Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Opt Lett ; 49(2): 182-185, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38194523

RESUMO

A hologram reconstruction algorithm is proposed based on the fractional Fourier transform (FRFT) in non-telecentric digital holographic microscopy. The optimal fractional order representing the recorded hologram is estimated based on an evaluation metric. The FRFT-based hologram reconstruction enables noise robust amplitude and phase imaging with enhanced resolution. The effectiveness of the proposed approach is demonstrated in practical scenarios through both simulation and experimental results.

2.
Adv Exp Med Biol ; 1450: 1-27, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37432546

RESUMO

The regulation of glucose homeostasis and insulin secretion by pancreatic ß-cells, when disturbed, will result in diabetes mellitus. Replacement of dysfunctional or lost ß-cells with fully functional ones can tackle the problem of ß-cell generation in diabetes mellitus. Various pancreatic-specific genes are expressed during different stages of development, which have essential roles in pancreatogenesis and ß-cell formation. These factors play a critical role in cellular-based studies like transdifferentiation or de-differentiation of somatic cells to multipotent or pluripotent stem cells and their differentiation into functional ß-cells. This work gives an overview of crucial transcription factors expressed during various stages of pancreas development and their role in ß-cell specification. In addition, it also provides a perspective on the underlying molecular mechanisms.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Células-Tronco Pluripotentes , Humanos , Pâncreas , Diferenciação Celular/genética , Insulina
3.
J Biochem Mol Toxicol ; 37(12): e23511, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37632262

RESUMO

Pancreatic and duodenum homeobox 1 (PDX1) is considered as a pivotal transcription factor that acts as a "master regulator" in pancreatogenesis and maintenance of ß-cells. Earlier study has reported that PDX1 also functions as a tumor suppressor in human gastric cancer cells by inhibiting cell growth. Here, we report the bioactivity of the purified human PDX1 fusion protein using various assays like cell migration, proliferation, cell cycle analysis, and gene expression. In cancer cells, recombinant PDX1 protein reduced cell migration and proliferation, and arrested cell growth by inducing apoptosis in gastric cancer cells. In pancreatic ductal cancer cells, the application of the PDX1 protein resulted in the induction of insulin gene expression. The results of these experiments demonstrate the biological activity imparted by recombinant human PDX1 fusion protein on gastric and pancreatic cancer cells and its usefulness as a biological tool to elucidate its function in various cellular processes.


Assuntos
Células Secretoras de Insulina , Neoplasias Gástricas , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Neoplasias Gástricas/metabolismo , Fatores de Transcrição/metabolismo , Pâncreas/metabolismo , Regulação da Expressão Gênica , Células Secretoras de Insulina/metabolismo
4.
Adv Exp Med Biol ; 1410: 171-189, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36515866

RESUMO

The persistent shortage of insulin-producing islet mass or ß-cells for transplantation in the ever-growing diabetic population worldwide is a matter of concern. To date, permanent cure to this medical complication is not available and soon after the establishment of lineage-specific reprogramming, direct ß-cell reprogramming became a viable alternative for ß-cell regeneration. Direct reprogramming is a straightforward and powerful technique that can provide an unlimited supply of cells by transdifferentiating terminally differentiated cells toward the desired cell type. This approach has been extensively used by multiple groups to reprogram non-ß-cells toward insulin-producing ß-cells. The ß-cell identity has been achieved by various studies via ectopic expression of one or more pancreatic-specific transcription factors in somatic cells, bypassing the pluripotent state. This work highlights the importance of the direct reprogramming approaches (both integrative and non-integrative) in generating autologous ß-cells for various applications. An in-depth understanding of the strategies and cell sources could prove beneficial for the efficient generation of integration-free functional insulin-producing ß-cells for diabetic patients lacking endogenous ß-cells.


Assuntos
Células Secretoras de Insulina , Insulinas , Humanos , Reprogramação Celular/genética , Diferenciação Celular , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Pâncreas/metabolismo , Insulinas/metabolismo , Células Secretoras de Insulina/metabolismo
5.
Adv Exp Med Biol ; 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37978100

RESUMO

The curiosity to discover transcription factors to reprogram somatic cells to induced pluripotent stem cells (iPSCs) resulted in the identification of a reprogramming factor, Gli-similar transcription factor GLIS1. This proline-rich Kruppel-like zinc finger transcription factor has a role in embryonic development, iPSC generation, and cancer. The spatial and temporal expression of GLIS1 during embryonic development implicates that it can control gene expression at specific developmental stages. Moreover, GLIS1 in combination with OCT4, SOX2, and KLF4 reprogramming factors resulted in an increase in reprogramming efficiency, giving rise to primarily bona fide iPSCs. Mutations in the GLIS1 gene are associated with several types of tumors and cancers, and it shows a tissue-specific function where it acts either as an oncogene or as a tumor suppressor gene. This review gives a comprehensive overview of GLIS1 and its important role in embryonic development, cancer, and the generation of iPSCs.

6.
Adv Exp Med Biol ; 1436: 1-18, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36662416

RESUMO

Advances in cellular reprogramming articulated the path for direct cardiac lineage conversion, bypassing the pluripotent state. Direct cardiac reprogramming attracts major attention because of the low or nil regenerative ability of cardiomyocytes, resulting in permanent cell loss in various heart diseases. In the field of cardiology, balancing this loss of cardiomyocytes was highly challenging, even in the modern medical world. Soon after the discovery of cell reprogramming, direct cardiac reprogramming also became a promising alternative for heart regeneration. This review mainly focused on the various direct cardiac reprogramming approaches (integrative and non-integrative) for the derivation of induced autologous cardiomyocytes. It also explains the advancements in cardiac reprogramming over the decade with the pros and cons of each approach. Further, the review highlights the importance of clinically relevant (non-integrative) approaches and their challenges for the prospective applications for personalized medicine. Apart from direct cardiac reprogramming, it also discusses the other strategies for generating cardiomyocytes from different sources. The understanding of these strategies could pave the way for the efficient generation of integration-free functional autologous cardiomyocytes through direct cardiac reprogramming for various biomedical applications.


Assuntos
Cardiopatias , Células-Tronco Pluripotentes Induzidas , Humanos , Reprogramação Celular/genética , Miócitos Cardíacos
7.
Mol Genet Genomics ; 297(2): 573-590, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35218395

RESUMO

Pex30 is a dysferlin domain-containing protein whose role in peroxisome biogenesis has been studied by several research groups. Notably, recent studies have linked this protein to peroxisomes, endoplasmic reticulum and lipid bodies in Saccharomyces cerevisiae. Phosphoproteome studies of S. cerevisiae have identified several phosphorylation sites in Pex30. In this study we expressed and purified Pex30 from its native host. Analysis of the purified protein by circular dichroism spectroscopy showed that it retained its secondary structure and revealed primarily a helical structure. Further phosphorylation of Pex30 at three residues, Threonine 60, Serine 61 and Serine 511 was identified by mass spectrometry in this study. To understand the importance of this post-translational modification in peroxisome biogenesis, the identified residues were mutated to both non-phosphorylatable (alanine) and phosphomimetic (aspartic acid) variants. Upon analysis of the mutant variants by fluorescence microscopy, no alteration in the localization of the protein to ER and peroxisomes was observed. Interestingly, reduced number of peroxisomes were observed in cells expressing phosphomimetic mutations when cultured in peroxisome-inducing conditions. Our data suggest that phosphorylation and dephosphorylation of Pex30 may promote distinct interactions essential in regulating peroxisome number in a cell.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Peroxissomos/genética , Peroxissomos/metabolismo , Fosforilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Adv Exp Med Biol ; 1376: 151-180, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34611861

RESUMO

Induced pluripotent stem cells (iPSCs) have vast biomedical potential concerning disease modeling, drug screening and discovery, cell therapy, tissue engineering, and understanding organismal development. In the year 2006, a groundbreaking study reported the generation of iPSCs from mouse embryonic fibroblasts by viral transduction of four transcription factors, namely, Oct4, Sox2, Klf4, and c-Myc. Subsequently, human iPSCs were generated by reprogramming fibroblasts as a starting cell source using two reprogramming factor cocktails [(i) OCT4, SOX2, KLF4, and c-MYC, and (ii) OCT4, SOX2, NANOG, and LIN28]. The wide range of applications of these human iPSCs in research, therapeutics, and personalized medicine has driven the scientific community to optimize and understand this reprogramming process to achieve quality iPSCs with higher efficiency and faster kinetics. One of the essential criteria to address this is by identifying an ideal cell source in which pluripotency can be induced efficiently to give rise to high-quality iPSCs. Therefore, various cell types have been studied for their ability to generate iPSCs efficiently. Cell sources that can be easily reverted to a pluripotent state are tissue-restricted stem cells present in the fetus and adult tissues. Tissue-restricted stem cells can be isolated from fetal, cord blood, bone marrow, and other adult tissues or can be obtained by differentiation of embryonic stem cells or trans-differentiation of other tissue-restricted stem cells. Since these cells are undifferentiated cells with self-renewal potential, they are much easier to reprogram due to the inherent characteristic of having an endogenous expression of few pluripotency-inducing factors. This review presents an overview of promising tissue-restricted stem cells that can be isolated from different sources, namely, neural stem cells, hematopoietic stem cells, mesenchymal stem cells, limbal epithelial stem cells, and spermatogonial stem cells, and their reprogramming efficacy. This insight will pave the way for developing safe and efficient reprogramming strategies and generating patient-specific iPSCs from tissue-restricted stem cells derived from various fetal and adult tissues.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular , Células Cultivadas , Células-Tronco Embrionárias , Fibroblastos/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo
9.
Protein Expr Purif ; 180: 105807, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33309974

RESUMO

The transcription factor PDX1 is a master regulator essential for proper development of the pancreas, duodenum and antrum. Furthermore, it is an indispensable reprogramming factor for the derivation of human ß-cells, and recently, it has been identified as a tumor suppressor protein in gastric cancer. Here, we report the soluble expression and purification of the full-length human PDX1 protein from a heterologous system. To achieve this, the 849 bp coding sequence of the PDX1 gene was first codon-optimized for expression in Escherichia coli (E. coli). This codon-optimized gene sequence was fused to a protein transduction domain, a nuclear localization sequence, and a His-tag, and this insert was cloned into the protein expression vector for expression in E. coli strain BL21(DE3). Next, screening and identification of the suitable gene construct and optimal expression conditions to obtain this recombinant fusion protein in a soluble form was performed. Further, we have purified this recombinant fusion protein to homogeneity under native conditions. Importantly, the secondary structure of the protein was retained after purification. Further, this recombinant PDX1 fusion protein was applied to human cells and showed the ability to enter the cells as well as translocate to the nucleus. This recombinant tool can be used as a safe tool and can potentially replace its genetic and viral forms in the reprogramming process to induce a ß-cell-specific transcriptional profile in an integration-free manner. Additionally, it can also be used to elucidate its role in cellular processes and for structural and biochemical studies.


Assuntos
Expressão Gênica , Proteínas de Homeodomínio , Transativadores , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/isolamento & purificação , Humanos , Estrutura Secundária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Transativadores/biossíntese , Transativadores/química , Transativadores/genética , Transativadores/isolamento & purificação
10.
Appl Microbiol Biotechnol ; 105(6): 2363-2376, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33651130

RESUMO

Transcription factor MESP1 is a crucial factor regulating cardiac, hematopoietic, and skeletal myogenic development. Besides, it also contributes to the generation of functional cardiomyocytes. Here, we report the soluble expression and purification of the full-length human MESP1 protein from the heterologous system, which can be delivered into the target mammalian cells. To generate this biological macromolecule, we cloned its codon-optimized gene sequence fused to a nuclear localization sequence, a cell-penetrating peptide, and a His-tag into the protein expression vector and expressed in the bacterial system (E. coli strain BL21(DE3)). Subsequently, we have screened and identified the optimal expression parameters to obtain this recombinant fusion protein in soluble form from E. coli and examined its expression concerning the placement of fusion tags at either terminal. Further, we have purified this recombinant fusion protein to homogeneity under native conditions. Notably, this purified fusion protein has maintained its secondary structure after purification, primarily comprising α-helices and random coils. This molecular tool can potentially replace its genetic and viral forms in the cardiac reprogramming of fibroblasts to induce a cardiac transcriptional profile in an integration-free manner and elucidating its role in various biological processes and diseases. KEY POINTS: • Screening of the suitable gene construct was performed and identified. • Screening of optimal expression conditions was performed and identified. • Native purification of recombinant human MESP1 protein from E. coli was performed. • Recombinant MESP1 protein has retained its secondary structure after purification.


Assuntos
Escherichia coli , Fatores de Transcrição , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Códon , Escherichia coli/genética , Humanos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes/genética
11.
Adv Exp Med Biol ; 1347: 1-27, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34426962

RESUMO

Diabetes mellitus (DM) is a group of metabolic disorders characterized by high blood glucose levels due to insufficient insulin secretion, insulin action, or both. The present-day solution to diabetes mellitus includes regular administration of insulin, which brings about many medical complications in diabetic patients. Although islet transplantation from cadaveric subjects was proposed to be a permanent cure, the increased risk of infections, the need for immunosuppressive drugs, and their unavailability had restricted its use. To overcome this, the generation of renewable and transplantable ß-cells derived from autologous induced pluripotent stem cells (iPSCs) has gained enormous interest as a potential therapeutic strategy to treat diabetes mellitus permanently. To date, extensive research has been undertaken to derive transplantable insulin-producing ß-cells (iß-cells) from iPSCs in vitro by recapitulating the in vivo developmental process of the pancreas. This in vivo developmental process relies on transcription factors, signaling molecules, growth factors, and culture microenvironment. This review highlights the various factors facilitating the generation of mature ß-cells from iPSCs. Moreover, this review also describes the generation of pancreatic progenitors and ß-cells from diabetic patient-specific iPSCs, exploring the potential of the diabetes disease model and drug discovery. In addition, the applications of genome editing strategies have also been discussed to achieve patient-specific diabetes cell therapy. Last, we have discussed the current challenges and prospects of iPSC-derived ß-cells to improve the relative efficacy of the available treatment of diabetes mellitus.


Assuntos
Diabetes Mellitus , Células-Tronco Pluripotentes Induzidas , Células Secretoras de Insulina , Diferenciação Celular , Diabetes Mellitus/terapia , Humanos , Insulina
12.
Bioprocess Biosyst Eng ; 44(6): 1131-1146, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33559005

RESUMO

Transcription factor GATA4 is expressed during early embryogenesis and is vital for proper development. In addition, it is a crucial reprogramming factor for deriving functional cardiomyocytes and was recently identified as a tumor suppressor protein in various cancers. To generate a safe and effective molecular tool that can potentially be used in a cell reprogramming process and as an anti-cancer agent, we have identified optimal expression parameters to obtain soluble expression of human GATA4 in E. coli and purified the same to homogeneity under native conditions using immobilized metal ion affinity chromatography. The identity of GATA4 protein was confirmed using western blotting and mass spectrometry. Using circular dichroism spectroscopy, it was demonstrated that the purified recombinant protein has maintained its secondary structure, primarily comprising of random coils and α-helices. Subsequently, this purified recombinant protein was applied to human cells and was found that it was non-toxic and able to enter the cells as well as translocate to the nucleus. Prospectively, this cell- and nuclear-permeant molecular tool is suitable for cell reprogramming experiments and can be a safe and effective therapeutic agent for cancer therapy.


Assuntos
Escherichia coli , Fator de Transcrição GATA4 , Linhagem Celular , Dicroísmo Circular , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Fator de Transcrição GATA4/biossíntese , Fator de Transcrição GATA4/química , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/isolamento & purificação , Humanos , Estrutura Secundária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
13.
J Cell Sci ; 129(5): 912-20, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26795560

RESUMO

A comprehensive analysis of the molecular network of cellular factors establishing and maintaining pluripotency as well as self renewal of pluripotent stem cells is key for further progress in understanding basic stem cell biology. Nanog is necessary for the natural induction of pluripotency in early mammalian development but dispensable for both its maintenance and its artificial induction. To gain further insight into the molecular activity of Nanog, we analyzed the outcomes of Nanog gain-of-function in various cell models employing a recently developed biologically active recombinant cell-permeant protein, Nanog-TAT. We found that Nanog enhances the proliferation of both NIH 3T3 and primary fibroblast cells. Nanog transduction into primary fibroblasts results in suppression of senescence-associated ß-galactosidase activity. Investigation of cell cycle factors revealed that transient activation of Nanog correlates with consistent downregulation of the cell cycle inhibitor p27(KIP1) (also known as CDKN1B). By performing chromatin immunoprecipitation analysis, we confirmed bona fide Nanog-binding sites upstream of the p27(KIP1) gene, establishing a direct link between physical occupancy and functional regulation. Our data demonstrates that Nanog enhances proliferation of fibroblasts through transcriptional regulation of cell cycle inhibitor p27 gene.


Assuntos
Senescência Celular , Inibidor de Quinase Dependente de Ciclina p27/genética , Proteína Homeobox Nanog/fisiologia , Animais , Sítios de Ligação , Adesão Celular , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Regulação para Baixo , Fibroblastos/fisiologia , Expressão Gênica , Inativação Gênica , Loci Gênicos , Humanos , Camundongos , Células NIH 3T3
14.
Med J Armed Forces India ; 74(4): 313-320, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30449915

RESUMO

Soldiers involved in combat operations worldwide may be subjected to a wide array of tissue-specific injuries of varying degrees, thereby undergoing complicated medical treatments and prolonged rehabilitations. In many cases involving inadequate recovery, soldiers are further mentally traumatized as they can no longer serve their beloved country. In addition, many severe injuries can lead to soldiers being incapacitated for life and unable to perform even the most basic day-to-day activities. Present therapy for combat injuries is majorly aimed at alleviating pain and limiting further tissue damage from secondary infections. Cell-based therapy using stem cells is a promising tissue regenerative source, which will help our soldiers to recuperate from the severe injuries, and in some cases, even continue their service for the country after complete recovery. In this context, we would like to discuss the yet fully untapped potential of induced pluripotent stem cells (iPSCs) in regenerative medicine on the battlefield. In this review, we shall try to explore the rationale behind the use of these cells for military medicine, as well as the conventional and novel approaches to produce them for therapeutic applications. We shall also attempt to elucidate the evolving trends of battlefield injuries throughout history and the ongoing research on regeneration of tissues of specific interest using iPSCs and their potential role in combat medicine in the future. Additionally, we shall also discuss the concept of stem cell bio-banking for military personnel as a personalized safeguard against crippling and traumatic combat injuries.

15.
Biochim Biophys Acta Biomembr ; 1866(6): 184336, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38763273

RESUMO

Short systemic half- life of Antimicrobial Peptides (AMP) is one of the major bottlenecks that limits their successful commercialization as therapeutics. In this work, we have designed analogs of the natural AMP Jelleine, obtained from royal jelly of apis mellifera. Among the designed peptides, J3 and J4 were the most potent with broad spectrum activities against a varied class of ESKAPE pathogens and fungus C. albicans. All the developed peptides were more effective against Gram-negative bacteria in comparison to the Gram-positive pathogens, and were especially effective against P. aeruginosa and C. albicans.J3 and J4 were completely trypsin resistant and serum stable, while retaining the non-cytotoxicity of the parent Jelleine, Jc. The designed peptides were membranolytic in their mode of action. CD and MD simulations in the presence of bilayers, established that J3 and J4 were non-structured even upon membrane binding and suggested that biological properties of the AMPs were innocent of any specific secondary structural requirements. Enhancement of charge to increase the antimicrobial potency, controlling the hydrophobic-hydrophilic balance to maintain non-cytotoxicity and induction of unnatural amino acid residues to impart protease resistance, remains some of the fundamental principles in the design of more effective antimicrobial therapeutics of the future, which may help combat the quickly rising menace of antimicrobial resistance in the microbes.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Candida albicans , Testes de Sensibilidade Microbiana , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/síntese química , Candida albicans/efeitos dos fármacos , Animais , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Bactérias Gram-Negativas/efeitos dos fármacos , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Humanos , Abelhas , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Simulação de Dinâmica Molecular , Oligopeptídeos
16.
ACS Infect Dis ; 10(2): 562-581, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38294842

RESUMO

Antimicrobial peptides (AMPs) have been an alternate promising class of therapeutics in combating global antibiotic resistance threat. However, the short half-life of AMPs, owing to protease degradability, is one of the major bottlenecks in its commercial success. In this study, we have developed all-D-amino acid containing small cationic peptides P4C and P5C, which are completely protease-resistant, noncytotoxic, nonhemolytic, and potent against the ESKAPE pathogens in comparison to their L analogues. MD simulations suggested marginal improvement in the peptide-binding affinity to the membrane-mimetic SDS micelle (∼ 1 kcal/mol) in response to L → D conversion, corroborating the marginal improvement in the antimicrobial activity. However, L → D chirality conversion severely compromised the peptide:protease (trypsin) binding affinity (≥10 kcal/mol). The relative distance between the scissile peptide carbonyl and the catalytic triad of the protease (H57, D102, and S195) was found to be significantly altered in the D-peptide:protease complex (inactive conformation) relative to the active L-peptide:protease complex. Thus, the poor binding affinity between D-peptides and the protease, resulting in the inactive complex formation, explained their experimentally observed proteolytic stability. This mechanistic insight might be extended to the proteolytic stability of the D-peptides in general and stimulate the rational design of protease-resistant AMPs.


Assuntos
Anti-Infecciosos , Peptídeo Hidrolases , Peptídeo Hidrolases/metabolismo , Aminoácidos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Anti-Infecciosos/química , Endopeptidases
17.
Biotechnol Genet Eng Rev ; : 1-47, 2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36710396

RESUMO

Magnetic hyperthermia is emerging as a promising alternative to the currently available cancer treatment modalities. Superparamagnetic iron-oxide nanoparticles (SPIONs) are extensively studied functional nanomaterials for biomedical applications, owing to their tunable physio-chemical properties and magnetic properties. Out of various ferrite classes, spinel and inverse-spinel ferrites are widely used but are affected by particle size distribution, particle shape, particle-particle interaction, geometry, and crystallinity. Notably, their heating ability makes them suitable candidates for heat-mediated cancer cell ablation or hyperthermia therapy. Exposing SPIONs to an externally applied magnetic field of appropriate frequency and intensity causes them to release heat to ablate cancer cells. Majorly, three heating mechanisms are exhibited by magnetic nanomaterials: Nèel relaxation, Brownian relaxation, and hysteresis losses. In SPIONs, Nèel and Brownian relaxations dominate, whereas hysteric losses are negligible. These nanomaterials possess high magnetization values capable of generating heat to ablate cancer cells. Furthermore, surface functionalization of these materials imparts the ability to selectively target cancer cells and deliver cargo to the affected area sparing the normal body cells. The surface of nanoparticles can be functionalized with various physical, chemical, and biological coatings. Moreover, hyperthermia can be applied in combination with other cancer treatment modalities in order to enhance the efficiency of treatment.

18.
Protein J ; 42(6): 766-777, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37552387

RESUMO

Paired box 4 (PAX4) is a pivotal transcription factor involved in pancreatogenesis during embryogenesis, and in adults, it is key for ß-cell proliferation and survival. Additionally, PAX4 also functions as a tumor suppressor protein in human melanomas. The present study demonstrates the production of bioactive recombinant human PAX4 transcription factor. At first, the inserts (PAX4 protein-coding sequence having tags at either ends) were cloned in an expression vector to give rise to pET28a(+)-HTN-PAX4 and pET28a(+)-PAX4-NTH genetic constructs, and these were then transformed into Escherichia coli (E. coli) for their expression. The HTN-PAX4 and PAX4-NTH fusion proteins produced were purified with a yield of ~ 3.15 mg and ~ 0.83 mg, respectively, from 1.2 L E. coli culture. Further, the secondary structure retention of the PAX4 fusion proteins and their potential to internalize the mammalian cell and its nucleus was demonstrated. The bioactivity of these fusion proteins was investigated using various assays (cell migration, cell proliferation and cell cycle assays), demonstrating it to function as a tumor suppressor protein. Thus, this macromolecule can prospectively help understand the function of human PAX4 in cellular processes, disease-specific investigations and direct cellular reprogramming.

19.
Cell Biochem Biophys ; 81(1): 39-47, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36462131

RESUMO

Pex30 is a peroxisomal protein whose role in peroxisome biogenesis via the endoplasmic reticulum has been established. It is a 58 KDa multi-domain protein that facilitates contact site formation between various organelles. The present study aimed to investigate the role of various domains of the protein in its sub-cellular localization and regulation of peroxisome number. For this, we created six truncations of the protein (1-87, 1-250, 1-352, 88-523, 251-523 and 353-523) and tagged GFP at the C-terminus. Biochemical methods and fluorescence microscopy were used to characterize the effect of truncation on expression and localization of the protein. Quantitative analysis was performed to determine the effect of truncation on peroxisome number in these cells. Expression of the truncated variants in cells lacking PEX30 did not cause any effect on cell growth. Interestingly, variable expression and localization of the truncated variants in both peroxisome-inducing and non-inducing medium was observed. Truncated variants depicted different distribution patterns such as punctate, reticulate and cytosolic fluorescence. Interestingly, lack of the complete dysferlin domain or C-Dysf resulted in increased peroxisome number similar to as reported for cells lacking Pex30. No contribution of this domain in the reticulate distribution of the proteins was also observed. Our results show an interesting role for the various domains of Pex30 in localization and regulation of peroxisome number.


Assuntos
Proteínas de Membrana , Proteínas de Saccharomyces cerevisiae , Proteínas de Membrana/genética , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Peroxissomos/química , Peroxissomos/metabolismo , Peroxissomos/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/metabolismo
20.
Stem Cell Res ; 71: 103159, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37392703

RESUMO

Adult human primary dermal fibroblasts [ATCC (PCS-201-012)] were reprogrammed by transfection of oriP/EBNA-1 based episomal plasmids expressing OCT3/4, SOX2, KLF4, L-MYC, LIN28 and a p53 shRNA (Okita et al., 2011) to give rise to induced pluripotent stem cells (iPSCs). These iPSCs expressed core pluripotency markers, maintained normal karyotype, and showed tri-lineage differentiation potential. Further, the absence of episomal plasmid integration in this iPSC line was confirmed by genomic PCR. In addition, DNA fingerprinting of fibroblast and iPSC DNA by microsatellite analysis confirmed the genetic identity of this cell line. This iPSC line was shown to be free from mycoplasma contamination.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Adulto , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Linhagem Celular , Diferenciação Celular , Fibroblastos/metabolismo , Reprogramação Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA