Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 29(18): 3196-207, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20700104

RESUMO

Apoptosis ensures tissue homeostasis in response to developmental cues or cellular damage. Recently reported genome-wide RNAi screens have suggested that several metabolic regulators can modulate caspase activation in Drosophila. Here, we establish a previously unrecognized link between metabolism and Drosophila apoptosis by showing that cellular NADPH levels modulate the initiator caspase Dronc through its phosphorylation at S130. Depletion of NADPH removed this inhibitory phosphorylation, resulting in the activation of Dronc and subsequent cell death. Conversely, upregulation of NADPH prevented Dronc-mediated apoptosis upon DIAP1 RNAi or cycloheximide treatment. Furthermore, this CaMKII-mediated phosphorylation of Dronc hindered Dronc activation, but not its catalytic activity. Blockade of NADPH production aggravated the death-inducing activity of Dronc in specific neurons, but not in the photoreceptor cells of the eyes of transgenic flies; similarly, non-phosphorylatable Dronc was more potent than wild type in triggering specific neuronal apoptosis. Our observations reveal a novel regulatory circuitry in Drosophila apoptosis, and, as NADPH levels are elevated in cancer cells, also provide a genetic model to understand aberrations in cancer cell apoptosis resulting from metabolic alterations.


Assuntos
Apoptose , Caspases/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Neurônios/metabolismo , Animais , Animais Geneticamente Modificados , Western Blotting , Sobrevivência Celular , Células Cultivadas , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Ativação Enzimática , Imunoprecipitação , Malatos/metabolismo , NADP/metabolismo , Neurônios/citologia , RNA Interferente Pequeno/farmacologia
2.
ACS Med Chem Lett ; 12(10): 1539-1545, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34671445

RESUMO

SET domain-containing protein 2 (SETD2), a histone methyltransferase, has been identified as a target of interest in certain hematological malignancies, including multiple myeloma. This account details the discovery of EPZ-719, a novel and potent SETD2 inhibitor with a high selectivity over other histone methyltransferases. A screening campaign of the Epizyme proprietary histone methyltransferase-biased library identified potential leads based on a 2-amidoindole core. Structure-based drug design (SBDD) and drug metabolism/pharmacokinetics (DMPK) optimization resulted in EPZ-719, an attractive tool compound for the interrogation of SETD2 biology that enables in vivo target validation studies.

3.
PLoS One ; 13(6): e0197372, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29856759

RESUMO

A key challenge in the development of precision medicine is defining the phenotypic consequences of pharmacological modulation of specific target macromolecules. To address this issue, a variety of genetic, molecular and chemical tools can be used. All of these approaches can produce misleading results if the specificity of the tools is not well understood and the proper controls are not performed. In this paper we illustrate these general themes by providing detailed studies of small molecule inhibitors of the enzymatic activity of two members of the SMYD branch of the protein lysine methyltransferases, SMYD2 and SMYD3. We show that tool compounds as well as CRISPR/Cas9 fail to reproduce many of the cell proliferation findings associated with SMYD2 and SMYD3 inhibition previously obtained with RNAi based approaches and with early stage chemical probes.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Carcinogênese/genética , Histona-Lisina N-Metiltransferase/genética , Células A549 , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Sistemas CRISPR-Cas , Carcinogênese/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/química , Humanos , Metilação/efeitos dos fármacos , Metiltransferases/antagonistas & inibidores , Interferência de RNA , Bibliotecas de Moléculas Pequenas/farmacologia
4.
Mol Cancer Ther ; 16(11): 2586-2597, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28835384

RESUMO

The EZH2 small-molecule inhibitor tazemetostat (EPZ-6438) is currently being evaluated in phase II clinical trials for the treatment of non-Hodgkin lymphoma (NHL). We have previously shown that EZH2 inhibitors display an antiproliferative effect in multiple preclinical models of NHL, and that models bearing gain-of-function mutations in EZH2 were consistently more sensitive to EZH2 inhibition than lymphomas with wild-type (WT) EZH2 Here, we demonstrate that cell lines bearing EZH2 mutations show a cytotoxic response, while cell lines with WT-EZH2 show a cytostatic response and only tumor growth inhibition without regression in a xenograft model. Previous work has demonstrated that cotreatment with tazemetostat and glucocorticoid receptor agonists lead to a synergistic antiproliferative effect in both mutant and wild-type backgrounds, which may provide clues to the mechanism of action of EZH2 inhibition in WT-EZH2 models. Multiple agents that inhibit the B-cell receptor pathway (e.g., ibrutinib) were found to have synergistic benefit when combined with tazemetostat in both mutant and WT-EZH2 backgrounds of diffuse large B-cell lymphomas (DLBCL). The relationship between B-cell activation and EZH2 inhibition is consistent with the proposed role of EZH2 in B-cell maturation. To further support this, we observe that cell lines treated with tazemetostat show an increase in the B-cell maturation regulator, PRDM1/BLIMP1, and gene signatures corresponding to more advanced stages of maturation. These findings suggest that EZH2 inhibition in both mutant and wild-type backgrounds leads to increased B-cell maturation and a greater dependence on B-cell activation signaling. Mol Cancer Ther; 16(11); 2586-97. ©2017 AACR.


Assuntos
Benzamidas/administração & dosagem , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Pirazóis/administração & dosagem , Piridonas/administração & dosagem , Pirimidinas/administração & dosagem , Adenina/análogos & derivados , Animais , Linfócitos B/efeitos dos fármacos , Compostos de Bifenilo , Proliferação de Células/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Sinergismo Farmacológico , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Camundongos , Morfolinas , Mutação , Piperidinas , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Biochim Biophys Acta ; 1751(2): 178-83, 2005 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-16005271

RESUMO

Six fully conserved arginine residues (R129, R131, R235, R291, R319, and R340) closely grouped in the nucleotide binding site of rabbit muscle creatine kinase (rmCK) were mutated; four to alanine and all six to lysine. Kinetic analyses in the direction of phosphocreatine formation showed that all four alanine mutants led to substantial losses of activity with three (R129A, R131A, and R235A) having no detectable activity. All six lysine mutants retained variable degrees of reduced enzymatic activity. Static quenching of intrinsic tryptophan fluorescence was used to measure the binding constants for MgADP and MgATP. Nucleotide binding was at most only modestly affected by mutation of the arginine residues. Thus, the cluster of arginines seem to be primarily responsible for transition state stabilization which is further supported by the observation that none of the inactive mutants demonstrated the ability to form a transition analogue complex of MgADP.nitrate.creatine as determined by fluorescence quenching assays. As a whole, the results suggest that the most important role these residues play is to properly align the substrates for stabilization of the phosphoryl transfer reaction.


Assuntos
Arginina/genética , Domínio Catalítico/genética , Creatina Quinase/genética , Mutagênese Sítio-Dirigida , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Alanina/química , Alanina/genética , Animais , Arginina/química , Creatina/química , Creatina Quinase/química , Creatina Quinase/metabolismo , Creatina Quinase Forma MM , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Lisina/química , Lisina/genética , Modelos Moleculares , Mutação , Fosfocreatina/química , Ligação Proteica , Coelhos , Espectrometria de Fluorescência
6.
Protein Sci ; 12(3): 532-7, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12592023

RESUMO

To explore the possibility that asparagine 285 plays a key role in transition state stabilization in phosphagen kinase catalysis, the N285Q, N285D, and N285A site-directed mutants of recombinant rabbit muscle creatine kinase (rmCK) were prepared and characterized. Kinetic analysis of phosphocreatine formation showed that the catalytic efficiency of each N285 mutant was reduced by approximately four orders of magnitude, with the major cause of activity loss being a reduction in k(cat) in comparison to the recombinant native CK. The data for N285Q still fit a random-order, rapid-equilibrium mechanism, with either MgATP or creatine binding first with affinities very nearly equal to those for native CK. However, the affinity for the binding of the second substrate is reduced approximately 10-fold, suggesting that addition of a single methylene group at position 285 disrupts the symphony of substrate binding. The data for the N285A mutant only fit an ordered binding mechanism, with MgATP binding first. Isosteric replacement to form the N285D mutant has almost no effect on the K(M) values for either creatine or MgATP, thus the decrease in activity is due almost entirely to a 5000-fold reduction in k(cat). Using the quenching of the intrinsic CK tryptophan fluorescence by added MgADP (Borders et al. 2002), it was found that, unlike native CK, none of the mutants have the ability to form a quaternary TSAC. We use these data to propose that asparagine 285 indeed plays a key role in transition state stabilization in the reaction catalyzed by creatine kinase and other phosphagen kinases.


Assuntos
Asparagina/química , Creatina Quinase/química , Creatina/metabolismo , Isoenzimas/química , Músculo Esquelético/enzimologia , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Creatina Quinase/genética , Creatina Quinase/metabolismo , Creatina Quinase Forma MM , Estabilidade Enzimática , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Magnésio/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Coelhos , Relação Estrutura-Atividade , Especificidade por Substrato
7.
Mol Biol Cell ; 22(8): 1207-16, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21325626

RESUMO

Homeostatic maintenance of cellular mitochondria requires a dynamic balance between fission and fusion, and controlled changes in morphology are important for processes such as apoptosis and cellular division. Interphase mitochondria have been described as an interconnected network that fragments as cells enter mitosis, and this mitotic mitochondrial fragmentation is known to be regulated by the dynamin-related GTPase Drp1 (dynamin-related protein 1), a key component of the mitochondrial division machinery. Loss of Drp1 function and the subsequent failure of mitochondrial division during mitosis lead to incomplete cytokinesis and the unequal distribution of mitochondria into daughter cells. During mitotic exit and interphase, the mitochondrial network reforms. Here we demonstrate that changes in mitochondrial dynamics as cells exit mitosis are driven in part through ubiquitylation of Drp1, catalyzed by the APC/C(Cdh1) (anaphase-promoting complex/cyclosome and its coactivator Cdh1) E3 ubiquitin ligase complex. Importantly, inhibition of Cdh1-mediated Drp1 ubiquitylation and proteasomal degradation during interphase prevents the normal G1 phase regrowth of mitochondrial networks following cell division.


Assuntos
Caderinas/metabolismo , Citocinese , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Mitose , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Antígenos CD , Caderinas/antagonistas & inibidores , Caderinas/genética , Dinaminas , Estabilidade Enzimática , Fase G1/genética , GTP Fosfo-Hidrolases/deficiência , GTP Fosfo-Hidrolases/genética , Expressão Gênica , Inativação Gênica , Células HEK293 , Células HeLa , Humanos , Interfase/genética , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/genética , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Interferente Pequeno/metabolismo , Transfecção , Complexos Ubiquitina-Proteína Ligase/antagonistas & inibidores , Complexos Ubiquitina-Proteína Ligase/genética , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
8.
J Biol Chem ; 283(1): 367-379, 2008 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-17998202

RESUMO

Morphological hallmarks of apoptosis result from activation of the caspase family of cysteine proteases, which are opposed by a pro-survival family of inhibitors of apoptosis proteins (IAPs). In Drosophila, disruption of IAP function by Reaper, HID, and Grim (RHG) proteins is sufficient to induce cell death. RHG proteins have been reported to localize to mitochondria, which, in the case of both Reaper and Grim proteins, is mediated by an amphipathic helical domain known as the GH3. Through direct binding, Reaper can bring the Drosophila IAP (DIAP1) to mitochondria, concomitantly promoting IAP auto-ubiquitination and destruction. Whether this localization is sufficient to induce DIAP1 auto-ubiquitination has not been reported. In this study we characterize the interaction between Reaper and the mitochondria using both Xenopus and Drosophila systems. We find that Reaper concentrates on the outer surface of mitochondria in a nonperipheral manner largely mediated by GH3-lipid interactions. Importantly, we show that mitochondrial targeting of DIAP1 alone is not sufficient for degradation and requires Reaper binding. Conversely, Reaper able to bind IAPs, but lacking a mitochondrial targeting GH3 domain (DeltaGH3 Reaper), can induce DIAP1 turnover only if DIAP1 is otherwise targeted to membranes. Surprisingly, targeting DIAP1 to the endoplasmic reticulum instead of mitochondria is partially effective in allowing DeltaGH3 Reaper to promote DIAP1 degradation, suggesting that co-localization of DIAP and Reaper at a membrane surface is critical for the induction of DIAP degradation. Collectively, these data provide a specific function for the GH3 domain in conferring protein-lipid interactions, demonstrate that both Reaper binding and mitochondrial localization are required for accelerated IAP degradation, and suggest that membrane localization per se contributes to DIAP1 auto-ubiquitination and degradation.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Lipídeos de Membrana/metabolismo , Mitocôndrias/metabolismo , Animais , Sítios de Ligação , Western Blotting , Linhagem Celular , Drosophila , Proteínas de Drosophila/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Inibidoras de Apoptose/genética , Lipossomos/metabolismo , Microscopia Confocal , Membranas Mitocondriais/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ubiquitinação , Xenopus
9.
Cell ; 127(4): 759-73, 2006 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-17110335

RESUMO

DNA-responsive checkpoints prevent cell-cycle progression following DNA damage or replication inhibition. The mitotic activator Cdc25 is suppressed by checkpoints through inhibitory phosphorylation at Ser287 (Xenopus numbering) and docking of 14-3-3. Ser287 phosphorylation is a major locus of G2/M checkpoint control, although several checkpoint-independent kinases can phosphorylate this site. We reported previously that mitotic entry requires 14-3-3 removal and Ser287 dephosphorylation. We show here that DNA-responsive checkpoints also activate PP2A/B56delta phosphatase complexes to dephosphorylate Cdc25 at a site distinct from Ser287 (T138), the phosphorylation of which is required for 14-3-3 release. However, phosphorylation of T138 is not sufficient for 14-3-3 release from Cdc25. Our data suggest that creation of a 14-3-3 "sink," consisting of phosphorylated 14-3-3 binding intermediate filament proteins, including keratins, coupled with reduced Cdc25-14-3-3 affinity, contribute to Cdc25 activation. These observations identify PP2A/B56delta as a central checkpoint effector and suggest a mechanism for controlling 14-3-3 interactions to promote mitosis.


Assuntos
Proteínas 14-3-3/metabolismo , Mitose , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Fosfatases cdc25/metabolismo , Animais , Quinase 1 do Ponto de Checagem , Replicação do DNA , Ativação Enzimática , Células HCT116 , Células HeLa , Holoenzimas/metabolismo , Humanos , Filamentos Intermediários/metabolismo , Interfase , Queratinas/metabolismo , Fosforilação , Fosfotreonina/metabolismo , Proteínas Quinases/metabolismo , Proteína Fosfatase 2 , Subunidades Proteicas/metabolismo
10.
J Cell Sci ; 116(Pt 22): 4493-9, 2003 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-14576343

RESUMO

Bcl-2 has been described both as an inhibitor of programmed cell death and as an inhibitor of mitochondrial dysfunction during apoptosis. It is still not clear what biochemical activity of Bcl-2 is responsible for its function, but increasing evidence indicates that a functional activity of Bcl-2 on the endoplasmic reticulum (ER) protects mitochondria under diverse circumstances. Indeed, an emerging hypothesis is that, during apoptosis, the Bcl-2 family regulates ER-to-mitochondrion communication by BH3-only proteins and calcium ions and thereby triggers mitochondrial dysfunction and cell death.


Assuntos
Apoptose/fisiologia , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Caspases/metabolismo , Células Cultivadas , Citocromos c/metabolismo , Humanos , Proteína bcl-X
11.
J Biol Chem ; 278(8): 6243-50, 2003 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-12477729

RESUMO

Bcl-2 family members have been shown to be key mediators of apoptosis as either pro- or anti-apoptotic factors. It is thought that both classes of Bcl-2 family members act at the level of the mitochondria to regulate apoptosis, although the founding anti-apoptotic family member, Bcl-2 is localized to the endoplasmic reticulum (ER), mitochondrial, and nuclear membranes. In order to better understand the effect of Bcl-2 localization on its activity, we have utilized a Bcl-2 mutant that localizes only to the ER membrane, designated Bcl-2Cb5. Bcl-2Cb5 was expressed in MDA-MB-468 cells, which protected against apoptosis induced by the kinase inhibitor, staurosporine. Data presented here show that Bcl-2Cb5 inhibits this process by blocking Bax activation and cytochrome c release. Furthermore, we show that Bcl-2Cb5 can inhibit the activation of a constitutively mitochondrial mutant of Bax, indicating that an intermediate between Bcl-2 on the ER and Bax on the mitochondria must exist. We demonstrate that this intermediate is likely a BH3-only subfamily member. Data presented here show that Bcl-2Cb5 can sequester a constitutively active form of Bad (Bad3A) from the mitochondria and prevent it from activating Bax. These data suggest that Bcl-2 indirectly protects mitochondrial membranes from Bax, via BH3-only proteins.


Assuntos
Retículo Endoplasmático/fisiologia , Mitocôndrias/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Apoptose , Sítios de Ligação , Neoplasias da Mama , Feminino , Genes bcl-2 , Humanos , Membrana Nuclear/fisiologia , Proteínas Recombinantes/metabolismo , Transfecção , Células Tumorais Cultivadas , Proteína X Associada a bcl-2
12.
J Biol Chem ; 278(29): 27053-8, 2003 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-12736248

RESUMO

Glucocorticoid hormones induce apoptosis in lymphoid cells. This process requires de novo RNA/protein synthesis. Here we report the identification and cloning of a novel dexamethasone-induced gene designated dig2. Using Affymetrix oligonucleotide microarray analysis of approximately 10,000 genes and expressed sequence tags, we found that the expression of dig2 mRNA is significantly induced not only in the murine T cell lymphoma lines S49.A2 and WEHI7.2 but also in normal mouse thymocytes following dexamethasone treatment. This result was confirmed by Northern blot analysis. The induction of dig2 mRNA by dexamethasone appears to be mediated through the glucocorticoid receptor as it is blocked in the presence of RU486, a glucocorticoid receptor antagonist. Furthermore, we demonstrated that dig2 is a novel stress response gene, as its mRNA is induced in response to a variety of cellular stressors including thapsigargin, tunicamycin, and heat shock. In addition, the levels of dig2 mRNA were up-regulated after treatment with the apoptosis-inducing chemotherapeutic drug etoposide. Though the function of dig2 is unknown, dig2 appears to have a pro-survival function, as overexpression of dig2 reduces the sensitivity of WEHI7.2 cells to dexamethasone-induced apoptosis.


Assuntos
Apoptose/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Sequência de Bases , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Clonagem Molecular , DNA Complementar/genética , Dexametasona/farmacologia , Etoposídeo/farmacologia , Etiquetas de Sequências Expressas , Feminino , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA