRACERlab FX2 N radiosynthesizer. The radiotracer was obtained by a one-pot two-step radiofluorination procedure with a radiochemical yield of 9±1%, a radiochemical purity of ≥99%, and molar activities in the range of 69-333 GBq/µmol at the end of synthesis within a total synthesis time of approx. 95 min (n = 16). Altogether, we successfully established a reliable and reproducible procedure for the automated production of [18 F]FLUDA.


Assuntos
Adenosina , Receptor A2A de Adenosina , Animais , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons/métodos , Radioquímica/métodos , Compostos Radiofarmacêuticos , Suínos
3.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35162950

RESUMO

A2A adenosine receptors (A2A-AR) have a cardio-protective function upon ischemia and reperfusion, but on the other hand, their stimulation could lead to arrhythmias. Our aim was to investigate the potential use of the PET radiotracer [18F]FLUDA to non-invasively determine the A2A-AR availability for diagnosis of the A2AR status. Therefore, we compared mice with cardiomyocyte-specific overexpression of the human A2A-AR (A2A-AR TG) with the respective wild type (WT). We determined: (1) the functional impact of the selective A2AR ligand FLUDA on the contractile function of atrial mouse samples, (2) the binding parameters (Bmax and KD) of [18F]FLUDA on mouse and human atrial tissue samples by autoradiographic studies, and (3) investigated the in vivo uptake of the radiotracer by dynamic PET imaging in A2A-AR TG and WT. After A2A-AR stimulation by the A2A-AR agonist CGS 21680 in isolated atrial preparations, antagonistic effects of FLUDA were found in A2A-AR-TG animals but not in WT. Radiolabelled [18F]FLUDA exhibited a KD of 5.9 ± 1.6 nM and a Bmax of 455 ± 78 fmol/mg protein in cardiac samples of A2A-AR TG, whereas in WT, as well as in human atrial preparations, only low specific binding was found. Dynamic PET studies revealed a significantly higher initial uptake of [18F]FLUDA into the myocardium of A2A-AR TG compared to WT. The hA2A-AR-specific binding of [18F]FLUDA in vivo was verified by pre-administration of the highly affine A2AAR-specific antagonist istradefylline. Conclusion: [18F]FLUDA is a promising PET probe for the non-invasive assessment of the A2A-AR as a marker for pathologies linked to an increased A2A-AR density in the heart, as shown in patients with heart failure.


Assuntos
Coração/diagnóstico por imagem , Miocárdio/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptor A2A de Adenosina/genética , Adenosina/análogos & derivados , Adenosina/farmacologia , Animais , Radioisótopos de Flúor/química , Coração/fisiologia , Humanos , Camundongos , Camundongos Transgênicos , Fenetilaminas/farmacologia , Purinas/farmacologia , Receptor A2A de Adenosina/metabolismo , Vidarabina/administração & dosagem , Vidarabina/análogos & derivados , Vidarabina/química
4.
Molecules ; 27(12)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35744895

RESUMO

Isocitrate dehydrogenases (IDHs) are metabolic enzymes commonly mutated in human cancers (glioma, acute myeloid leukaemia, chondrosarcoma, and intrahepatic cholangiocarcinoma). These mutated variants of IDH (mIDH) acquire a neomorphic activity, namely, conversion of α-ketoglutarate to the oncometabolite D-2-hydroxyglutarate involved in tumourigenesis. Thus, mIDHs have emerged as highly promising therapeutic targets, and several mIDH specific inhibitors have been developed. However, the evaluation of mIDH status, currently performed by biopsy, is essential for patient stratification and thus treatment and follow-up. We report herein the development of new radioiodinated and radiofluorinated analogues of olutasidenib (FT-2102) as tools for noninvasive single photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging of mIDH1 up- and dysregulation in tumours. Nonradiolabelled derivatives 2 and 3 halogenated at position 6 of the quinolinone scaffold were synthesised and tested in vitro for their inhibitory potencies and selectivities in comparison with the lead compound FT-2102. Using a common organotin precursor, (S)-[125I]2 and (S)-[18F]3 were efficiently synthesised by radio-iododemetallation and copper-mediated radiofluorination, respectively. Both radiotracers were stable at room temperature in saline or DPBS solution and at 37 °C in mouse serum, allowing future planning of their in vitro and in vivo evaluations in glioma and chondrosarcoma models.


Assuntos
Neoplasias dos Ductos Biliares , Neoplasias Ósseas , Condrossarcoma , Glioma , Leucemia Mieloide Aguda , Animais , Ductos Biliares Intra-Hepáticos , Condrossarcoma/diagnóstico por imagem , Condrossarcoma/genética , Glioma/diagnóstico por imagem , Glioma/genética , Humanos , Camundongos , Mutação , Tomografia por Emissão de Pósitrons , Piridinas , Quinolinas , Tomografia Computadorizada de Emissão de Fóton Único
5.
Eur J Nucl Med Mol Imaging ; 48(9): 2727-2736, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33532910

RESUMO

PURPOSE: The adenosine A2A receptor has emerged as a therapeutic target for multiple diseases, and thus the non-invasive imaging of the expression or occupancy of the A2A receptor has potential to contribute to diagnosis and drug development. We aimed at the development of a metabolically stable A2A receptor radiotracer and report herein the preclinical evaluation of [18F]FLUDA, a deuterated isotopologue of [18F]FESCH. METHODS: [18F]FLUDA was synthesized by a two-step one-pot approach and evaluated in vitro by autoradiographic studies as well as in vivo by metabolism and dynamic PET/MRI studies in mice and piglets under baseline and blocking conditions. A single-dose toxicity study was performed in rats. RESULTS: [18F]FLUDA was obtained with a radiochemical yield of 19% and molar activities of 72-180 GBq/µmol. Autoradiography proved A2A receptor-specific accumulation of [18F]FLUDA in the striatum of a mouse and pig brain. In vivo evaluation in mice revealed improved stability of [18F]FLUDA compared to that of [18F]FESCH, resulting in the absence of brain-penetrant radiometabolites. Furthermore, the radiometabolites detected in piglets are expected to have a low tendency for brain penetration. PET/MRI studies confirmed high specific binding of [18F]FLUDA towards striatal A2A receptor with a maximum specific-to-non-specific binding ratio in mice of 8.3. The toxicity study revealed no adverse effects of FLUDA up to 30 µg/kg, ~ 4000-fold the dose applied in human PET studies using [18F]FLUDA. CONCLUSIONS: The new radiotracer [18F]FLUDA is suitable to detect the availability of the A2A receptor in the brain with high target specificity. It is regarded ready for human application.


Assuntos
Tomografia por Emissão de Pósitrons , Receptor A2A de Adenosina , Adenosina , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Flúor , Camundongos , Compostos Radiofarmacêuticos , Ratos , Receptor A2A de Adenosina/metabolismo , Suínos
6.
Bioorg Med Chem Lett ; 48: 128254, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34256118

RESUMO

Monoamine oxidases (MAOs) play a key role in the metabolism of major monoamine neurotransmitters. In particular, the upregulation of MAO-B in Parkinson's disease, Alzheimer's disease and cancer augmented the development of selective MAO-B inhibitors for diagnostic and therapeutic purposes, such as the anti-parkinsonian MAO-B irreversible binder l-deprenyl (Selegiline®). Herein we report on the synthesis of novel fluorinated indanone derivatives for PET imaging of MAO-B in the brain. Out of our series, the derivatives 6, 8, 9 and 13 are amongst the most affine and selective ligands for MAO-B reported so far. For the derivative 6-((3-fluorobenzyl)oxy)-2,3-dihydro-1H-inden-1-one (6) exhibiting an outstanding affinity (KiMAO-B = 6 nM), an automated copper-mediated radiofluorination starting from the pinacol boronic ester 17 is described. An in vitro screening in different species revealed a MAO-B region-specific accumulation of [18F]6 in rats and piglets in comparison to L-[3H]deprenyl. The pre-clinical in vivo assessment of [18F]6 in mice demonstrated the potential of indanones to readily cross the blood-brain barrier. Nonetheless, parallel in vivo metabolism studies indicated the presence of blood-brain barrier metabolites, thus arguing for further structural modifications. With the matching analytical profiles of the radiometabolite analysis from the in vitro liver microsome studies and the in vivo evaluation, the structure's elucidation of the blood-brain barrier penetrant radiometabolites is possible and will serve as basis for the development of new indanone derivatives suitable for the PET imaging of MAO-B.


Assuntos
Encéfalo/efeitos dos fármacos , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Tomografia por Emissão de Pósitrons , Animais , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Halogenação , Indanos , Macaca mulatta , Estrutura Molecular , Monoaminoxidase/análise , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Ratos , Relação Estrutura-Atividade , Suínos
7.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360817

RESUMO

Cannabinoid receptors type 2 (CB2R) represent an attractive therapeutic target for neurodegenerative diseases and cancer. Aiming at the development of a positron emission tomography (PET) radiotracer to monitor receptor density and/or occupancy during a CB2R-tailored therapy, we herein describe the radiosynthesis of cis-[18F]1-(4-fluorobutyl-N-((1s,4s)-4-methylcyclohexyl)-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamide ([18F]LU14) starting from the corresponding mesylate precursor. The first biological evaluation revealed that [18F]LU14 is a highly affine CB2R radioligand with >80% intact tracer in the brain at 30 min p.i. Its further evaluation by PET in a well-established rat model of CB2R overexpression demonstrated its ability to selectively image the CB2R in the brain and its potential as a tracer to further investigate disease-related changes in CB2R expression.


Assuntos
Encéfalo/ultraestrutura , Radioisótopos de Flúor/farmacocinética , Naftiridinas , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Receptor CB2 de Canabinoide/química , Animais , Células Cultivadas , Feminino , Humanos , Camundongos , Naftiridinas/síntese química , Naftiridinas/química , Ligação Proteica , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Sprague-Dawley
8.
Int J Mol Sci ; 22(3)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33504051

RESUMO

The adenosine A2A receptor (A2AR) has emerged as a potential non-dopaminergic target for the treatment of Parkinson's disease and, thus, the non-invasive imaging with positron emission tomography (PET) is of utmost importance to monitor the receptor expression and occupancy during an A2AR-tailored therapy. Aiming at the development of a PET radiotracer, we herein report the design of a series of novel fluorinated analogs (TOZ1-TOZ7) based on the structure of the A2AR antagonist tozadenant, and the preclinical evaluation of [18F]TOZ1. Autoradiography proved A2AR-specific in vitro binding of [18F]TOZ1 to striatum of mouse and pig brain. Investigations of the metabolic stability in mice revealed parent fractions of more than 76% and 92% of total activity in plasma and brain samples, respectively. Dynamic PET/magnetic resonance imaging (MRI) studies in mice revealed a brain uptake but no A2AR-specific in vivo binding.


Assuntos
Fluordesoxiglucose F18 , Imagem Molecular , Tomografia por Emissão de Pósitrons , Traçadores Radioativos , Compostos Radiofarmacêuticos , Receptor A2A de Adenosina/metabolismo , Animais , Autorradiografia , Técnicas de Química Sintética , Fluordesoxiglucose F18/química , Humanos , Camundongos , Modelos Moleculares , Conformação Molecular , Imagem Molecular/métodos , Estrutura Molecular , Tomografia por Emissão de Pósitrons/métodos , Ligação Proteica , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Receptor A2A de Adenosina/química , Análise Espectral , Relação Estrutura-Atividade
9.
Int J Mol Sci ; 22(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064122

RESUMO

The σ2 receptor (transmembrane protein 97), which is involved in cholesterol homeostasis, is of high relevance for neoplastic processes. The upregulated expression of σ2 receptors in cancer cells and tissue in combination with the antiproliferative potency of σ2 receptor ligands motivates the research in the field of σ2 receptors for the diagnosis and therapy of different types of cancer. Starting from the well described 2-(4-(1H-indol-1-yl)butyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline class of compounds, we synthesized a novel series of fluorinated derivatives bearing the F-atom at the aromatic indole/azaindole subunit. RM273 (2-[4-(6-fluoro-1H-pyrrolo[2,3-b]pyridin-1-yl)butyl]-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline) was selected for labelling with 18F and evaluation regarding detection of σ2 receptors in the brain by positron emission tomography. Initial metabolism and biodistribution studies of [18F]RM273 in healthy mice revealed promising penetration of the radioligand into the brain. Preliminary in vitro autoradiography on brain cryosections of an orthotopic rat glioblastoma model proved the potential of the radioligand to detect the upregulation of σ2 receptors in glioblastoma cells compared to healthy brain tissue. The results indicate that the herein developed σ2 receptor ligand [18F]RM273 has potential to assess by non-invasive molecular imaging the correlation between the availability of σ2 receptors and properties of brain tumors such as tumor proliferation or resistance towards particular therapies.


Assuntos
Encéfalo/metabolismo , Radioisótopos de Flúor/química , Radioisótopos de Flúor/metabolismo , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Receptores sigma/metabolismo , Animais , Feminino , Humanos , Ligantes , Masculino , Camundongos , Neoplasias/metabolismo , Ratos , Ratos Endogâmicos F344 , Tetra-Hidroisoquinolinas/química , Tetra-Hidroisoquinolinas/metabolismo
10.
Int J Mol Sci ; 22(4)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562048

RESUMO

The expression of monocarboxylate transporters (MCTs) is linked to pathophysiological changes in diseases, including cancer, such that MCTs could potentially serve as diagnostic markers or therapeutic targets. We recently developed [18F]FACH as a radiotracer for non-invasive molecular imaging of MCTs by positron emission tomography (PET). The aim of this study was to evaluate further the specificity, metabolic stability, and pharmacokinetics of [18F]FACH in healthy mice and piglets. We measured the [18F]FACH plasma protein binding fractions in mice and piglets and the specific binding in cryosections of murine kidney and lung. The biodistribution of [18F]FACH was evaluated by tissue sampling ex vivo and by dynamic PET/MRI in vivo, with and without pre-treatment by the MCT inhibitor α-CCA-Na or the reference compound, FACH-Na. Additionally, we performed compartmental modelling of the PET signal in kidney cortex and liver. Saturation binding studies in kidney cortex cryosections indicated a KD of 118 ± 12 nM and Bmax of 6.0 pmol/mg wet weight. The specificity of [18F]FACH uptake in the kidney cortex was confirmed in vivo by reductions in AUC0-60min after pre-treatment with α-CCA-Na in mice (-47%) and in piglets (-66%). [18F]FACH was metabolically stable in mouse, but polar radio-metabolites were present in plasma and tissues of piglets. The [18F]FACH binding potential (BPND) in the kidney cortex was approximately 1.3 in mice. The MCT1 specificity of [18F]FACH uptake was confirmed by displacement studies in 4T1 cells. [18F]FACH has suitable properties for the detection of the MCTs in kidney, and thus has potential as a molecular imaging tool for MCT-related pathologies, which should next be assessed in relevant disease models.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacologia , Animais , Linhagem Celular Tumoral , Feminino , Radioisótopos de Flúor/química , Vesícula Biliar/metabolismo , Rim/metabolismo , Fígado/metabolismo , Camundongos , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Ratos , Suínos
11.
Curr Oncol Rep ; 22(5): 47, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32297022

RESUMO

The original version of this review article unfortunately contained a mistake in the author group section.

12.
Curr Oncol Rep ; 22(2): 19, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32030483

RESUMO

PURPOSE OF REVIEW: H3K27M is a frequent histone mutation within diffuse midline gliomas and is associated with a dismal prognosis, so much so that the 2016 CNS WHO classification system created a specific category of "Diffuse Midline Glioma, H3K27M-mutant". Here we outline the latest pre-clinical data and ongoing current clinical trials that target H3K27M, as well as explore diagnosis and treatment monitoring by serial liquid biopsy. RECENT FINDINGS: Multiple epigenetic compounds have demonstrated efficacy and on-target effects in pre-clinical models. The imipridone ONC201 and the IDO1 inhibitor indoximod have demonstrated early clinical activity against H3K27M-mutant gliomas. Liquid biopsy of cerebrospinal fluid has shown promise for clinical use in H3K27M-mutant tumors for diagnosis and monitoring treatment response. While H3K27M has elicited a widespread platform of pre-clinical therapies with promise, much progress still needs to be made to improve outcomes for diffuse midline glioma patients. We present current treatment and monitoring techniques as well as novel approaches in identifying and targeting H3K27M-mutant gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Histona Desmetilases com o Domínio Jumonji/genética , Neoplasias da Medula Espinal , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Líquido Cefalorraquidiano , Ensaios Clínicos como Assunto , Glioma/diagnóstico , Glioma/tratamento farmacológico , Glioma/genética , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Imunoterapia Adotiva , Biópsia Líquida , Mutação , Prognóstico , Neoplasias da Medula Espinal/diagnóstico , Neoplasias da Medula Espinal/tratamento farmacológico , Neoplasias da Medula Espinal/genética
13.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32366046

RESUMO

The adenosine A2B receptor has been proposed as a novel therapeutic target in cancer, as its expression is drastically elevated in several tumors and cancer cells. Noninvasive molecular imaging via positron emission tomography (PET) would allow the in vivo quantification of this receptor in pathological processes and most likely enable the identification and clinical monitoring of respective cancer therapies. On the basis of a bicyclic pyridopyrimidine-2,4-dione core structure, the new adenosine A2B receptor ligand 9 was synthesized, containing a 2-fluoropyridine moiety suitable for labeling with the short-lived PET radionuclide fluorine-18. Compound 9 showed a high binding affinity for the human A2B receptor (Ki(A2B) = 2.51 nM), along with high selectivities versus the A1, A2A, and A3 receptor subtypes. Therefore, it was radiofluorinated via nucleophilic aromatic substitution of the corresponding nitro precursor using [18F]F-/K2.2.2./K2CO3 in DMSO at 120 °C. Metabolic studies of [18F]9 in mice revealed about 60% of radiotracer intact in plasma at 30 minutes p.i. A preliminary PET study in healthy mice showed an overall biodistribution of [18F]9, corresponding to the known ubiquitous but low expression of the A2B receptor. Consequently, [18F]9 represents a novel PET radiotracer with high affinity and selectivity toward the adenosine A2B receptor and a suitable in vivo profile. Subsequent studies are envisaged to investigate the applicability of [18F]9 to detect alterations in the receptor density in certain cancer-related disease models.


Assuntos
Adenosina/química , Radioisótopos de Flúor/química , Tomografia por Emissão de Pósitrons/métodos , Receptor A2B de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/química , Animais , Feminino , Humanos , Camundongos , Estrutura Molecular
14.
Molecules ; 25(21)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114548

RESUMO

Herein, we report on the synthesis and pharmacological evaluation of ten novel fluorinated cinnamylpiperazines as potential monoamine oxidase B (MAO-B) ligands. The designed derivatives consist of either cinnamyl or 2-fluorocinnamyl moieties connected to 2-fluoropyridylpiperazines. The three-step synthesis starting from commercially available piperazine afforded the final products in overall yields between 9% and 29%. An in vitro competitive binding assay using l-[3H]Deprenyl as radioligand was developed and the MAO-B binding affinities of the synthesized derivatives were assessed. Docking studies revealed that the compounds 8-17 were stabilized in both MAO-B entrance and substrate cavities, thus resembling the binding pose of l-Deprenyl. Although our results revealed that the novel fluorinated cinnamylpiperazines 8-17 do not possess sufficient MAO-B binding affinity to be eligible as positron emission tomography (PET) agents, the herein developed binding assay and the insights gained within our docking studies will certainly pave the way for further development of MAO-B ligands.


Assuntos
Halogenação , Monoaminoxidase/metabolismo , Piperazina/síntese química , Piperazina/metabolismo , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Monoaminoxidase/química , Piperazina/química , Ligação Proteica , Conformação Proteica
15.
Molecules ; 25(9)2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357571

RESUMO

Overexpression of monocarboxylate transporters (MCTs) has been shown for a variety of human cancers (e.g., colon, brain, breast, and kidney) and inhibition resulted in intracellular lactate accumulation, acidosis, and cell death. Thus, MCTs are promising targets to investigate tumor cancer metabolism with positron emission tomography (PET). Here, the organ doses (ODs) and the effective dose (ED) of the first 18F-labeled MCT1/MCT4 inhibitor were estimated in juvenile pigs. Whole-body dosimetry was performed in three piglets (age: ~6 weeks, weight: ~13-15 kg). The animals were anesthetized and subjected to sequential hybrid Positron Emission Tomography and Computed Tomography (PET/CT) up to 5 h after an intravenous (iv) injection of 156 ± 54 MBq [18F]FACH. All relevant organs were defined by volumes of interest. Exponential curves were fitted to the time-activity data. Time and mass scales were adapted to the human order of magnitude and the ODs calculated using the ICRP 89 adult male phantom with OLINDA 2.1. The ED was calculated using tissue weighting factors as published in Publication 103 of the International Commission of Radiation Protection (ICRP103). The highest organ dose was received by the urinary bladder (62.6 ± 28.9 µSv/MBq), followed by the gall bladder (50.4 ± 37.5 µSv/MBq) and the pancreas (30.5 ± 27.3 µSv/MBq). The highest contribution to the ED was by the urinary bladder (2.5 ± 1.1 µSv/MBq), followed by the red marrow (1.7 ± 0.3 µSv/MBq) and the stomach (1.3 ± 0.4 µSv/MBq). According to this preclinical analysis, the ED to humans is 12.4 µSv/MBq when applying the ICRP103 tissue weighting factors. Taking into account that preclinical dosimetry underestimates the dose to humans by up to 40%, the conversion factor applied for estimation of the ED to humans would rise to 20.6 µSv/MBq. In this case, the ED to humans upon an iv application of ~300 MBq [18F]FACH would be about 6.2 mSv. This risk assessment encourages the translation of [18F]FACH into clinical study phases and the further investigation of its potential as a clinical tool for cancer imaging with PET.


Assuntos
Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Radiometria/métodos , Compostos Radiofarmacêuticos/farmacologia , Simportadores/antagonistas & inibidores , Distribuição Tecidual/efeitos dos fármacos , Animais , Medula Óssea/efeitos dos fármacos , Radioisótopos de Flúor , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Estômago/efeitos dos fármacos , Suínos , Tomografia Computadorizada por Raios X/métodos , Bexiga Urinária/efeitos dos fármacos
16.
Molecules ; 25(7)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252340

RESUMO

The adenosine A2A receptor (A2AR) is regarded as a particularly appropriate target for non-dopaminergic treatment of Parkinson's disease (PD). An increased A2AR availability has been found in the human striatum at early stages of PD and in patients with PD and dyskinesias. The aim of this small animal positron emission tomography/magnetic resonance (PET/MR) imaging study was to investigate whether rotenone-treated mice reflect the aspect of striatal A2AR upregulation in PD. For that purpose, we selected the known A2AR-specific radiotracer [18F]FESCH and developed a simplified two-step one-pot radiosynthesis. PET images showed a high uptake of [18F]FESCH in the mouse striatum. Concomitantly, metabolism studies with [18F]FESCH revealed the presence of a brain-penetrant radiometabolite. In rotenone-treated mice, a slightly higher striatal A2AR binding of [18F]FESCH was found. Nonetheless, the correlation between the increased A2AR levels within the proposed PD animal model remains to be further investigated.


Assuntos
Antagonistas do Receptor A2 de Adenosina/administração & dosagem , Encéfalo/metabolismo , Doença de Parkinson/diagnóstico por imagem , Receptor A2A de Adenosina/metabolismo , Rotenona/efeitos adversos , Antagonistas do Receptor A2 de Adenosina/química , Animais , Encéfalo/diagnóstico por imagem , Células CHO , Cricetulus , Modelos Animais de Doenças , Feminino , Radioisótopos de Flúor/química , Masculino , Camundongos , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Tomografia por Emissão de Pósitrons
17.
Molecules ; 25(10)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423056

RESUMO

Monocarboxylate transporters 1-4 (MCT1-4) are involved in several metabolism-related diseases, especially cancer, providing the chance to be considered as relevant targets for diagnosis and therapy. [18F]FACH was recently developed and showed very promising preclinical results as a potential positron emission tomography (PET) radiotracer for imaging of MCTs. Given that [18F]FACH did not show high blood-brain barrier permeability, the current work is aimed to investigate whether more lipophilic analogs of FACH could improve brain uptake for imaging of gliomas, while retaining binding to MCTs. The 2-fluoropyridinyl-substituted analogs 1 and 2 were synthesized and their MCT1 inhibition was estimated by [14C]lactate uptake assay on rat brain endothelial-4 (RBE4) cells. While compounds 1 and 2 showed lower MCT1 inhibitory potencies than FACH (IC50 = 11 nM) by factors of 11 and 25, respectively, 1 (IC50 = 118 nM) could still be a suitable PET candidate. Therefore, 1 was selected for radiosynthesis of [18F]1 and subsequent biological evaluation for imaging of the MCT expression in mouse brain. Regarding lipophilicity, the experimental log D7.4 result for [18F]1 agrees pretty well with its predicted value. In vivo and in vitro studies revealed high uptake of the new radiotracer in kidney and other peripheral MCT-expressing organs together with significant reduction by using specific MCT1 inhibitor α-cyano-4-hydroxycinnamic acid. Despite a higher lipophilicity of [18F]1 compared to [18F]FACH, the in vivo brain uptake of [18F]1 was in a similar range, which is reflected by calculated BBB permeabilities as well through similar transport rates by MCTs on RBE4 cells. Further investigation is needed to clarify the MCT-mediated transport mechanism of these radiotracers in brain.


Assuntos
Encéfalo/diagnóstico por imagem , Transportadores de Ácidos Monocarboxílicos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Piridinas/síntese química , Compostos Radiofarmacêuticos/síntese química , Simportadores/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Linhagem Celular , Ácidos Cumáricos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Radioisótopos de Flúor , Ligantes , Camundongos , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Piridinas/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Simportadores/antagonistas & inibidores
19.
Bioorg Chem ; 86: 346-362, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30753989

RESUMO

With the aim to develop a specific radioligand for imaging the cyclic nucleotide phosphodiesterase 5 (PDE5) in brain by positron emission tomography (PET), seven new fluorinated inhibitors (3-9) were synthesized on the basis of a quinoline core. The inhibitory activity for PDE5 together with a panel of other PDEs was determined in vitro and two derivatives were selected for IC50 value determination. The most promising compound 7 (IC50 = 5.92 nM for PDE5A), containing a 3-fluoroazetidine moiety, was further radiolabeled by aliphatic nucleophilic substitution of two different leaving groups (nosylate and tosylate) using [18F]fluoride. The use of the nosylate precursor and tetra-n-butyl ammonium [18F]fluoride ([18F]TBAF) in 3-methyl-3-pentanol combined with the addition of a small amount of water proved to be the best radiolabeling conditions achieving a RCY of 4.9 ±â€¯1.5% in an automated procedure. Preliminary biological investigations in vitro and in vivo were performed to characterize this new PDE5 radioligand. Metabolism studies of [18F]7 in mice revealed a fast metabolic degradation with the formation of radiometabolites which have been detected in the brain.


Assuntos
Encéfalo/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Corantes Fluorescentes/farmacologia , Inibidores da Fosfodiesterase 5/farmacologia , Tomografia por Emissão de Pósitrons , Quinolinas/farmacologia , Animais , Encéfalo/enzimologia , Feminino , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Radioisótopos de Flúor , Ligantes , Camundongos , Estrutura Molecular , Inibidores da Fosfodiesterase 5/síntese química , Inibidores da Fosfodiesterase 5/química , Quinolinas/síntese química , Quinolinas/química , Suínos , Distribuição Tecidual
20.
J Labelled Comp Radiopharm ; 62(8): 411-424, 2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31017677

RESUMO

Monocarboxylate transporters 1 and 4 (MCT1 and MCT4) are involved in tumor development and progression. Their expression levels are related to clinical disease prognosis. Accordingly, both MCTs are promising drug targets for treatment of a variety of human cancers. The noninvasive imaging of these MCTs in cancers is regarded to be advantageous for assessing MCT-mediated effects on chemotherapy and radiosensitization using specific MCT inhibitors. Herein, we describe a method for the radiosynthesis of [18 F]FACH ((E)-2-cyano-3-{4-[(3-[18 F]fluoropropyl)(propyl)amino]-2-methoxyphenyl}acrylic acid), as a novel radiolabeled MCT1/4 inhibitor for imaging with PET. A fluorinated analog of α-cyano-4-hydroxycinnamic acid (FACH) was synthesized, and the inhibition of MCT1 and MCT4 was measured via an L-[14 C]lactate uptake assay. Radiolabeling was performed by a two-step protocol comprising the radiosynthesis of the intermediate (E)/(Z)-[18 F]tert-Bu-FACH (tert-butyl (E)/(Z)-2-cyano-3-{4-[(3-[18 F]fluoropropyl)(propyl)amino]-2-methoxyphenyl}acrylate) followed by deprotection of the tert-butyl group. The radiofluorination was successfully implemented using either K[18 F]F-K2.2.2 -carbonate or [18 F]TBAF. The final deprotected product [18 F]FACH was only obtained when [18 F]tert-Bu-FACH was formed by the latter procedure. After optimization of the deprotection reaction, [18 F]FACH was obtained in high radiochemical yields (39.6 ± 8.3%, end of bombardment (EOB) and radiochemical purity (greater than 98%).


Assuntos
Acrilatos/síntese química , Acrilatos/farmacologia , Radioisótopos de Flúor/química , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Proteínas Musculares/antagonistas & inibidores , Simportadores/antagonistas & inibidores , Acrilatos/química , Animais , Linhagem Celular Tumoral , Técnicas de Química Sintética , Humanos , Marcação por Isótopo , Camundongos , Radioquímica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA