Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Mol Cell ; 61(5): 646-647, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26942668

RESUMO

Mitochondrial Ca(2+) entry is an important process regulating cellular bioenergetics, redox responses, and apoptosis. The study by Vais and colleagues (Vais et al., 2016), recently published in Cell Reports, describes a novel mechanism of modulating Ca(2+) entry that involves mitochondrial matrix Ca(2+).


Assuntos
Cálcio/metabolismo , Mitocôndrias/metabolismo , Apoptose , Metabolismo Energético , Humanos , Oxirredução
2.
J Biol Chem ; 293(21): 8032-8047, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29626097

RESUMO

Mitochondrial dysfunction lies at the core of acute pancreatitis (AP). Diverse AP stimuli induce Ca2+-dependent formation of the mitochondrial permeability transition pore (MPTP), a solute channel modulated by cyclophilin D (CypD), the formation of which causes ATP depletion and necrosis. Oxidative stress reportedly triggers MPTP formation and is elevated in clinical AP, but how reactive oxygen species influence cell death is unclear. Here, we assessed potential MPTP involvement in oxidant-induced effects on pancreatic acinar cell bioenergetics and fate. H2O2 application promoted acinar cell apoptosis at low concentrations (1-10 µm), whereas higher levels (0.5-1 mm) elicited rapid necrosis. H2O2 also decreased the mitochondrial NADH/FAD+ redox ratio and ΔΨm in a concentration-dependent manner (10 µm to 1 mm H2O2), with maximal effects at 500 µm H2O2 H2O2 decreased the basal O2 consumption rate of acinar cells, with no alteration of ATP turnover at <50 µm H2O2 However, higher H2O2 levels (≥50 µm) diminished spare respiratory capacity and ATP turnover, and bioenergetic collapse, ATP depletion, and cell death ensued. Menadione exerted detrimental bioenergetic effects similar to those of H2O2, which were inhibited by the antioxidant N-acetylcysteine. Oxidant-induced bioenergetic changes, loss of ΔΨm, and cell death were not ameliorated by genetic deletion of CypD or by its acute inhibition with cyclosporine A. These results indicate that oxidative stress alters mitochondrial bioenergetics and modifies pancreatic acinar cell death. A shift from apoptosis to necrosis appears to be associated with decreased mitochondrial spare respiratory capacity and ATP production, effects that are independent of CypD-sensitive MPTP formation.


Assuntos
Apoptose , Ciclofilinas/fisiologia , Mitocôndrias/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Necrose , Estresse Oxidativo , Pâncreas/patologia , Células Acinares/metabolismo , Células Acinares/patologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Peptidil-Prolil Isomerase F , Metabolismo Energético , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poro de Transição de Permeabilidade Mitocondrial , Pâncreas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Int J Mol Sci ; 20(7)2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30959771

RESUMO

Mitochondrial dysfunction is a core feature of acute pancreatitis, a severe disease in which oxidative stress is elevated. Mitochondrial targeting of antioxidants is a potential therapeutic strategy for this and other diseases, although thus far mixed results have been reported. We investigated the effects of mitochondrial targeting with the antioxidant MitoQ on pancreatic acinar cell bioenergetics, adenosine triphosphate (ATP) production and cell fate, in comparison with the non-antioxidant control decyltriphenylphosphonium bromide (DecylTPP) and general antioxidant N-acetylcysteine (NAC). MitoQ (µM range) and NAC (mM range) caused sustained elevations of basal respiration and the inhibition of spare respiratory capacity, which was attributable to an antioxidant action since these effects were minimal with DecylTPP. Although MitoQ but not DecylTPP decreased cellular NADH levels, mitochondrial ATP turnover capacity and cellular ATP concentrations were markedly reduced by both MitoQ and DecylTPP, indicating a non-specific effect of mitochondrial targeting. All three compounds were associated with a compensatory elevation of glycolysis and concentration-dependent increases in acinar cell apoptosis and necrosis. These data suggest that reactive oxygen species (ROS) contribute a significant negative feedback control of basal cellular metabolism. Mitochondrial targeting using positively charged molecules that insert into the inner mitochondrial member appears to be deleterious in pancreatic acinar cells, as does an antioxidant strategy for the treatment of acute pancreatitis.


Assuntos
Células Acinares/metabolismo , Antioxidantes/metabolismo , Linhagem da Célula , Metabolismo Energético , Mitocôndrias/metabolismo , Pâncreas/citologia , Acetilcisteína/farmacologia , Células Acinares/efeitos dos fármacos , Trifosfato de Adenosina/biossíntese , Animais , Morte Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Flavina-Adenina Dinucleotídeo/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , NAD/metabolismo , Oniocompostos/farmacologia , Compostos Organofosforados/farmacologia , Oxirredução , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia
4.
J Physiol ; 596(13): 2547-2564, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29717784

RESUMO

KEY POINTS: Giant trypsin-containing endocytic vacuoles are formed in pancreatic acinar cells stimulated with inducers of acute pancreatitis. F-actin envelops endocytic vacuoles and regulates their properties. Endocytic vacuoles can rupture and release their content into the cytosol of acinar cells. Endocytic vacuoles can fuse with the plasma membrane of acinar cells and exocytose their content. ABSTRACT: Intrapancreatic activation of trypsinogen is an early event in and hallmark of the development of acute pancreatitis. Endocytic vacuoles, which form by disconnection and transport of large post-exocytic structures, are the only resolvable sites of the trypsin activity in live pancreatic acinar cells. In the present study, we characterized the dynamics of endocytic vacuole formation induced by physiological and pathophysiological stimuli and visualized a prominent actin coat that completely or partially surrounded endocytic vacuoles. An inducer of acute pancreatitis taurolithocholic acid 3-sulphate and supramaximal concentrations of cholecystokinin triggered the formation of giant (more than 2.5 µm in diameter) endocytic vacuoles. We discovered and characterized the intracellular rupture of endocytic vacuoles and the fusion of endocytic vacuoles with basal and apical regions of the plasma membrane. Experiments with specific protease inhibitors suggest that the rupture of endocytic vacuoles is probably not induced by trypsin or cathepsin B. Perivacuolar filamentous actin (observed on the surface of ∼30% of endocytic vacuoles) may play a stabilizing role by preventing rupture of the vacuoles and fusion of the vacuoles with the plasma membrane. The rupture and fusion of endocytic vacuoles allow trypsin to escape the confinement of a membrane-limited organelle, gain access to intracellular and extracellular targets, and initiate autodigestion of the pancreas, comprising a crucial pathophysiological event.


Assuntos
Células Acinares/patologia , Exocitose , Pâncreas Exócrino/patologia , Pancreatite/patologia , Vesículas Transportadoras/patologia , Vacúolos/fisiologia , Células Acinares/metabolismo , Doença Aguda , Animais , Masculino , Camundongos , Pâncreas Exócrino/metabolismo , Pancreatite/etiologia , Vesículas Transportadoras/metabolismo
5.
Pflugers Arch ; 470(8): 1181-1192, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29982949

RESUMO

Cellular organelles form multiple junctional complexes with one another and the emerging research area dealing with such structures and their functions is undergoing explosive growth. A new research journal named "Contact" has been recently established to facilitate the development of this research field. The current consensus is to define an organellar junction by the maximal distance between the participating organelles; and the gap of 30 nm or less is considered appropriate for classifying such structures as junctions or membrane contact sites. Ideally, the organellar junction should have a functional significance, i.e. facilitate transfer of calcium, sterols, phospholipids, iron and possibly other substances between the organelles (Carrasco and Meyer in Annu Rev Biochem 80:973-1000, 2011; Csordas et al. in Trends Cell Biol 28:523-540, 2018; Phillips and Voeltz in Nat Rev Mol Cell Biol 17:69-82, 2016; Prinz in J Cell Biol 205:759-769, 2014). It is also important to note that the junction is not just a result of a random organelle collision but have active and specific formation, stabilisation and disassembly mechanisms. The nature of these mechanisms and their role in physiology/pathophysiology are the main focus of an emerging research field. In this review, we will briefly describe junctional complexes formed by cellular organelles and then focus on the junctional complexes that are formed by mitochondria with other organelles and the role of these complexes in regulating Ca2+ signalling.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Animais , Humanos
6.
Gut ; 66(2): 301-313, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-26642860

RESUMO

OBJECTIVE: Caffeine reduces toxic Ca2+ signals in pancreatic acinar cells via inhibition of inositol 1,4,5-trisphosphate receptor (IP3R)-mediated signalling, but effects of other xanthines have not been evaluated, nor effects of xanthines on experimental acute pancreatitis (AP). We have determined effects of caffeine and its xanthine metabolites on pancreatic acinar IP3R-mediated Ca2+ signalling and experimental AP. DESIGN: Isolated pancreatic acinar cells were exposed to secretagogues, uncaged IP3 or toxins that induce AP and effects of xanthines, non-xanthine phosphodiesterase (PDE) inhibitors and cyclic adenosine monophosphate and cyclic guanosine monophosphate (cAMP/cGMP) determined. The intracellular cytosolic calcium concentration ([Ca2+]C), mitochondrial depolarisation and necrosis were assessed by confocal microscopy. Effects of xanthines were evaluated in caerulein-induced AP (CER-AP), taurolithocholic acid 3-sulfate-induced AP (TLCS-AP) or palmitoleic acid plus ethanol-induced AP (fatty acid ethyl ester AP (FAEE-AP)). Serum xanthines were measured by liquid chromatography-mass spectrometry. RESULTS: Caffeine, dimethylxanthines and non-xanthine PDE inhibitors blocked IP3-mediated Ca2+ oscillations, while monomethylxanthines had little effect. Caffeine and dimethylxanthines inhibited uncaged IP3-induced Ca2+ rises, toxin-induced Ca2+ release, mitochondrial depolarisation and necrotic cell death pathway activation; cAMP/cGMP did not inhibit toxin-induced Ca2+ rises. Caffeine significantly ameliorated CER-AP with most effect at 25 mg/kg (seven injections hourly); paraxanthine or theophylline did not. Caffeine at 25 mg/kg significantly ameliorated TLCS-AP and FAEE-AP. Mean total serum levels of dimethylxanthines and trimethylxanthines peaked at >2 mM with 25 mg/kg caffeine but at <100 µM with 25 mg/kg paraxanthine or theophylline. CONCLUSIONS: Caffeine and its dimethylxanthine metabolites reduced pathological IP3R-mediated pancreatic acinar Ca2+ signals but only caffeine ameliorated experimental AP. Caffeine is a suitable starting point for medicinal chemistry.


Assuntos
Células Acinares/efeitos dos fármacos , Cafeína/farmacologia , Cálcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inibidores , Pâncreas/patologia , Pancreatite/prevenção & controle , Inibidores de Fosfodiesterase/farmacologia , Células Acinares/metabolismo , Animais , Cafeína/uso terapêutico , Morte Celular/efeitos dos fármacos , Células Cultivadas , Ceruletídeo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Citosol/metabolismo , Etanol , Ácidos Graxos Monoinsaturados , Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Camundongos , Microscopia Confocal , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Necrose/diagnóstico por imagem , Pancreatite/sangue , Pancreatite/induzido quimicamente , Inibidores de Fosfodiesterase/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Ácido Taurolitocólico/análogos & derivados , Xantinas/sangue , Xantinas/farmacologia
7.
Pancreatology ; 17(5): 689-697, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28648518

RESUMO

OBJECTIVES: To evaluate the therapeutic potential of I-BET-762, an inhibitor of the bromodomain and extra-terminal (BET) protein family, in experimental acute pancreatitis (AP). METHODS: AP was induced by retrograde infusion of taurolithocholic acid sulphate into the biliopancreatic duct (TLCS-AP) or 2 intraperitoneal (i.p.) injections of ethanol and palmitoleic acid 1 h apart (FAEE-AP) or 12 hourly i.p. injections of caerulein (CER-AP). In all treatment groups, I-BET-762 (30 mg/kg, i.p.) was administered at the time of disease induction and again 12 h later. AP severity was assessed at 24 h by serum biochemistry, multiple cytokines and histopathology. RESULTS: TLCS-AP, FAEE-AP and CER-AP resulted in characteristic elevations in serum amylase and cytokine levels, increased pancreatic trypsin and myeloperoxidase activity, typical pancreatic histopathological changes and lung injury. Treatment with I-BET-762 significantly reduced biochemical, cytokine and histopathological responses in TLCS-AP and FAEE-AP, but not CER-AP. CONCLUSIONS: These results suggest that in different forms of AP there are significant differences in the epigenetic control of gene transcription contributing to the severity of disease responses. There is therapeutic potential in targeting bromodomains for the treatment of gallstone- and alcohol-related pancreatitis.


Assuntos
Benzodiazepinas/farmacologia , Ácidos e Sais Biliares/toxicidade , Ceruletídeo/toxicidade , Proteínas do Tecido Nervoso/antagonistas & inibidores , Pancreatite/induzido quimicamente , Receptores de Superfície Celular/antagonistas & inibidores , Ácido Taurolitocólico/análogos & derivados , Doença Aguda , Amilases/sangue , Amilases/metabolismo , Animais , Citocinas/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Inflamação/prevenção & controle , Pulmão/enzimologia , Masculino , Camundongos , Pâncreas/enzimologia , Pâncreas/patologia , Pancreatite/terapia , Peroxidase/genética , Peroxidase/metabolismo , Ácido Taurolitocólico/toxicidade , Tripsina/metabolismo
8.
Biochem J ; 473(6): 757-67, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26759379

RESUMO

Disconnection of a cell from its epithelial neighbours and the formation of a mesenchymal phenotype are associated with profound changes in the distribution of cellular components and the formation of new cellular polarity. We observed a dramatic redistribution of inositol trisphosphate receptors (IP3Rs) and stromal interaction molecule 1 (STIM1)-competent endoplasmic reticulum-plasma membrane junctions (ER-PM junctions) when pancreatic ductal adenocarcinoma (PDAC) cells disconnect from their neighbours and undergo individual migration. In cellular monolayers IP3Rs are juxtaposed with tight junctions. When individual cells migrate away from their neighbours IP3Rs preferentially accumulate at the leading edge where they surround focal adhesions. Uncaging of inositol trisphosphate (IP3) resulted in prominent accumulation of paxillin in focal adhesions, highlighting important functional implications of the observed novel structural relationships. ER-PM junctions and STIM1 proteins also migrate to the leading edge and position closely behind the IP3Rs, creating a stratified distribution of Ca(2+) signalling complexes in this region. Importantly, migration of PDAC cells was strongly suppressed by selective inhibition of IP3Rs and store-operated Ca(2+) entry (SOCE), indicating that these mechanisms are functionally required for migration.


Assuntos
Sinalização do Cálcio/fisiologia , Membrana Celular/fisiologia , Movimento Celular/fisiologia , Retículo Endoplasmático/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Regulação da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Transporte Proteico , Molécula 1 de Interação Estromal
9.
Adv Exp Med Biol ; 993: 213-216, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28900916

RESUMO

In the title of this part of the book, the tail is wagging not just in a single dog but multiple dogs; in other words, a single process SOCE (tail) somehow involves a cross talk of (wagging) large and powerful organelle and cellular compartments (dogs). So how is this possible? Is this really necessary? Is the title actually appropriate?SOCE is a rather special process, it allows efficient signaling based on a ubiquitous second messenger (Ca2+) in multiple cell and tissue types, it has specific signaling modality (i.e., some downstream reactions depend specifically on SOCE and not just on global Ca2+ increase), it is vital for the normal functioning of multiple types of cells and tissues, and when misregulated it induces important pathological processes. The reader hopefully agree that such an important "tail" is more appropriate for a kangaroo than for a Chihuahua and that it has awesome wagging capacity.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Animais , Humanos
10.
Adv Exp Med Biol ; 993: 217-237, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28900917

RESUMO

The junctions between the endoplasmic reticulum and the plasma membrane are essential platforms for the activation of store-operated Ca2+ influx. These junctions have specific dimensions and are nonuniformly distributed in polarized cells. The mechanisms involved in the formation of the junctions are currently undergoing vigorous investigation, and significant progress was attained in this research area during the last 10 years. Some cell types display stationary junctions, while in other cells, new junctions can form rapidly following cytosolic Ca2+ signals and/or the reduction of the Ca2+ concentration in the lumen of the endoplasmic reticulum; furthermore, in moving cells, junctions can undergo saltatory formation, long distance sliding, and dissolution. The proteins involved in the activation of the Ca2+ influx could be also involved in the formation of the junctions. The architecture, dynamics, and localization of the junctions are important for the regulation of Ca2+ signaling cascades and their downstream events.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Junções Intercelulares/metabolismo , Animais , Humanos
11.
Gut ; 65(8): 1333-46, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26071131

RESUMO

OBJECTIVE: Acute pancreatitis is caused by toxins that induce acinar cell calcium overload, zymogen activation, cytokine release and cell death, yet is without specific drug therapy. Mitochondrial dysfunction has been implicated but the mechanism not established. DESIGN: We investigated the mechanism of induction and consequences of the mitochondrial permeability transition pore (MPTP) in the pancreas using cell biological methods including confocal microscopy, patch clamp technology and multiple clinically representative disease models. Effects of genetic and pharmacological inhibition of the MPTP were examined in isolated murine and human pancreatic acinar cells, and in hyperstimulation, bile acid, alcoholic and choline-deficient, ethionine-supplemented acute pancreatitis. RESULTS: MPTP opening was mediated by toxin-induced inositol trisphosphate and ryanodine receptor calcium channel release, and resulted in diminished ATP production, leading to impaired calcium clearance, defective autophagy, zymogen activation, cytokine production, phosphoglycerate mutase 5 activation and necrosis, which was prevented by intracellular ATP supplementation. When MPTP opening was inhibited genetically or pharmacologically, all biochemical, immunological and histopathological responses of acute pancreatitis in all four models were reduced or abolished. CONCLUSIONS: This work demonstrates the mechanism and consequences of MPTP opening to be fundamental to multiple forms of acute pancreatitis and validates the MPTP as a drug target for this disease.


Assuntos
Células Acinares , Proteínas de Transporte da Membrana Mitocondrial , Proteínas Mitocondriais/metabolismo , Pâncreas , Pancreatite Necrosante Aguda , Fosfoproteínas Fosfatases/metabolismo , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Células Acinares/patologia , Animais , Autofagia/efeitos dos fármacos , Cálcio/metabolismo , Técnicas de Cultura de Células , Modelos Animais de Doenças , Humanos , Fosfatos de Inositol/metabolismo , Fosfatos de Inositol/farmacologia , Camundongos , Mitocôndrias/enzimologia , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Necrose , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologia , Pancreatite Necrosante Aguda/induzido quimicamente , Pancreatite Necrosante Aguda/metabolismo , Pancreatite Necrosante Aguda/patologia
12.
J Physiol ; 594(11): 2837-47, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26939537

RESUMO

Endoplasmic reticulum (ER)-plasma membrane (PM) junctions are contact sites between the ER and the PM; the distance between the two organelles in the junctions is below 40 nm and the membranes are connected by protein tethers. A number of molecular tools and technical approaches have been recently developed to visualise, modify and characterise properties of ER-PM junctions. The junctions serve as the platforms for lipid exchange between the organelles and for cell signalling, notably Ca(2+) and cAMP signalling. Vice versa, signalling events regulate the development and properties of the junctions. Two Ca(2+) -dependent mechanisms of de novo formation of ER-PM junctions have been recently described and characterised. The junction-forming proteins and lipids are currently the focus of vigorous investigation. Junctions can be relatively short-lived and simple structures, forming and dissolving on the time scale of a few minutes. However, complex, sophisticated and multifunctional ER-PM junctions, capable of attracting numerous protein residents and other cellular organelles, have been described in some cell types. The road from simplicity to complexity, i.e. the transformation from simple 'nascent' ER-PM junctions to advanced stable multiorganellar complexes, is likely to become an attractive research avenue for current and future junctologists. Another area of considerable research interest is the downstream cellular processes that can be activated by specific local signalling events in the ER-PM junctions. Studies of the cell physiology and indeed pathophysiology of ER-PM junctions have already produced some surprising discoveries, likely to expand with advances in our understanding of these remarkable organellar contact sites.


Assuntos
Membrana Celular/química , Membrana Celular/fisiologia , Retículo Endoplasmático/química , Retículo Endoplasmático/fisiologia , Junções Intercelulares/química , Junções Intercelulares/fisiologia , Animais , Humanos
13.
Gastroenterology ; 149(2): 481-92.e7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25917787

RESUMO

BACKGROUND & AIMS: Sustained activation of the cytosolic calcium concentration induces injury to pancreatic acinar cells and necrosis. The calcium release-activated calcium modulator ORAI1 is the most abundant Ca(2+) entry channel in pancreatic acinar cells; it sustains calcium overload in mice exposed to toxins that induce pancreatitis. We investigated the roles of ORAI1 in pancreatic acinar cell injury and the development of acute pancreatitis in mice. METHODS: Mouse and human acinar cells, as well as HEK 293 cells transfected to express human ORAI1 with human stromal interaction molecule 1, were hyperstimulated or incubated with human bile acid, thapsigargin, or cyclopiazonic acid to induce calcium entry. GSK-7975A or CM_128 were added to some cells, which were analyzed by confocal and video microscopy and patch clamp recordings. Acute pancreatitis was induced in C57BL/6J mice by ductal injection of taurolithocholic acid 3-sulfate or intravenous' administration of cerulein or ethanol and palmitoleic acid. Some mice then were given GSK-7975A or CM_128, which inhibit ORAI1, at different time points to assess local and systemic effects. RESULTS: GSK-7975A and CM_128 each separately inhibited toxin-induced activation of ORAI1 and/or activation of Ca(2+) currents after Ca(2+) release, in a concentration-dependent manner, in mouse and human pancreatic acinar cells (inhibition >90% of the levels observed in control cells). The ORAI1 inhibitors also prevented activation of the necrotic cell death pathway in mouse and human pancreatic acinar cells. GSK-7975A and CM_128 each inhibited all local and systemic features of acute pancreatitis in all 3 models, in dose- and time-dependent manners. The agents were significantly more effective, in a range of parameters, when given at 1 vs 6 hours after induction of pancreatitis. CONCLUSIONS: Cytosolic calcium overload, mediated via ORAI1, contributes to the pathogenesis of acute pancreatitis. ORAI1 inhibitors might be developed for the treatment of patients with pancreatitis.


Assuntos
Células Acinares/efeitos dos fármacos , Benzamidas/farmacologia , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Pancreatite/tratamento farmacológico , Pirazóis/farmacologia , Células Acinares/citologia , Doença Aguda , Animais , Ácidos e Sais Biliares/toxicidade , Cálcio/toxicidade , Células Cultivadas , Modelos Animais de Doenças , Células HEK293 , Humanos , Indóis/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Proteína ORAI1 , Pancreatite/induzido quimicamente , Pancreatite/metabolismo , Tapsigargina/toxicidade , Fatores de Tempo , Resultado do Tratamento
14.
Biochem J ; 465(3): 405-12, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25370603

RESUMO

The inducers of acute pancreatitis trigger a prolonged increase in the cytosolic Ca(2+) concentration ([Ca(2+)]c), which is responsible for the damage to and eventual death of pancreatic acinar cells. Vacuolization is an important indicator of pancreatic acinar cell damage. Furthermore, activation of trypsinogen occurs in the endocytic vacuoles; therefore the vacuoles can be considered as 'initiating' organelles in the development of the cell injury. In the present study, we investigated the relationship between the formation of endocytic vacuoles and Ca(2+) influx developed in response to the inducers of acute pancreatitis [bile acid taurolithocholic acid 3-sulfate (TLC-S) and supramaximal concentration of cholecystokinin-8 (CCK)]. We found that the inhibitor of STIM (stromal interaction molecule)/Orai channels, GSK-7975A, effectively suppressed both the Ca(2+) influx (stimulated by inducers of pancreatitis) and the formation of endocytic vacuoles. Cell death induced by TLC-S or CCK was also inhibited by GSK-7975A. We documented the formation of endocytic vacuoles in response to store-operated Ca(2+) entry (SOCE) induced by thapsigargin [TG; inhibitor of sarcoplasmic/endoplasmic reticulum (ER) Ca(2+) pumps] and observed strong inhibition of TG-induced vacuole formation by GSK-7975A. Finally, we found that structurally-unrelated inhibitors of calpain suppress formation of endocytic vacuoles, suggesting that this Ca2+-dependent protease is a mediator between Ca(2+) elevation and endocytic vacuole formation.


Assuntos
Células Acinares/metabolismo , Cálcio/metabolismo , Pâncreas/citologia , Pâncreas/metabolismo , Vesículas Transportadoras/metabolismo , Vacúolos/metabolismo , Animais , Células Cultivadas , Camundongos
15.
Mediators Inflamm ; 2015: 901780, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25878403

RESUMO

Although oxidative stress has been strongly implicated in the development of acute pancreatitis (AP), antioxidant therapy in patients has so far been discouraging. The aim of this study was to assess potential protective effects of a mitochondria-targeted antioxidant, MitoQ, in experimental AP using in vitro and in vivo approaches. MitoQ blocked H2O2-induced intracellular ROS responses in murine pancreatic acinar cells, an action not shared by the control analogue dTPP. MitoQ did not reduce mitochondrial depolarisation induced by either cholecystokinin (CCK) or bile acid TLCS, and at 10 µM caused depolarisation per se. Both MitoQ and dTPP increased basal and CCK-induced cell death in a plate-reader assay. In a TLCS-induced AP model MitoQ treatment was not protective. In AP induced by caerulein hyperstimulation (CER-AP), MitoQ exerted mixed effects. Thus, partial amelioration of histopathology scores was observed, actions shared by dTPP, but without reduction of the biochemical markers pancreatic trypsin or serum amylase. Interestingly, lung myeloperoxidase and interleukin-6 were concurrently increased by MitoQ in CER-AP. MitoQ caused biphasic effects on ROS production in isolated polymorphonuclear leukocytes, inhibiting an acute increase but elevating later levels. Our results suggest that MitoQ would be inappropriate for AP therapy, consistent with prior antioxidant evaluations in this disease.


Assuntos
Antioxidantes/química , Mitocôndrias/metabolismo , Compostos Organofosforados/química , Pancreatite/metabolismo , Ubiquinona/análogos & derivados , Células Acinares/metabolismo , Doença Aguda , Animais , Apoptose , Ceruletídeo/química , Colecistocinina/química , Modelos Animais de Doenças , Inflamação/metabolismo , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Necrose/metabolismo , Estresse Oxidativo , Pâncreas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Taurolitocólico/análogos & derivados , Ácido Taurolitocólico/química , Ubiquinona/química
16.
Gut ; 63(8): 1313-24, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24162590

RESUMO

OBJECTIVE: Non-oxidative metabolism of ethanol (NOME) produces fatty acid ethyl esters (FAEEs) via carboxylester lipase (CEL) and other enzyme action implicated in mitochondrial injury and acute pancreatitis (AP). This study investigated the relative importance of oxidative and non-oxidative pathways in mitochondrial dysfunction, pancreatic damage and development of alcoholic AP, and whether deleterious effects of NOME are preventable. DESIGN: Intracellular calcium ([Ca(2+)](C)), NAD(P)H, mitochondrial membrane potential and activation of apoptotic and necrotic cell death pathways were examined in isolated pancreatic acinar cells in response to ethanol and/or palmitoleic acid (POA) in the presence or absence of 4-methylpyrazole (4-MP) to inhibit oxidative metabolism. A novel in vivo model of alcoholic AP induced by intraperitoneal administration of ethanol and POA was developed to assess the effects of manipulating alcohol metabolism. RESULTS: Inhibition of OME with 4-MP converted predominantly transient [Ca(2+)](C) rises induced by low ethanol/POA combination to sustained elevations, with concurrent mitochondrial depolarisation, fall of NAD(P)H and cellular necrosis in vitro. All effects were prevented by 3-benzyl-6-chloro-2-pyrone (3-BCP), a CEL inhibitor. 3-BCP also significantly inhibited rises of pancreatic FAEE in vivo and ameliorated acute pancreatic damage and inflammation induced by administration of ethanol and POA to mice. CONCLUSIONS: A combination of low ethanol and fatty acid that did not exert deleterious effects per se became toxic when oxidative metabolism was inhibited. The in vitro and in vivo damage was markedly inhibited by blockade of CEL, indicating the potential for development of specific therapy for treatment of alcoholic AP via inhibition of FAEE generation.


Assuntos
Aciltransferases/antagonistas & inibidores , Cálcio/metabolismo , Carboxilesterase/metabolismo , Etanol/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Pancreatite Alcoólica/metabolismo , Pironas/farmacologia , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Animais , Apoptose/efeitos dos fármacos , Sinalização do Cálcio , Carboxilesterase/antagonistas & inibidores , Células Cultivadas , Modelos Animais de Doenças , Etanol/toxicidade , Ácidos Graxos/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Fomepizol , Camundongos , NADP/metabolismo , Necrose , Pancreatite Alcoólica/induzido quimicamente , Pancreatite Alcoólica/patologia , Pirazóis/farmacologia
17.
Biochem J ; 451(1): 25-32, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23323887

RESUMO

We demonstrated three novel forms of dynamic behaviour of junctions between the ER (endoplasmic reticulum) and the PM (plasma membrane) in migrating cancer cells: saltatory formation, long-distance sliding and dissolution. The individual ER-PM junctions formed near the leading edge of migrating cells (usually within 0.5 µm of polymerized actin and close to focal adhesions) and appeared suddenly without sliding from the interior of the cell. The long distance sliding and dissolution of ER-PM junctions accompanied the tail withdrawal.


Assuntos
Membrana Celular/metabolismo , Movimento Celular , Retículo Endoplasmático/metabolismo , Adesões Focais/metabolismo , Neoplasias/metabolismo , Linhagem Celular Tumoral , Membrana Celular/patologia , Retículo Endoplasmático/patologia , Adesões Focais/patologia , Humanos , Neoplasias/patologia
18.
Proc Natl Acad Sci U S A ; 108(14): 5873-8, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21436055

RESUMO

Alcohol abuse is a major global health problem, but there is still much uncertainty about the mechanisms of action. So far, the effects of ethanol on ion channels in the plasma membrane have received the most attention. We have now investigated actions on intracellular calcium channels in pancreatic acinar cells. Our aim was to discover the mechanism by which alcohol influences calcium homeostasis and thereby understand how alcohol can trigger premature intracellular trypsinogen activation, which is the initiating step for alcohol-induced pancreatitis. We used intact or two-photon permeabilized acinar cells isolated from wild-type mice or mice in which inositol trisphosphate receptors of type 2 or types 2 and 3 were knocked out. In permeabilized pancreatic acinar cells even a relatively low ethanol concentration elicited calcium release from intracellular stores and intracellular trypsinogen activation. The calcium sensor calmodulin (at a normal intracellular concentration) markedly reduced ethanol-induced calcium release and trypsinogen activation in permeabilized cells, effects prevented by the calmodulin inhibitor peptide. A calmodulin activator virtually abolished the modest ethanol effects in intact cells. Both ethanol-elicited calcium liberation and trypsinogen activation were significantly reduced in cells from type 2 inositol trisphosphate receptor knockout mice. More profound reductions were seen in cells from double inositol trisphosphate receptor (types 2 and 3) knockout mice. The inositol trisphosphate receptors, required for normal pancreatic stimulus-secretion coupling, are also responsible for the toxic ethanol action. Calmodulin protects by reducing calcium release sensitivity.


Assuntos
Alcoolismo/metabolismo , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Ativação Enzimática/fisiologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Pâncreas/enzimologia , Tripsinogênio/metabolismo , Animais , Calmodulina/farmacologia , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Técnicas de Inativação de Genes , Receptores de Inositol 1,4,5-Trifosfato/genética , Camundongos , Camundongos Transgênicos , Pâncreas/citologia
19.
Cell Calcium ; 119: 102868, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38457907

RESUMO

The recent elegant study by Y. Yuan and colleagues examined functional relationships between the lysosomal two-pore channels 2 (TPC2) and IP3 receptors (IP3Rs) located in the endoplasmic reticulum [1]. The findings of this study suggest functional coupling of these channels and receptors. The study also describes interesting novel phenomena, which may indicate an additional coupling mechanism.


Assuntos
Sinalização do Cálcio , Canais de Dois Poros , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Retículo Endoplasmático/metabolismo , Lisossomos/metabolismo , Cálcio/metabolismo , NADP/metabolismo
20.
J Biol Chem ; 287(13): 9862-9872, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22298778

RESUMO

The events leading to the activation of store-operated Ca(2+) entry (SOCE) involve Ca(2+) depletion of the endoplasmic reticulum (ER) resulting in translocation of the transmembrane Ca(2+) sensor protein, stromal interaction molecule 1 (STIM1), to the junctions between ER and the plasma membrane where it binds to the Ca(2+) channel protein Orai1 to activate Ca(2+) influx. Using confocal and total internal reflection fluorescence microscopy, we studied redistribution kinetics of fluorescence-tagged STIM1 and Orai1 as well as SOCE in insulin-releasing ß-cells and glucagon-secreting α-cells within intact mouse and human pancreatic islets. ER Ca(2+) depletion triggered accumulation of STIM1 puncta in the subplasmalemmal ER where they co-clustered with Orai1 in the plasma membrane and activated SOCE. Glucose, which promotes Ca(2+) store filling and inhibits SOCE, stimulated retranslocation of STIM1 to the bulk ER. This effect was evident at much lower glucose concentrations in α- than in ß-cells consistent with involvement of SOCE in the regulation of glucagon secretion. Epinephrine stimulated subplasmalemmal translocation of STIM1 in α-cells and retranslocation in ß-cells involving raising and lowering of cAMP, respectively. The cAMP effect was mediated both by protein kinase A and exchange protein directly activated by cAMP. However, the cAMP-induced STIM1 puncta did not co-cluster with Orai1, and there was no activation of SOCE. STIM1 translocation can consequently occur independently of Orai1 clustering and SOCE.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , AMP Cíclico/metabolismo , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Agonistas alfa-Adrenérgicos/farmacologia , Adulto , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Retículo Endoplasmático/metabolismo , Epinefrina/farmacologia , Feminino , Células Secretoras de Glucagon/citologia , Humanos , Células Secretoras de Insulina/citologia , Masculino , Camundongos , Pessoa de Meia-Idade , Proteína ORAI1 , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Molécula 1 de Interação Estromal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA