RESUMO
The biological properties of two water-soluble organic cations based on polypyridyl structures commonly used as ligands for photoactive transition metal complexes designed to interact with biomolecules are investigated. A cytotoxicity screen employing a small panel of cell lines reveals that both cations show cytotoxicity toward cancer cells but show reduced cytotoxicity to noncancerous HEK293 cells with the more extended system being notably more active. Although it is not a singlet oxygen sensitizer, the more active cation also displayed enhanced potency on irradiation with visible light, making it active at nanomolar concentrations. Using the intrinsic luminescence of the cations, their cellular uptake was investigated in more detail, revealing that the active compound is more readily internalized than its less lipophilic analogue. Colocalization studies with established cell probes reveal that the active cation predominantly localizes within lysosomes and that irradiation leads to the disruption of mitochondrial structure and function. Stimulated emission depletion (STED) nanoscopy and transmission electron microscopy (TEM) imaging reveal that treatment results in distinct lysosomal swelling and extensive cellular vacuolization. Further imaging-based studies confirm that treatment with the active cation induces lysosomal membrane permeabilization, which triggers lysosome-dependent cell-death due to both necrosis and caspase-dependent apoptosis. A preliminary toxicity screen in the Galleria melonella animal model was carried out on both cations and revealed no detectable toxicity up to concentrations of 80 mg/kg. Taken together, these studies indicate that this class of synthetically easy-to-access photoactive compounds offers potential as novel therapeutic leads.
Assuntos
Antineoplásicos , Cátions , Fenazinas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Cátions/química , Cátions/farmacologia , Fenazinas/química , Fenazinas/farmacologia , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Células HEK293 , Apoptose/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Animais , Nanomedicina Teranóstica , Estrutura MolecularRESUMO
In previous studies we have described the therapeutic action of luminescent dinuclear ruthenium(II) complexes based on the tetrapyridylphenazine, tpphz, bridging ligand on pathogenic strains of Escherichia coli and Enterococcus faecalis. Herein, the antimicrobial activity of the complex against pernicious Gram-negative ESKAPE pathogenic strains of Acinetobacter baumannii (AB12, AB16, AB184 and AB210) and Pseudomonas aeruginosa (PA2017, PA_ 007_ IMP and PA_ 004_ CRCN) are reported. Estimated minimum inhibitory concentrations and minimum bactericidal concentrations for the complexes revealed the complex shows potent activity against all A. baumannii strains, in both glucose defined minimal media and standard nutrient rich Mueller-Hinton-II. Although the activity was lower in P. aureginosa, a moderately high potency was observed and retained in carbapenem-resistant strains. Optical microscopy showed that the compound is rapidly internalized by A. baumannii. As previous reports had revealed the complex exhibited no toxicity in Galleria Mellonella up to concentrations of 80â mg/kg, the ability to clear pathogenic infection within this model was explored. The pathogenic concentrations to the larvae for each bacterium were determined to be≥105 for AB184 and≥103 CFU/mL for PA2017. It was found a single dose of the compound totally cleared a pathogenic A. baumannii infection from all treated G. mellonella within 96â h. Uniquely, in these conditions thanks to the imaging properties of the complex the clearance of the bacteria within the hemolymph of G. mellonella could be directly visualized through both optical and transmission electron microscopy.
Assuntos
Acinetobacter baumannii , Mariposas , Rutênio , Animais , Antibacterianos/farmacologia , Medicina de Precisão , Mariposas/microbiologia , Escherichia coli , Testes de Sensibilidade MicrobianaRESUMO
The synthesis of a new heterodinuclear ReI RuII metallointercalator containing RuII (dppz) and ReI (dppn) moieties is reported. Cell-free studies reveal that the complex has similar photophysical properties to its homoleptic M(dppz) analogue and it also binds to DNA with a similar affinity. However, the newly reported complex has very different in-cell properties to its parent. In complete contrast to the homoleptic system, the RuII (dppz)/ReI (dppn) complex is not intrinsically cytotoxic but displays appreciable phototoxic, despite both complexes displaying very similar quantum yields for singlet oxygen sensitization. Optical microscopy suggests that the reason for these contrasting biological effects is that whereas the homoleptic complex localises in the nuclei of cells, the RuII (dppz)/ReI (dppn) complex preferentially accumulates in mitochondria. These observations illustrate how even small structural changes in metal based therapeutic leads can modulate their mechanism of action.
Assuntos
Compostos Organometálicos , Rutênio , Luminescência , Fototerapia , Metais , DNA/química , Oxigênio Singlete/química , Rutênio/química , Compostos Organometálicos/químicaRESUMO
Following an overview of the approaches and techniques used to acheive super-resolution microscopy, this review presents the advantages supplied by nanoparticle based probes for these applications. The various clases of nanoparticles that have been developed toward these goals are then critically described and these discussions are illustrated with a variety of examples from the recent literature.
Assuntos
Terapia de Alvo Molecular , Nanopartículas , Microscopia de Fluorescência/métodosRESUMO
The interaction of the self-assembled trinuclear ruthenium bowl 13+ , that displays three other accessible oxidation states, with oxo-anions is investigated. Using a combination of NMR and electrochemical experimental data, estimates of the binding affinities of 14+ , 15+ , and 16+ for both halide and oxo-anions were derived. This analysis revealed that, across the range of oxidation states of the host, both high anion binding affinities (>109 â M-1 for specific guests bound to 16+ ) and high selectivities (a range of >107 â M-1 ) were observed. As the crystal structure of binding of the hexafluorophosphate anion revealed that the host has two potential binding sites (named the α and ß pockets), the host-guest properties of both putative binding sites of the bowl, in all of its four oxidation states, were investigated through detailed quantum-based computational studies. These studies revealed that, due to the interplay of ion-ion interactions, charge-assisted hydrogen-bonding and anion-π interactions, binding to the α pocket is generally preferred, except for the case of the relatively large and lipophilic hexafluorophosphate anionic guest and the host in the highest oxidation states, where the ß pocket becomes relatively favourable. This analysis confirms that host-guest interactions involving structurally complex supramolecular architectures are driven by a combination of non-covalent interactions and, even in the case of charged binding pairs, simple ion-ion interactions alone cannot accurately define these recognition processes.
Assuntos
Ânions , Sítios de Ligação , Ligação de Hidrogênio , OxirreduçãoRESUMO
The dinuclear RuII complex [(Ru(phen)2 )2 (tpphz)]4+ (phen=1,10-phenanthroline, tpphz=tetrapyridophenazine) "RuRuPhen" blocks the transformation of G-actin monomers to F-actin filaments with no disassembly of pre-formed F-actin. Molecular docking studies indicate multiple RuRuPhen molecules bind to the surface of G-actin but not the binding pockets of established actin polymerisation inhibitors. In cells, addition of RuRuPhen causes rapid disruption to actin stress fibre organisation, compromising actomyosin contractility and cell motility; due to this effect RuRuPhen interferes with late-stage cytokinesis. Immunofluorescent microscopy reveals that RuRuPhen causes cytokinetic abscission failure by interfering with endosomal sorting complexes required for transport (ESCRT) complex recruitment.
Assuntos
Citocinese , Rutênio , Citoesqueleto de Actina , Actinas/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Simulação de Acoplamento Molecular , Rutênio/metabolismo , Rutênio/farmacologiaRESUMO
With the aim of developing photostable near-infrared cell imaging probes, a convenient route to the synthesis of heteroleptic OsII complexes containing the Os(TAP)2 fragment is reported. This method was used to synthesize the dinuclear OsII complex, [{Os(TAP)2}2tpphz]4+ (where tpphz = tetrapyrido[3,2-a:2',3'-c:3â³,2''-h:2â´,3'''-j]phenazine and TAP = 1,4,5,8- tetraazaphenanthrene). Using a combination of resonance Raman and time-resolved absorption spectroscopy, as well as computational studies, the excited state dynamics of the new complex were dissected. These studies revealed that, although the complex has several close lying excited states, its near-infrared, NIR, emission (λmax = 780 nm) is due to a low-lying Os â TAP based 3MCLT state. Cell-based studies revealed that unlike its RuII analogue, the new complex is neither cytotoxic nor photocytotoxic. However, as it is highly photostable as well as live-cell permeant and displays NIR luminescence within the biological optical window, its properties make it an ideal probe for optical microscopy, demonstrated by its use as a super-resolution NIR STED probe for nuclear DNA.
Assuntos
Complexos de Coordenação/química , DNA/análise , Substâncias Luminescentes/química , Animais , Bovinos , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/toxicidade , Humanos , Substâncias Luminescentes/síntese química , Substâncias Luminescentes/toxicidade , Microscopia Confocal , Osmio/química , Osmio/toxicidadeRESUMO
Threading intercalators bind DNA with high affinities. Here, we describe single-molecule studies on a cell-permeant luminescent dinuclear ruthenium(II) complex that has been previously shown to thread only into short, unstable duplex structures. Using optical tweezers and confocal microscopy, we show that this complex threads and locks into force-extended duplex DNA in a two-step mechanism. Detailed kinetic studies reveal that an individual stereoisomer of the complex exhibits the highest binding affinity reported for such a mono-intercalator. This stereoisomer better preserves the biophysical properties of DNA than the widely used SYTOX Orange. Interestingly, threading into torsionally constrained DNA decreases dramatically, but is rescued on negatively supercoiled DNA. Given the "light-switch" properties of this complex on binding DNA, it can be readily used as a long-lived luminescent label for duplex or negatively supercoiled DNA through a unique "load-and-lock" protocol.
Assuntos
Complexos de Coordenação/química , Sondas de DNA/química , DNA/análise , Rutênio/química , Estrutura MolecularRESUMO
The synthesis of new dinuclear complexes containing linked RuII(dppz) and ReI(dppz) moieties is reported. The photophysical and biological properties of the new complex, which incorporates a N,N'-bis(4-pyridylmethyl)-1,6-hexanediamine tether ligand, are compared to a previously reported RuII/ReI complex linked by a simple dipyridyl alkane ligand. Although both complexes bind to DNA with similar affinities, steady-state and time-resolved photophysical studies reveal that the nature of the linker affects the excited state dynamics of the complexes and their DNA photocleavage properties. Quantum-based DFT calculations on these systems offer insights into these effects. While both complexes are live cells permeant, their intracellular localizations are significantly affected by the nature of the linker. Notably, one of the complexes displayed concentration-dependent localization and possesses photophysical properties that are compatible with SIM and STED nanoscopy. This allowed the dynamics of its intracellular localization to be tracked at super resolutions.
Assuntos
Complexos de Coordenação/química , Medicina de Precisão , Rênio/química , Compostos de Rutênio/química , Linhagem Celular , Humanos , Ligantes , Estrutura Molecular , Espectrofotometria UltravioletaRESUMO
Herein we report the separation of the three stereoisomers of the DNA light-switch compound [{Ru(bpy)2}2(tpphz)]4+ (tpphz = tetrapyrido[3,2-a:2',3'-c:3â³,2â³-h:2â´,3â´-j]phenazine) by column chromatography and the characterization of each stereoisomer by X-ray crystallography. The interaction of these compounds with a DNA octanucleotide d(GCATATCG).d(CGATATGC) has been studied using NMR techniques. Selective deuteration of the bipyridyl rings was needed to provide sufficient spectral resolution to characterize structures. NMR-derived structures for these complexes show a threading intercalation binding mode with slow and chirality-dependent rates. This represents the first solution structure of an intercalated bis-ruthenium ligand. Intriguingly, we find that the binding site selectivity is dependent on the nature of the stereoisomer employed, with Λ RuII centers showing a better intercalation fit.
Assuntos
DNA de Forma B/química , Substâncias Intercalantes/química , Compostos Organometálicos/química , Piridinas/química , Rutênio/química , Sequência de Bases , DNA de Forma B/genética , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , EstereoisomerismoRESUMO
Drug resistance to platinum chemotherapeutics targeting DNA often involves abrogation of apoptosis and has emerged as a significant challenge in modern, non-targeted chemotherapy. Consequently, there is great interest in the anti-cancer properties of metal complexes-particularly those that interact with DNA-and mechanisms of consequent cell death. Herein we compare a parent cytotoxic complex, [Ru(phen)2(tpphz)]2+ [phen = 1,10-phenanthroline, tpphz = tetrapyridyl[3,2- a:2',3'- c:3â³,2â³- h:2â´,3â´- j]phenazine], with a mononuclear analogue with a modified intercalating ligand, [Ru(phen)2(taptp)]2+ [taptp = 4,5,9,18-tetraazaphenanthreno[9,10- b] triphenylene], and two structurally related dinuclear, tpphz-bridged, heterometallic complexes, RuRe and RuPt. All three of these structural changes result in a switch from intercalation to groove-binding DNA interaction and concomitant reduction in cytotoxic potency, but no significant change in relative cytotoxicity toward platinum-resistant A2780CIS cancer cells, indicating that the DNA interaction mode is not critical for the mechanism of platinum resistance. All variants exhibited a light-switch effect, which for the first time was exploited to investigate timing of cell death by live-cell microscopy. Surprisingly, cell death occurred rapidly as a consequence of oncosis, characterized by loss of cytoplasmic volume control, absence of significant mitochondrial membrane potential loss, and lack of activation of apoptotic cell death markers. Importantly, a novel, quantitative proteomic analysis of the A2780 cell genome following exposure of the cells to either mononuclear complex reveals changes in protein expression associated with global cell responses to oxidative stress and DNA replication/repair cellular pathways. This combination of multiple targeting modalities and induction of a non-apoptotic death mechanism makes these complexes highly promising chemotherapeutic cytotoxicity leads.
Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , DNA/efeitos dos fármacos , Substâncias Intercalantes/farmacologia , Proteoma/efeitos dos fármacos , Animais , Antineoplásicos/síntese química , Antineoplásicos/efeitos da radiação , Bovinos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/efeitos da radiação , Dano ao DNA/efeitos dos fármacos , Humanos , Substâncias Intercalantes/síntese química , Substâncias Intercalantes/efeitos da radiação , Luz , Estresse Oxidativo/efeitos dos fármacos , Proteômica , Rutênio/químicaRESUMO
Surface engineering of nanocarriers allows fine-tuning of their interactions with biological organisms, potentially forming the basis of devices for the monitoring of intracellular events or for intracellular drug delivery. In this context, biodegradable nanocarriers or nanocapsules capable of carrying bioactive molecules or drugs into the mitochondrial matrix could offer new capabilities in treating mitochondrial diseases. Nanocapsules with a polymeric backbone that undergoes programmed rupture in response to a specific chemical or enzymatic stimulus with subsequent release of the bioactive molecule or drug at mitochondria would be particularly attractive for this function. With this goal in mind, we have developed biologically benign nanocapsules using polyurethane-based, polymeric backbone that incorporates repetitive ester functionalities. The resulting nanocapsules are found to be highly stable and monodispersed in size. Importantly, a new non-isocyanate route is adapted for the synthesis of these non-isocyanate polyurethane nanocapsules (NIPU). The embedded ester linkages of these capsules' shells have facilitated complete degradation of the polymeric backbone in response to a stimulus provided by an esterase enzyme. Hydrophilic payloads like rhodamine or doxorubicin can be loaded inside these nanocarriers during their synthesis by an interfacial polymerization reaction. The postgrafting of the nanocapsules with phosphonium ion, a mitochondria-targeting receptor functionality, has helped us achieve the site-specific release of the drug. Co-localization experiments with commercial mitotracker green as well as mitotracker deep red confirmed localization of the cargo in mitochondria. Our in vitro studies confirm that specific release of doxorubicin within mitochondria causes higher cytotoxicity and cell death compared to free doxorubicin. Endogenous enzyme triggered nanocapsule rupture and release of the encapsulated dye is also demonstrated in a zebrafish model. The results of this proof-of-concept study illustrate that NIPU nanocarriers can provide a site-specific delivery vehicle and improve the therapeutic efficacy of a drug or be used to produce organelle-specific imaging studies.
Assuntos
Esterases/metabolismo , Mitocôndrias/efeitos dos fármacos , Nanocápsulas/química , Poliuretanos/farmacologia , Animais , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Doxorrubicina/farmacologia , Portadores de Fármacos , Liberação Controlada de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Isocianatos/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Polimerização , Poliuretanos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Peixe-ZebraRESUMO
Detailed studies on the live cell uptake properties of a dinuclear membrane-permeable RuII cell probe show that, at low concentrations, the complex localizes and images mitochondria. At concentrations above â¼20 µM, the complex images nuclear DNA. Because the complex is extremely photostable, has a large Stokes shift, and displays intrinsic subcellular targeting, its compatibility with super-resolution techniques was investigated. It was found to be very well suited to image mitochondria and nuclear chromatin in two color, 2C-SIM, and STED and 3D-STED, both in fixed and live cells. In particular, due to its vastly improved photostability compared to that of conventional SR probes, it can provide images of nuclear DNA at unprecedented resolution.
Assuntos
Cromatina , Metais/análise , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência/métodos , Mitocôndrias , Imagem Multimodal/métodos , Sobrevivência Celular , Cromatina/ultraestrutura , Cor , DNA , Fixadores , Humanos , Células MCF-7 , Metais/química , Mitocôndrias/ultraestruturaRESUMO
Selective detection of nitroxyl (HNO), which has recently been identified as a reactive nitrogen species, is a challenging task. We report a BODIPY-based luminescence ON reagent for detection of HNO in aqueous solution and in live RAW 264.7 cells, based on the soft nucleophilicity of the phosphine oxide functionality toward HNO. The probe shows high selectivity to HNO over other reactive oxygen/nitrogen and sulfur species. Luminescence properties of the BODIPY-based chemodosimetric reagent make it an ideal candidate for use as a reagent for super-resolution structured illumination microscopy. The viability of the reagent for biological in vivo imaging application was also confirmed using Artemia as a model.
Assuntos
Retículo Endoplasmático/química , Corantes Fluorescentes/química , Óxidos de Nitrogênio/análise , Animais , Artemia , Camundongos , Imagem Óptica , Células RAW 264.7RESUMO
With the long-term aim of enhancing the binding properties of dinuclear RuII -based DNA light-switch complexes, a series of eight structurally related mono- and dinuclear systems are reported in which the linker of the bridging ligand has been modulated. These tethered systems have been designed to explore issues of steric demand at the binding site and the thermodynamic cost of entropy loss upon binding. Detailed spectroscopic and isothermal titration calorimetry (ITC) studies on the new complexes reveal that one of the linkers produces a dinuclear system that binds to duplex DNA with an affinity (Kb >107 m-1 ) that is higher than its corresponding monometallic complex and is the highest affinity for a non-threading bis-intercalating metal complex. These studies confirm that the tether has a major effect on the binding properties of dinuclear complexes containing intercalating units and establishes key design rules for the construction of dinuclear complexes with enhanced DNA binding characteristics.
Assuntos
Complexos de Coordenação/química , DNA/química , Substâncias Intercalantes/química , Rutênio/química , Sítios de Ligação , Ligantes , Espectroscopia de Ressonância MagnéticaRESUMO
Using a new mononuclear "building block," for the first time, a dinuclear RuII (dppn) complex and a heteroleptic system containing both RuII (dppz) and RuII (dppn) moieties are reported. The complexes, including the mixed dppz/dppn system, are 1 O2 sensitizers. However, unlike the homoleptic dppn systems, the mixed dppz/dppn complex also displays a luminescence "switch on" DNA light-switch effect. In both cisplatin sensitive and resistant human ovarian carcinoma lines the dinuclear complexes show enhanced uptake compared to their mononuclear analogue. Thanks to a favorable combination of singlet oxygen generation and cellular uptake properties all three of the new complexes are phototoxic and display potent activity against chemotherapeutically resistant cells.
Assuntos
Complexos de Coordenação/farmacologia , Substâncias Intercalantes/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Rutênio/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/química , Complexos de Coordenação/farmacocinética , DNA/metabolismo , Feminino , Humanos , Substâncias Intercalantes/química , Substâncias Intercalantes/farmacocinética , Neoplasias Ovarianas/metabolismo , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacocinética , Rutênio/química , Rutênio/farmacocinética , Oxigênio Singlete/metabolismoRESUMO
Although metal-ion-directed self-assembly has been widely used to construct a vast number of macrocycles and cages, it is only recently that the biological properties of these systems have begun to be explored. However, up until now, none of these studies have involved intrinsically photoexcitable self-assembled structures. Herein we report the first metallomacrocycle that functions as an intracellular singlet oxygen sensitizer. Not only does this Ru2 Re2 system possess potent photocytotoxicity at light fluences below those used for current medically employed systems, it offers an entirely new paradigm for the construction of sensitizers for photodynamic therapy.
Assuntos
Compostos Organometálicos/química , Fármacos Fotossensibilizantes/química , Oxigênio Singlete/química , FotoquímicaRESUMO
An overview of optical biomolecular imaging is provided. Following a brief history of the development of probes and technologies in this area, general approaches which use biomolecular imaging in current commercial systems are discussed. A brief summary of research challenges in this area - in terms of both the chemistry and technique development - is introduced. Finally, areas rich for possible future development are suggested.
Assuntos
Corantes Fluorescentes , Microscopia de Fluorescência por Excitação Multifotônica , Imagem Óptica , Biópsia , Células HeLa , Humanos , Pulmão/patologiaRESUMO
Cytostatic agents that interfere with specific cellular components to prevent cancer cell growth offer an attractive alternative, or complement, to traditional cytotoxic chemotherapy. Here, we describe the synthesis and characterization of a new binuclear Ru(II) -Pt(II) complex [Ru(tpy)(tpypma)Pt(Cl)(DMSO)](3+) (tpy=2,2':6',2''-terpyridine and tpypma=4-([2,2':6',2''-terpyridine]-4'-yl)-N-(pyridin-2-ylmethyl)aniline), VR54, which employs the extended terpyridine tpypma ligand to link the two metal centres. In cell-free conditions, VR54 binds DNA by non-intercalative reversible mechanisms (Kb =1.3×10(5) M(-1) ) and does not irreversibly bind guanosine. Cellular studies reveal that VR54 suppresses proliferation of A2780 ovarian cancer cells with no cross-resistance in the A2780CIS cisplatin-resistant cell line. Through the preparation of mononuclear Ru(II) and Pt(II) structural derivatives it was determined that both metal centres are required for this anti-proliferative activity. In stark contrast to cisplatin, VR54 neither activates the DNA-damage response network nor induces significant levels of cell death. Instead, VR54 is cytostatic and inhibits cell proliferation by up-regulating the cyclin-dependent kinase inhibitor p27(KIP1) and inhibiting retinoblastoma protein phosphorylation, which blocks entry into Sâ phase and results in G1 cell cycle arrest. Thus, VR54 inhibits cancer cell growth by a gain of function at the G1 restriction point. This is the first metal-coordination compound to demonstrate such activity.
Assuntos
Antineoplásicos/química , Neoplasias da Mama/química , Cisplatino/química , Complexos de Coordenação/síntese química , Citostáticos/química , Citostáticos/síntese química , DNA/química , Platina/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular , Cisplatino/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Citostáticos/farmacologia , Feminino , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Platina/farmacologia , Rutênio/química , Rutênio/farmacologiaRESUMO
The DNA binding and cellular localization properties of a new luminescent heterobimetallic Ir(III) Ru(II) tetrapyridophenazine complex are reported. Surprisingly, in standard cell media, in which its tetracationic, isostructural Ru(II) Ru(II) analogue is localized in the nucleus, the new tricationic complex is poorly taken up by live cells and demonstrates no nuclear staining. Consequent cell-free studies reveal that the Ir(III) Ru(II) complex binds bovine serum albumin, BSA, in Sudlow's Site I with a similar increase in emission and binding affinity to that observed with DNA. Contrastingly, in serum-free conditions the complex is rapidly internalized by live cells, where it localizes in cell nuclei and functions as a DNA imaging agent. The absence of serum proteins also greatly alters the cytotoxicity of the complex, where high levels of oncosis/necrosis are observed due to this enhanced uptake. This suggests that simply increasing the lipophilicity of a DNA imaging probe to enhance cellular uptake can be counterproductive as, due to increased binding to serum albumin protein, this strategy can actually disrupt nuclear targeting.