Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Molecules ; 27(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36557812

RESUMO

Leishmaniasis is the 3rd most challenging vector-borne disease after malaria and lymphatic filariasis. Currently, no vaccine candidate is approved or marketed against leishmaniasis due to difficulties in eliciting broad immune responses when using sub-unit vaccines. The aim of this work was the design of a particulate sub-unit vaccine for vaccination against leishmaniasis. The poly (D,L-lactide) nanoparticles (PLA-NPs) were developed in order to efficiently adsorb a recombinant L. major histone H2B (L. major H2B) and to boost its immunogenicity. Firstly, a study was focused on the production of well-formed nanoparticles by the nanoprecipitation method without using a surfactant and on the antigen adsorption process under mild conditions. The set-up preparation method permitted to obtain H2B-adsorbed nanoparticles H2B/PLA (adsorption capacity of about 2.8% (w/w)) with a narrow size distribution (287 nm) and a positive zeta potential (30.9 mV). Secondly, an in vitro release assay performed at 37 °C, pH 7.4, showed a continuous release of the adsorbed H2B for almost 21 days (30%) from day 7. The immune response of H2B/PLA was investigated and compared to H2B + CpG7909 as a standard adjuvant. The humoral response intensity (IgG) was substantially similar between both formulations. Interestingly, when challenged with the standard parasite strain (GLC94) isolated from a human lesion of cutaneous leishmaniasis, mice showed a significant reduction in footpad swelling compared to unvaccinated ones, and no deaths occurred until week 17th. Taken together, these results demonstrate that PLA-NPs represent a stable, cost-effective delivery system adjuvant for use in vaccination against leishmaniasis.


Assuntos
Leishmania major , Leishmaniose Cutânea , Nanopartículas , Vacinas , Humanos , Animais , Camundongos , Adjuvantes de Vacinas , Poliésteres , Leishmaniose Cutânea/prevenção & controle , Leishmaniose Cutânea/parasitologia , Adjuvantes Imunológicos , Histonas , Camundongos Endogâmicos BALB C , Antígenos de Protozoários
2.
Anal Chem ; 93(35): 12041-12048, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34431672

RESUMO

Because of its speed, sensitivity, and ability to scrutinize individual species, mass spectrometry (MS) has become an essential tool in analytical strategies aimed at studying the degradation behavior of polyesters. MS analyses can be performed prior to the degradation event for structural characterization of initial substrates or after it has occurred to measure the decreasing size of products as a function of time. Here, we show that MS can also be usefully employed during the degradation process by online monitoring the chain solvolysis induced by reactive desorption electrospray ionization (DESI). Cleavage of ester bonds in random copolymers of lactic acid (LA) and glycolic acid (GA) was achieved by electrospraying methanol-containing NaOH onto the substrates. Experimental conditions were optimized to generate methanolysis products of high abundance so that mass spectra can be conveniently processed using Kendrick-based approaches. The same reactive-DESI performance was demonstrated for two sample preparations, solvent casting for soluble samples or pressed pellets for highly crystalline substrates, permitting to compare polymers with LA/GA ratios ranging from 100/0 to 5/95. Analysis of sample fractions collected by size exclusion chromatography showed that methanolysis occurs independently of the original chain size, so data recorded for poly(LA-co-GA) (PLAGA) copolymers with the average molecular weight ranging from 10 to 180 kDa could be safely compared. The average mass of methanolysis products was observed to decrease linearly (R2 = 0.9900) as the GA content increases in PLAGA substrates, consistent with the susceptibility of ester bonds toward solvolysis being higher in GA than in LA. Because DESI only explores the surface of solids, these data do not reflect bulk degradability of the copolymers but, instead, their relative degradability at the molecular level. Based on a "reactive-DESI degradability scale" such as that established here for PLAGA, the proposed method offers interesting perspectives to qualify intrinsic degradability of different polyesters and evaluate their erosion susceptibility or to determine the degradability of those polymers known to degrade via erosion only.


Assuntos
Glicóis , Espectrometria de Massas por Ionização por Electrospray , Peso Molecular , Poliésteres , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
3.
Pharm Res ; 37(2): 30, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31915939

RESUMO

PURPOSE: mRNA has recently emerged as a potent therapeutics and requires safe and effective delivery carriers, particularly prone to address its issues of poor stability and escape from endosomes. In this context, we designed poly(D,L-lactide) (PLA)-based micelles with N-succinimidyl (NS) ester decorated hydrophilic hairy corona to trap/couple a cationic fusogenic peptide and further complex mRNA. METHODS: Two strategies were investigated, namely (i) sequential immobilization of peptide and mRNA onto the micelles (layer-by-layer, LbL) or (ii) direct immobilization of peptide-mRNA pre-complex (PC) on the micelles. After characterization by means of size, surface charge, peptide/mRNA coupling/complexation and mRNA serum stability, carrier cytotoxicity and transfection capacity were evaluated with dendritic cells (DCs) using both GFP and luciferase mRNAs. RESULTS: Whatever the approach used, the micellar assemblies afforded full protection of mRNA in serum while the peptide-mRNA complex yielded complete mRNA degradation. In addition, the micellar assemblies allowed to significantly reduce the toxicity observed with the peptide-mRNA complex. They successfully transfected hard-to transfect DCs, with a superior efficiency for the LbL made ones (whatever mRNAs studied) showing the impact of the elaboration process on the carrier properties. CONCLUSIONS: These results show the relevance and potential of this new PLA/peptide based micelle platform to improve mRNA stability and delivery, while offering the possibility of further multifunctionality through PLA core encapsulation.


Assuntos
Portadores de Fármacos/química , Peptídeos/química , Poliésteres/química , Povidona/análogos & derivados , RNA Mensageiro/química , Animais , Linhagem Celular , Sobrevivência Celular , Estabilidade de Medicamentos , Expressão Gênica , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Micelas , Povidona/química , RNA Mensageiro/genética , Transfecção
4.
Biomacromolecules ; 20(1): 149-163, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30376309

RESUMO

Injectable hydrogels are promising platforms for tissue engineering and local drug delivery as they allow minimal invasiveness. We have here developed an injectable and biodegradable hydrogel based on an amphiphilic PNIPAAm- b-PLA- b-PEG- b-PLA- b-PNIPAAm pentablock copolymer synthesized by ring-opening polymerization/nitroxide-mediated polymerization (ROP/NMP) combination. The hydrogel formation at around 30 °C was demonstrated to be mediated by intermicellar bridging through the PEG central block. Such a result was particularly highlighted by the inability of a PEG- b-PLA- b-PNIPAAm triblock analog of the same composition to gelify. The hydrogels degraded through hydrolysis of the PLA esters until complete mass loss due to the diffusion of the recovered PEG and PNIPAAm/micelle based residues in the solution. Interestingly, hydrophobic molecules such as riluzole (neuroprotective drug) or cyanine 5.5 (imaging probe) could be easily loaded in the hydrogels' micelle cores by mixing them with the copolymer solution at room temperature. Drug release was correlated to polymer mass loss. The hydrogel was shown to be cytocompatible (neuronal cells, in vitro) and injectable through a small-gauge needle (in vivo in rats). Thus, this hydrogel platform displays highly attractive features for use in brain/soft tissue engineering as well as in drug delivery.


Assuntos
Plásticos Biodegradáveis/síntese química , Portadores de Fármacos/química , Hidrogéis/química , Resinas Acrílicas/química , Animais , Plásticos Biodegradáveis/efeitos adversos , Células Cultivadas , Portadores de Fármacos/efeitos adversos , Liberação Controlada de Fármacos , Células HEK293 , Humanos , Hidrogéis/efeitos adversos , Micelas , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/química , Poliésteres/química , Polietilenoglicóis/química , Ratos , Riluzol/administração & dosagem , Riluzol/química , Tensoativos/efeitos adversos , Tensoativos/síntese química
5.
Chemistry ; 24(15): 3699-3702, 2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-29314308

RESUMO

A catalyst/initiator-free radical addition reaction performed under mild conditions (water, 30 °C) with high yields is reported for the first time. This reaction implies simple pH-mediated alkoxyamine dissociation followed by addition onto olefinic substrates. The versatility and relevance of this selective reaction for macromolecular conjugation and engineering are shown through the syntheses of block copolymers, as well as hydrogels containing in situ-loaded proteins, which could retain biological activity. This contrasts with standard thermal radical conditions that lead to complete protein inactivation.


Assuntos
Hidrogéis/química , Substâncias Macromoleculares/química , Alcenos/química , Catálise , Radicais Livres/química , Polímeros/química , Água
6.
Pharm Res ; 32(1): 311-20, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25248333

RESUMO

PURPOSE: Activation of immune cells through pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs) or NOD-like receptors (NLRs), has been identified as a key issue in the development of new efficient vaccine adjuvants. We report here on the elaboration and immunostimulatory potential of polylactide (PLA)-based micelles core-loaded with imiquimod TLR7 ligand and able to be further surface-functionalized with antigenic protein (HIV-1 Gag p24) for antigen delivery purpose. METHODS: Micelles prepared from poly(D,L-lactide)-b-poly(N-acryloxysuccinimide-co-N-vinylpyrrolidone) amphiphilic copolymer were incubated in the presence of imiquimod, leading to 1.2 wt% loading, and further conjugated to p24 antigen through reaction of p24 lysines and N-terminal amine with the N-succinimidyl pendant groups of the micelle corona. The impact of imiquimod encapsulation in the micelles on its immunostimulatory properties was investigated in vitro, by monitoring: (i) the NF-κB and mitogen-activated protein kinases (MAPK) pathways through experiments with RAW-Blue™ cells, a mouse macrophage cell line encoding an NF-κB/AP-1-inducible reporter construct; (ii) human dendritic cells (DCs) maturation markers by flow cytometry. RESULTS: RAW-Blue™ cells based experiments showed that imiquimod encapsulated in the micelles was much more efficient to activate the NF-κB and MAPK pathways than free imiquimod. Furthermore, encapsulated imiquimod was found to induce much higher maturation of DCs than the free analog. Finally, these immunostimulatory properties of the loaded imiquimod were shown to be conserved when the p24 antigen was coupled at the micelle surface. CONCLUSIONS: Taken together, these data regarding improved immunostimulatory efficiency suggest the strong potential of our micelle-based nano-system for vaccine delivery.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Aminoquinolinas/administração & dosagem , Portadores de Fármacos/química , Poliésteres/química , Povidona/análogos & derivados , Vacinas/administração & dosagem , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Aminoquinolinas/química , Aminoquinolinas/imunologia , Aminoquinolinas/farmacologia , Animais , Linhagem Celular , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Liberação Controlada de Fármacos , Citometria de Fluxo , Proteína do Núcleo p24 do HIV/imunologia , Humanos , Imiquimode , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Micelas , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Tamanho da Partícula , Povidona/química , Propriedades de Superfície
7.
Pharmaceutics ; 15(10)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37896241

RESUMO

Historically used for the delivery of hydrophobic drugs through core encapsulation, amphiphilic copolymer micelles have also more recently appeared as potent nano-systems to deliver protein and peptide therapeutics. In addition to ease and reproducibility of preparation, micelles are chemically versatile as hydrophobic/hydrophilic segments can be tuned to afford protein immobilization through different approaches, including non-covalent interactions (e.g., electrostatic, hydrophobic) and covalent conjugation, while generally maintaining protein biological activity. Similar to many other drugs, protein/peptide delivery is increasingly focused on stimuli-responsive nano-systems able to afford triggered and controlled release in time and space, thereby improving therapeutic efficacy and limiting side effects. This short review discusses advances in the design of such micelles over the past decade, with an emphasis on stimuli-responsive properties for optimized protein/peptide delivery.

8.
Chemistry ; 18(25): 7916-24, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-22573602

RESUMO

A sample pretreatment was evaluated to enable the production of intact cationic species of synthetic polymers holding a labile end-group using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. More specifically, polymers obtained by nitroxide-mediated polymerization involving the MAMA-SG1 alkoxyamine were stirred for a few hours in trifluoroacetic acid (TFA) to induce the substitution of a tert-butyl group on the nitrogen of nitroxide end-group by a hydrogen atom. Nuclear magnetic resonance, electrospray ionization tandem mass spectrometry, and theoretical calculations were combined to scrutinize this sample pretreatment from both mechanistic and energetic points of view. The substitution reaction was found to increase the dissociation energy of the fragile C-ON bond to a sufficient extent to prevent this bond to be spontaneously cleaved during MALDI analysis. This TFA treatment is shown to be very efficient regardless of the nature of the polymer, as evidenced by reliable MALDI mass spectrometric data obtained for poly(ethylene oxide), polystyrene and poly(butylacrylate).

9.
Pharmaceutics ; 14(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35057003

RESUMO

Micelles from amphiphilic polylactide-block-poly(N-acryloxysuccinimide-co-N-vinylpyrrolidone) (PLA-b-P(NAS-co-NVP)) block copolymers of 105 nm in size were characterized and evaluated in a vaccine context. The micelles were non-toxic in vitro (both in dendritic cells and HeLa cells). In vitro fluorescence experiments combined with in vivo fluorescence tomography imaging, through micelle loading with the DiR near infrared probe, suggested an efficient uptake of the micelles by the immune cells. The antigenic protein p24 of the HIV-1 was successfully coupled on the micelles using the reactive N-succinimidyl ester groups on the micelle corona, as shown by SDS-PAGE analyses. The antigenicity of the coupled antigen was preserved and even improved, as assessed by the immuno-enzymatic (ELISA) test. Then, the performances of the micelles in immunization were investigated and compared to different p24-coated PLA nanoparticles, as well as Alum and MF59 gold standards, following a standardized HIV-1 immunization protocol in mice. The humoral response intensity (IgG titers) was substantially similar between the PLA micelles and all other adjuvants over an extended time range (one year). More interestingly, this immune response induced by PLA micelles was qualitatively higher than the gold standards and PLA nanoparticles analogs, expressed through an increasing avidity index over time (>60% at day 365). Taken together, these results demonstrate the potential of such small-sized micellar systems for vaccine delivery.

10.
Adv Colloid Interface Sci ; 294: 102483, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34274723

RESUMO

Micelles from self-assembled amphiphilic copolymers are highly attractive in drug delivery, due to their small size and hydrophilic stealth corona allowing prolonged lifetimes in the bloodstream and thus improved drug bioavailability. Polylactide (PLA)-based amphiphilic copolymer micelles are key candidates in this field, owing to the well-established biodegradability and biocompatibility of PLA. While PLA-b-poly(ethylene glycol) (PEG) block copolymer micelles can be seen as the "gold standard" in drug delivery research so far, the progresses in controlled radical polymerizations (Atom Transfer Radical Polymerization, Reversible Addition-Fragmentation Transfer and Nitroxide Mediated Polymerization) have offered new opportunities in the design of advanced amphiphilic copolymers for drug delivery due to their flexibility in many regards: (i) they can be easily combined with ring-opening polymerization (ROP) of lactide, with a diversity in types of architectures (e.g., block, graft, star), (ii) they allow (co)polymerization of a wide range of vinyl monomers, possibly circumventing PEG limitations, (iii) functionalization (with biomolecules or stimuli-cleavable moieties) is versatile due to end-group fidelity and copolymerization ability with reactive/functional comonomers. In this review, we report on the advances in the past decade of such amphiphilic PLA/vinyl polymer based nano-carriers, regarding key properties such as stealth character, cell targeting and stimuli-responsiveness.


Assuntos
Poliésteres , Polímeros , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Micelas , Polietilenoglicóis
11.
ACS Omega ; 5(18): 10247-10259, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32426581

RESUMO

Spinal cord injury is a main health issue, leading to multiple functional deficits with major consequences such as motor and sensitive impairment below the lesion. To date, all repair strategies remain ineffective. In line with the experiments showing that implanted hydrogels, immunologically inert biomaterials, from natural or synthetic origins, are promising tools and in order to reduce functional deficits, to increase locomotor recovery, and to reduce spasticity, we injected into the lesion area, 1 week after a severe T10 spinal cord contusion, a thermoresponsive physically cross-linked poly(N-isopropylacrylamide)-poly(ethylene glycol) copolymer hydrogel. The effect of postinjury intensive rehabilitation training was also studied. A group of male Sprague-Dawley rats receiving the hydrogel was enrolled in an 8 week program of physical activity (15 min/day, 5 days/week) in order to verify if the combination of a treadmill step-training and hydrogel could lead to better outcomes. The data obtained were compared to those obtained in animals with a spinal lesion alone receiving a saline injection with or without performing the same program of physical activity. Furthermore, in order to verify the biocompatibility of our designed biomaterial, an inflammatory reaction (interleukin-1ß, interleukin-6, and tumor necrosis factor-α) was examined 15 days post-hydrogel injection. Functional recovery (postural and locomotor activities and sensorimotor coordination) was assessed from the day of injection, once a week, for 9 weeks. Finally, 9 weeks postinjection, the spinal reflexivity (rate-dependent depression of the H-reflex) was measured. The results indicate that the hydrogel did not induce an additional inflammation. Furthermore, we observed the same significant locomotor improvements in hydrogel-injected animals as in trained saline-injected animals. However, the combination of hydrogel with exercise did not show higher recovery compared to that evaluated by the two strategies independently. Finally, the H-reflex depression recovery was found to be induced by the hydrogel and, albeit to a lesser degree, exercise. However, no recovery was observed when the two strategies were combined. Our results highlight the effectiveness of our copolymer and its high therapeutic potential to preserve/repair the spinal cord after lesion.

12.
Polymers (Basel) ; 12(4)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316376

RESUMO

Thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm)-based injectable hydrogels represent highly attractive materials in tissue engineering and drug/vaccine delivery but face the problem of long-term bioaccumulation due to non-degradability. In this context, we developed an amphiphilic poly(D,L-lactide)-b-poly(NIPAAm-co-polyethylene glycol methacrylate) (PLA-b-P(NIPAAm-co-PEGMA)) copolymer architecture, through a combination of ring-opening and nitroxide-mediated polymerizations, undergoing gelation in aqueous solution near 30 °C. Complete hydrogel mass loss was observed under physiological conditions after few days upon PLA hydrolysis. This was due to the inability of the resulting P(NIPAAm-co-PEGMA) segment, that contains sufficiently high PEG content, to gel. The copolymer was shown to be non-toxic on dendritic cells. These results thus provide a new way to engineer safe PNIPAAm-based injectable hydrogels with PNIPAAm-reduced content and a degradable feature.

13.
Mater Sci Eng C Mater Biol Appl ; 107: 110354, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31761180

RESUMO

In line with experiments showing that implanted hydrogels are promising tools, we designed and injected, after a C2 spinal cord hemisection, a thermoresponsive and thermoreversible physically cross-linked poly(N-isopropylacrylamide)-poly(ethylene glycol) copolymer in order to reduce functional deficits and provide a favorable environment to axotomized axons. Nasal olfactory ecto-mesenchymal stem cells were cultured on the hydrogel in order to verify its biocompatibility. Then, inflammatory reaction (Interleukin-1ß and 6, Tumor Necrosis Factor-α) was examined 15 days post-hydrogel injection. Functional recovery (postural and locomotor activities, muscle strength and tactile sensitivity) was assessed once a week, during 12 weeks. Finally, at 12 weeks post-injection, spinal reflexivity and ventilatory adjustments were measured, and the presence of glial cells and regenerated axons were determined in the injured area. Our results indicate that cells survived and proliferated on the hydrogel which, itself, did not induce an enhanced inflammation. Furthermore, we observed significant motor and sensitive improvements in hydrogel-injected animals. Hydrogel also induced H-reflex recovery close to control animals but no improved ventilatory adjustment to electrically-evoked isometric contractions. Finally, regrowing axons were visualized within the hydrogel with no glial cells colonization. Our results emphasize the effectiveness of our copolymer and its high therapeutic potential to repair the spinal cord after injury.


Assuntos
Hidrogéis/química , Hidrogéis/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Resinas Acrílicas/química , Animais , Axônios/efeitos dos fármacos , Proliferação de Células , Reagentes de Ligações Cruzadas/química , Eletrofisiologia , Feminino , Hidrogéis/administração & dosagem , Injeções Espinhais , Teste de Materiais , Células-Tronco Mesenquimais/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Mielite/tratamento farmacológico , Mielite/patologia , Polietilenoglicóis/química , Ratos Sprague-Dawley , Reflexo/efeitos dos fármacos , Medula Espinal/patologia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/fisiopatologia
14.
Biomacromolecules ; 10(6): 1436-45, 2009 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-19397259

RESUMO

SG1-based poly(d,l-lactide) (PLA) or poly(epsilon-caprolactone) (PCL) macro-alkoxyamines were synthesized and further used as macroinitiators for nitroxide-mediated polymerization (NMP) of 2-hydroxyethyl (meth)acrylate (HE(M)A) to obtain the corresponding PLA- or PCL-PHE(M)A block copolymers. First, a PLA-SG1 macro-alkoxyamine was prepared by 1,2-intermolecular radical addition (IRA) of the MAMA-SG1 (BlocBuilder) alkoxyamine onto acrylate end-capped PLA previously prepared by ring-opening polymerization. The NMP of HEA monomer from the PLA-SG1 macro-alkoxyamine appeared to be well controlled in the presence of free SG1 nitroxide, contrary to that of HEMA. In the latter case, adjustable molecular weights could be obtained by varying the HEMA to macro-alkoxyamine ratio. The versatility of our approach was then further applied to the preparation of PHEMA-b-PCL-b-PHEMA copolymers from a alpha,omega-di-SG1 functionalized PCL macro-alkoxyamine previously obtained from a PCL diacrylate by IRA. Preliminary studies of neuroblast cultures on these PCL-based copolymer films showed acceptable cyto-compatibility, demonstrating their potential for nerve repair applications.


Assuntos
Materiais Biocompatíveis , Poliésteres/química , Animais , Células Cultivadas , Cromatografia em Gel , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Espectrofotometria Ultravioleta
15.
Eur J Pharm Biopharm ; 142: 232-239, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31229673

RESUMO

Subunit vaccines using recombinant antigens appear as the privileged vaccination technology for safety reasons but still require the development of carriers/adjuvants ensuring optimal immunogenicity and efficacy. Micelles from self-assembled amphiphilic copolymers have recently emerged as highly relevant and promising candidates owing to their ease of preparation, low size (entering in lymphatic capillaries for reaching lymph nodes), size/surface tunability and chemical versatility enabling introduction of stimuli (e.g. pH) responsive features and biofunctionalization with dedicated molecules. In particular, research efforts have increasingly focused on dendritic cells (DCs) targeting and activation by co-delivering (with antigen) ligands of pattern recognition receptors (PRRs, e.g. toll-like receptors). Such strategy has appeared as one of the most effective for eliciting CD 8+ T-cell response, which is crucial in the eradication of tumors and numerous infectious diseases. In this short review, we highlight the recent advances in such micelle-based carriers in subunit vaccination and how their precise engineering can be a strong asset for guiding and controlling immune responses.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Polímeros/química , Tensoativos/química , Animais , Portadores de Fármacos/química , Humanos , Imunoterapia/métodos , Micelas , Vacinas de Subunidades Antigênicas/química
16.
Curr Med Chem ; 25(20): 2385-2400, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29189122

RESUMO

BACKGROUND: Over the last decades, synthetic polymer-based electrospun nano/microfibers have emerged as potent materials in crucial biomedical applications such as tissue engineering, drug delivery and diagnostics. This is mainly attributed to versatility and reproducibility of the electrospinning (ES) process, as well as the high surface- to-volume ratio of the generated nanostructures. Appropriate functionalization with dedicated biomolecules (i.e. cell adhesive peptides, therapeutic molecules, bio-probes) is a critical requirement for the performances of such materials in their related application. METHODS: We report on the different chemical methodologies for preparing biofunctionalized synthetic polymer fibers, on the basis of two main approaches: biomolecule introduction after ES process (post-ES) and before ES (pre-ES). We then focused on the latest implications of such materials in areas of tissue engineering, drug delivery and diagnostics. RESULTS: This review describes the numerous immobilization strategies (either covalent or non-covalent) developed for designing biofunctionalized fibers, as well as their impact on their properties in dedicated application. The inputs of advanced conjugation tools ("clickable" chemistries, PEG linkers) for biofunctionalization are also highlighted. In the light of the literature, it appears that increasing research efforts are now devoted to multifunctional character and fiber combination with other materials (hydrogels, inorganic particles, microfluidic devices) for improved and tunable performances. CONCLUSION: Owing to flexibility and robustness of ES process as well as advances in conjugation and polymer/material engineering, high degree of control over biofunctionalization can now be achieved, to fit as best as possible the requirements of the targeted application. The performances reached up to now augur well for the future of such class of materials.


Assuntos
Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos , Polímeros/química , Engenharia Tecidual , Materiais Biocompatíveis/síntese química , Humanos , Polímeros/síntese química
17.
J Biomed Mater Res A ; 80(1): 55-65, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16958050

RESUMO

Poly(hexyl-substituted lactides) (PHLA) as new hydrophobic polyesters with controlled molecular weights and narrow distributions were synthesized by ring-opening polymerization (ROP) using tin(II) 2-ethylhexanoate (Sn(Oct)(2)) and benzyl alcohol as catalyst and initiator. Glass transition temperatures (T(g)) and zero shear viscosities (eta(0)) at 25 degrees C could be modulated from T(g)= -42 degrees C to -10 degrees C and 40 to 4850 Pa s, respectively, by varying the polymer molecular weight and the number of hexyl groups along the polymer chain. Degradation studies were performed in terms of both mass and molecular weight loss in the course of time. The degradation mechanism is shown to be of the "bulk erosion" type, and comparable to standard poly(D,L-lactide) (PLA). Despite the increased steric hindrance in the poly(monohexyl-substituted lactide) (PmHLA) due to the hexyl side groups, its degradation rate at pH 7.4 and 37 degrees C was found to be slightly higher than observed for the analogue standard PLA. This could be attributed to the flexible rubbery state of the hexyl-substituted polymer (T(g) approximately -15 degrees C) at the physiological temperature, which is favoring the degradation in comparison to the rigid and glassy standard PLA (T(g) approximately 40 degrees C). In contrast, degradation studies performed at 60 degrees C, where both polymers are above their glass transition temperature, confirmed that the degradation rate is lower for the sterically more hindered PmHLA. The degradation products were analyzed by ESI-MS. Hydrolysis lead first to the corresponding oligo-ester fragments and finally to the nontoxic 2-hydroxyoctanoic acid and lactic acid. Tetracycline was tested as a model drug for release studies. This drug was found to be released faster and in higher amounts in its active form from the PHLA matrix than from standard PLA. The results presented in this work demonstrate the potential of these hydrophobic polylactide-based semisolid materials as an alternative to conventional PLA/PLGA for injectable drug delivery systems.


Assuntos
Materiais Biocompatíveis/síntese química , Poliésteres/síntese química , Antibacterianos/química , Materiais Biocompatíveis/química , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/química , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Poliésteres/química , Tetraciclina/química
18.
Chem Commun (Camb) ; 53(57): 8062-8065, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28674711

RESUMO

An antigen probe (HIV-1 p24) immobilized onto N-succinimidyl ester based micelles was used as a solid phase coating in ELISA test, and induced a significant improvement in antibody detection sensitivity as compared to the standard free antigen coating. The relevance of this straightforward approach to improve the bioassay sensitivity was confirmed by using biotin as a generic probe.


Assuntos
Anticorpos/análise , Anticorpos/imunologia , Biotina/química , Ensaio de Imunoadsorção Enzimática/métodos , Proteína do Núcleo p24 do HIV/química , Proteína do Núcleo p24 do HIV/imunologia , Micelas , Sondas Moleculares/química , Humanos , Sondas Moleculares/imunologia
19.
Int J Pharm ; 319(1-2): 147-54, 2006 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-16713691

RESUMO

Novel amphiphilic methoxy-poly(ethylene glycol)-poly(hexyl-substituted lactides) block copolymers were synthesized by ring-opening polymerization (ROP) of mono and dihexyl-substituted lactide (mHLA and diHLA) in bulk at 100 degrees C in the presence of tin(II) 2-ethylhexanoate (Sn(Oct)(2)) as catalyst and methoxy-poly(ethylene glycol) (MPEG) as initiator. MPEG-PmHLA and MPEG-PdiHLA copolymers of predictable molecular weights and narrow polydispersities were obtained, as shown by (1)H NMR and GPC. DSC experiments showed that the MPEG-PHLA block-copolymer presents a bulk microstructure containing MPEG domains segregated from the PHLA domains. Micelles were successfully prepared from these block copolymers, with sizes ranging from 30 to 80 nm. The critical micellar concentration (CMC) was found to decrease with the increasing number of hexyl groups on the polyester block (MPEG-PLA > MPEG-PmHLA > MPEG-PdiHLA) for copolymers of the same composition and molecular weight. The hydrophobicity of the micelle core in dependence of the number of hexyl groups along the PLA chain was evidenced by absorbance experiments with the incorporation of the dye Nile Red. These novel amphiphilic copolymers are interesting for micellar drug delivery and especially in regard to optimized hydrophobic drug loadings, as it was shown for griseofulvin as a model drug.


Assuntos
Portadores de Fármacos , Micelas , Poliésteres/síntese química , Polímeros/síntese química , Antifúngicos/química , Varredura Diferencial de Calorimetria , Composição de Medicamentos , Corantes Fluorescentes/química , Griseofulvina/química , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Oxazinas/química , Tamanho da Partícula , Poliésteres/química , Polietilenoglicóis/química
20.
Colloids Surf B Biointerfaces ; 140: 142-149, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26752211

RESUMO

To develop bioactive scaffolds of targeted properties for tissue repair or biomedical applications, hybrid microfiber-nanoparticle (MF-NP) matrices capable of controlled nanoparticle (NP) delivery were prepared through two novel approaches. In a first strategy, the suppleness of the jet-spraying method to produce polymer microfibers (MF) was used to deposit poly(d,l-lactide) (PLA) NP on poly(lactic-co-glycolic acid) (PLGA) MF by direct co-projection. The second approach relied on the post-incubation of PLA NP aqueous dispersion with MF preliminarily prepared by jet-spraying. NP coverage density onto MF and NP release was assessed by scanning electron microscopy and fluorescence measurements using coumarin-6 loaded NP. The first process was shown to allow high coverage density of NP onto MF (300 µg/mg MF) and strong association, with no NP release observed over time. In the second approach, direct incubation of PLA NP with PLA MF led to lower NP coverage density (40 µg/mg MF) with very fast release of NP from MF. The pre-coating of MF with poly-l-lysine (PLL) or the one of NP with lysozyme as a model protein drug afforded a higher coverage density and stronger association, coupled with a more sustained release of NP from MF over time. These results show the possibility to control the immobilization density and release of NP through appropriate preparation process and surface modification, and are of prime interest for the development of complex scaffolds with orchestrated bioactivity.


Assuntos
Preparações de Ação Retardada/química , Ácido Láctico/química , Microfibrilas/química , Nanopartículas/química , Poliésteres/química , Ácido Poliglicólico/química , Adsorção , Cumarínicos/química , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Eletroforese em Gel de Poliacrilamida , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Muramidase/administração & dosagem , Muramidase/química , Muramidase/farmacocinética , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Propriedades de Superfície , Tiazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA