Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
N Engl J Med ; 389(8): 722-732, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37611122

RESUMO

BACKGROUND: Partial resistance of Plasmodium falciparum to the artemisinin component of artemisinin-based combination therapies, the most important malaria drugs, emerged in Southeast Asia and now threatens East Africa. Partial resistance, which manifests as delayed clearance after therapy, is mediated principally by mutations in the kelch protein K13 (PfK13). Limited longitudinal data are available on the emergence and spread of artemisinin resistance in Africa. METHODS: We performed annual surveillance among patients who presented with uncomplicated malaria at 10 to 16 sites across Uganda from 2016 through 2022. We sequenced the gene encoding kelch 13 (pfk13) and analyzed relatedness using molecular methods. We assessed malaria metrics longitudinally in eight Ugandan districts from 2014 through 2021. RESULTS: By 2021-2022, the prevalence of parasites with validated or candidate resistance markers reached more than 20% in 11 of the 16 districts where surveillance was conducted. The PfK13 469Y and 675V mutations were seen in far northern Uganda in 2016-2017 and increased and spread thereafter, reaching a combined prevalence of 10 to 54% across much of northern Uganda, with spread to other regions. The 469F mutation reached a prevalence of 38 to 40% in one district in southwestern Uganda in 2021-2022. The 561H mutation, previously described in Rwanda, was first seen in southwestern Uganda in 2021, reaching a prevalence of 23% by 2022. The 441L mutation reached a prevalence of 12 to 23% in three districts in western Uganda in 2022. Genetic analysis indicated local emergence of mutant parasites independent of those in Southeast Asia. The emergence of resistance was observed predominantly in areas where effective malaria control had been discontinued or transmission was unstable. CONCLUSIONS: Data from Uganda showed the emergence of partial resistance to artemisinins in multiple geographic locations, with increasing prevalence and regional spread over time. (Funded by the National Institutes of Health.).


Assuntos
Artemisininas , Resistência a Medicamentos , Malária , Parasitos , Proteínas de Protozoários , Animais , Humanos , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Benchmarking , Parasitos/efeitos dos fármacos , Parasitos/genética , Uganda/epidemiologia , Resistência a Medicamentos/genética , Malária/tratamento farmacológico , Malária/genética , Malária/parasitologia , Proteínas de Protozoários/genética
2.
J Infect Dis ; 225(4): 696-704, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34460932

RESUMO

BACKGROUND: The Plasmodium falciparum dihydrofolate reductase (PfDHFR) inhibitors pyrimethamine and cycloguanil (the active metabolite of proguanil) have important roles in malaria chemoprevention, but drug resistance challenges their efficacies. A new compound, P218, was designed to overcome resistance, but drug-susceptibility data for P falciparum field isolates are limited. METHODS: We studied ex vivo PfDHFR inhibitor susceptibilities of 559 isolates from Tororo and Busia districts, Uganda, from 2016 to 2020, sequenced 383 isolates, and assessed associations between genotypes and drug-susceptibility phenotypes. RESULTS: Median half-maximal inhibitory concentrations (IC50s) were 42 100 nM for pyrimethamine, 1200 nM for cycloguanil, 13000 nM for proguanil, and 0.6 nM for P218. Among sequenced isolates, 3 PfDHFR mutations, 51I (100%), 59R (93.7%), and 108N (100%), were very common, as previously seen in Uganda, and another mutation, 164L (12.8%), had moderate prevalence. Increasing numbers of mutations were associated with decreasing susceptibility to pyrimethamine, cycloguanil, and P218, but not proguanil, which does not act directly against PfDHFR. Differences in P218 susceptibilities were modest, with median IC50s of 1.4 nM for parasites with mixed genotype at position 164 and 5.7 nM for pure quadruple mutant (51I/59R/108N/164L) parasites. CONCLUSIONS: Resistance-mediating PfDHFR mutations were common in Ugandan isolates, but P218 retained excellent activity against mutant parasites.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária Falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Resistência a Medicamentos/genética , Antagonistas do Ácido Fólico/farmacologia , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum , Polimorfismo Genético , Proguanil/farmacologia , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Uganda
3.
Antimicrob Agents Chemother ; 66(4): e0143721, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35266828

RESUMO

We measured susceptibilities of Ugandan Plasmodium falciparum isolates assayed on the day of collection or after storage at 4°C. Samples were incubated with serial dilutions of 8 antimalarials, and susceptibilities were determined from 72-h growth inhibition assays. Storage was associated with decreased growth and lower 50% inhibitory concentration values, but differences between assays beginning on day 0 or after 1 or 2 days of storage were modest, indicating that short-term storage before drug susceptibility determination is feasible.


Assuntos
Antimaláricos , Malária Falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Resistência a Medicamentos , Humanos , Concentração Inibidora 50 , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum , Uganda
4.
Antimicrob Agents Chemother ; 66(10): e0081722, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36094216

RESUMO

The proteasome is a promising target for antimalarial chemotherapy. We assessed ex vivo susceptibilities of fresh Plasmodium falciparum isolates from eastern Uganda to seven proteasome inhibitors: two asparagine ethylenediamines, two macrocyclic peptides, and three peptide boronates; five had median IC50 values <100 nM. TDI8304, a macrocylic peptide lead compound with drug-like properties, had a median IC50 of 16 nM. Sequencing genes encoding the ß2 and ß5 catalytic proteasome subunits, the predicted targets of the inhibitors, and five additional proteasome subunits, identified two mutations in ß2 (I204T, S214F), three mutations in ß5 (V2I, A142S, D150E), and three mutations in other subunits. The ß2 S214F mutation was associated with decreased susceptibility to two peptide boronates, with IC50s of 181 nM and 2635 nM against mutant versus 62 nM and 477 nM against wild type parasites for MMV1579506 and MMV1794229, respectively, although significance could not be formally assessed due to the small number of mutant parasites with available data. The other ß2 and ß5 mutations and mutations in other subunits were not associated with susceptibility to tested compounds. Against culture-adapted Ugandan isolates, two asparagine ethylenediamines and the peptide proteasome inhibitors WLW-vinyl sulfone and WLL-vinyl sulfone (which were not studied ex vivo) demonstrated low nM activity, without decreased activity against ß2 S214F mutant parasites. Overall, proteasome inhibitors had potent activity against P. falciparum isolates circulating in Uganda, and genetic variation in proteasome targets was uncommon.


Assuntos
Antimaláricos , Plasmodium falciparum , Inibidores de Proteassoma , Humanos , Antimaláricos/farmacologia , Antimaláricos/química , Asparagina , Resistência a Medicamentos/genética , Etilenodiaminas/farmacologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Peptídeos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Complexo de Endopeptidases do Proteassoma/genética , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Uganda
5.
J Infect Dis ; 223(6): 985-994, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33146722

RESUMO

BACKGROUND: In Uganda, artemether-lumefantrine is recommended for malaria treatment and sulfadoxine-pyrimethamine for chemoprevention during pregnancy, but drug resistance may limit efficacies. METHODS: Genetic polymorphisms associated with sensitivities to key drugs were characterized in samples collected from 16 sites across Uganda in 2018 and 2019 by ligase detection reaction fluorescent microsphere, molecular inversion probe, dideoxy sequencing, and quantitative polymerase chain reaction assays. RESULTS: Considering transporter polymorphisms associated with resistance to aminoquinolines, the prevalence of Plasmodium falciparum chloroquine resistance transporter (PfCRT) 76T decreased, but varied markedly between sites (0-46% in 2018; 0-23% in 2019); additional PfCRT polymorphisms and plasmepsin-2/3 amplifications associated elsewhere with resistance to piperaquine were not seen. For P. falciparum multidrug resistance protein 1, in 2019 the 86Y mutation was absent at all sites, the 1246Y mutation had prevalence ≤20% at 14 of 16 sites, and gene amplification was not seen. Considering mutations associated with high-level sulfadoxine-pyrimethamine resistance, prevalences of P. falciparum dihydrofolate reductase 164L (up to 80%) and dihydropteroate synthase 581G (up to 67%) were high at multiple sites. Considering P. falciparum kelch protein propeller domain mutations associated with artemisinin delayed clearance, prevalence of the 469Y and 675V mutations has increased at multiple sites in northern Uganda (up to 23% and 41%, respectively). CONCLUSIONS: We demonstrate concerning spread of mutations that may limit efficacies of key antimalarial drugs.


Assuntos
Aminoquinolinas , Antimaláricos , Artemisininas , Resistência a Medicamentos , Antagonistas do Ácido Fólico , Plasmodium falciparum/efeitos dos fármacos , Aminoquinolinas/farmacologia , Antimaláricos/farmacologia , Artemisininas/farmacologia , Feminino , Antagonistas do Ácido Fólico/farmacologia , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Plasmodium falciparum/genética , Gravidez , Prevalência , Uganda/epidemiologia
6.
Antimicrob Agents Chemother ; 65(10): e0077121, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34339273

RESUMO

Among novel compounds under recent investigation as potential new antimalarial drugs are three independently developed inhibitors of the Plasmodium falciparum P-type ATPase (PfATP4): KAE609 (cipargamin), PA92, and SJ733. We assessed ex vivo susceptibilities to these compounds of 374 fresh P. falciparum isolates collected in Tororo and Busia districts, Uganda, from 2016 to 2019. Median IC50s were 65 nM for SJ733, 9.1 nM for PA92, and 0.5 nM for KAE609. Sequencing of pfatp4 for 218 of these isolates demonstrated many nonsynonymous single nucleotide polymorphisms; the most frequent mutations were G1128R (69% of isolates mixed or mutant), Q1081K/R (68%), G223S (25%), N1045K (16%), and D1116G/N/Y (16%). The G223S mutation was associated with decreased susceptibility to SJ733, PA92, and KAE609. The D1116G/N/Y mutations were associated with decreased susceptibility to SJ733, and the presence of mutations at both codons 223 and 1116 was associated with decreased susceptibility to PA92 and SJ733. In all of these cases, absolute differences in susceptibilities of wild-type (WT) and mutant parasites were modest. Analysis of clones separated from mixed field isolates consistently identified mutant clones as less susceptible than WT. Analysis of isolates from other sites demonstrated the presence of the G223S and D1116G/N/Y mutations across Uganda. Our results indicate that malaria parasites circulating in Uganda have a number of polymorphisms in PfATP4 and that modestly decreased susceptibility to PfATP4 inhibitors is associated with some mutations now present in Ugandan parasites.


Assuntos
Antimaláricos , Malária Falciparum , Adenosina Trifosfatases , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Resistência a Medicamentos/genética , Genótipo , Humanos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico , Uganda
7.
Malar J ; 20(1): 292, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193148

RESUMO

BACKGROUND: Anti-malarial drug resistance may be limited by decreased fitness in resistant parasites. Important contributors to resistance are mutations in the Plasmodium falciparum putative drug transporter PfMDR1. METHODS: Impacts on in vitro fitness of two common PfMDR1 polymorphisms, N86Y, which is associated with sensitivity to multiple drugs, and Y184F, which has no clear impact on drug sensitivity, were evaluated to study associations between resistance mediators and parasite fitness, measured as relative growth in competitive culture experiments. NF10 P. falciparum lines engineered to represent all PfMDR1 N86Y and Y184F haplotypes were co-cultured for 40 days, and the genetic make-up of the cultures was characterized every 4 days by pyrosequencing. The impacts of culture with anti-malarials on the growth of different haplotypes were also assessed. Lastly, the engineering of P. falciparum containing another common polymorphism, PfMDR1 D1246Y, was attempted. RESULTS: Co-culture results were as follows. With wild type (WT) Y184 fixed (N86/Y184 vs. 86Y/Y184), parasites WT and mutant at 86 were at equilibrium. With mutant 184 F fixed (N86/184F vs. 86Y/184F), mutants at 86 overgrew WT. With WT N86 fixed (N86/Y184 vs. N86/184F), WT at 184 overgrew mutants. With mutant 86Y fixed (86Y/Y184 vs. 86Y/184F), WT and mutant at 86 were at equilibrium. Parasites with the double WT were in equilibrium with the double mutant, but 86Y/Y184 overgrew N86/184F. Overall, WT N86/mutant 184F parasites were less fit than parasites with all other haplotypes. Parasites engineered for another mutation, PfMDR1 1246Y, were unstable in culture, with reversion to WT over time. Thus, the N86 WT is stable when accompanied by the Y184 WT, but incurs a fitness cost when accompanied by mutant 184F. Culturing in the presence of chloroquine favored 86Y mutant parasites and in the presence of lumefantrine favored N86 WT parasites; piperaquine had minimal impact. CONCLUSIONS: These results are consistent with those for Ugandan field isolates, suggest reasons for varied haplotypes, and highlight the interplay between drug pressure and fitness that is guiding the evolution of resistance-mediating haplotypes in P. falciparum.


Assuntos
Antimaláricos/farmacologia , Aptidão Genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação , Plasmodium falciparum/genética , Cloroquina/farmacologia , Haplótipos , Lumefantrina/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/farmacologia
8.
Proc Natl Acad Sci U S A ; 115(29): E6863-E6870, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29967165

RESUMO

We describe noncovalent, reversible asparagine ethylenediamine (AsnEDA) inhibitors of the Plasmodium falciparum proteasome (Pf20S) ß5 subunit that spare all active subunits of human constitutive and immuno-proteasomes. The compounds are active against erythrocytic, sexual, and liver-stage parasites, against parasites resistant to current antimalarials, and against P. falciparum strains from patients in Africa. The ß5 inhibitors synergize with a ß2 inhibitor in vitro and in mice and with artemisinin. P. falciparum selected for resistance to an AsnEDA ß5 inhibitor surprisingly harbored a point mutation in the noncatalytic ß6 subunit. The ß6 mutant was resistant to the species-selective Pf20S ß5 inhibitor but remained sensitive to the species-nonselective ß5 inhibitors bortezomib and carfilzomib. Moreover, resistance to the Pf20S ß5 inhibitor was accompanied by increased sensitivity to a Pf20S ß2 inhibitor. Finally, the ß5 inhibitor-resistant mutant had a fitness cost that was exacerbated by irradiation. Thus, used in combination, multistage-active inhibitors of the Pf20S ß5 and ß2 subunits afford synergistic antimalarial activity with a potential to delay the emergence of resistance to artemisinins and each other.


Assuntos
Antimaláricos/química , Plasmodium falciparum/enzimologia , Complexo de Endopeptidases do Proteassoma/química , Inibidores de Proteassoma/química , Proteínas de Protozoários/antagonistas & inibidores , Artemisininas/química , Bortezomib/química , Resistência Microbiana a Medicamentos , Humanos , Lactonas/química , Oligopeptídeos/química , Proteínas de Protozoários/química
9.
Angew Chem Int Ed Engl ; 60(17): 9279-9283, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33433953

RESUMO

Plasmodium falciparum proteasome (Pf20S) inhibitors are active against Plasmodium at multiple stages-erythrocytic, gametocyte, liver, and gamete activation stages-indicating that selective Pf20S inhibitors possess the potential to be therapeutic, prophylactic, and transmission-blocking antimalarials. Starting from a reported compound, we developed a noncovalent, macrocyclic peptide inhibitor of the malarial proteasome with high species selectivity and improved pharmacokinetic properties. The compound demonstrates specific, time-dependent inhibition of the ß5 subunit of the Pf20S, kills artemisinin-sensitive and artemisinin-resistant P. falciparum isolates in vitro and reduces parasitemia in humanized, P. falciparum-infected mice.


Assuntos
Antimaláricos/farmacologia , Desenvolvimento de Medicamentos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Animais , Antimaláricos/síntese química , Antimaláricos/química , Malária Falciparum/metabolismo , Camundongos , Modelos Moleculares , Conformação Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/enzimologia , Inibidores de Proteassoma/síntese química , Inibidores de Proteassoma/química
10.
Artigo em Inglês | MEDLINE | ID: mdl-30530597

RESUMO

Dihydroartemisinin-piperaquine (DHA-PQ) is under study for intermittent preventive treatment during pregnancy (IPTp), but it may accelerate selection for drug resistance. Understanding the relationships between piperaquine concentration, prevention of parasitemia, and selection for decreased drug sensitivity can inform control policies and optimization of DHA-PQ dosing. Piperaquine concentrations, measures of parasitemia, and Plasmodium falciparum genotypes associated with decreased aminoquinoline sensitivity in Africa (pfmdr1 86Y, pfcrt 76T) were obtained from pregnant Ugandan women randomized to IPTp with sulfadoxine-pyrimethamine (SP) or DHA-PQ. Joint pharmacokinetic/pharmacodynamic models described relationships between piperaquine concentration and the probability of genotypes of interest using nonlinear mixed effects modeling. An increase in the piperaquine plasma concentration was associated with a log-linear decrease in risk of parasitemia. Our models predicted that higher median piperaquine concentrations would be required to provide 99% protection against mutant infections than against wild-type infections (pfmdr1: N86, 9.6 ng/ml; 86Y, 19.6 ng/ml; pfcrt: K76, 6.5 ng/ml; 76T, 19.6 ng/ml). Comparing monthly, weekly, and daily dosing, daily low-dose DHA-PQ was predicted to result in the fewest infections and the fewest mutant infections per 1,000 pregnancies (predicted mutant infections for pfmdr1 86Y: SP monthly, 607; DHA-PQ monthly, 198; DHA-PQ daily, 1; for pfcrt 76T: SP monthly, 1,564; DHA-PQ monthly, 283; DHA-PQ daily, 1). Our models predict that higher piperaquine concentrations are needed to prevent infections with the pfmdr1/pfcrt mutant compared to those with wild-type parasites and that, despite selection for mutants by DHA-PQ, the overall burden of mutant infections is lower for IPTp with DHA-PQ than for IPTp with SP. (This study has been registered at ClinicalTrials.gov under identifier NCT02282293.).


Assuntos
Antimaláricos/farmacocinética , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Malária/prevenção & controle , Complicações Parasitárias na Gravidez/prevenção & controle , Quinolinas/uso terapêutico , Artemisininas/farmacocinética , Resistência a Medicamentos/fisiologia , Quimioterapia Combinada , Feminino , Humanos , Malária/tratamento farmacológico , Gravidez , Complicações Parasitárias na Gravidez/tratamento farmacológico , Quinolinas/farmacocinética , Uganda , Adulto Jovem
11.
J Infect Dis ; 216(8): 1008-1017, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28968782

RESUMO

Background: In a recent trial of intermittent preventive treatment in pregnancy (IPTp) in Uganda, dihydroartemisinin-piperaquine (DP) was superior to sulfadoxine-pyrimethamine (SP) in preventing maternal and placental malaria. Methods: We compared genotypes using sequencing, fluorescent microsphere, and quantitative polymerase chain reaction assays at loci associated with drug resistance in Plasmodium falciparum isolated from subjects receiving DP or SP. Results: Considering aminoquinoline resistance, DP was associated with increased prevalences of mutations at pfmdr1 N86Y, pfmdr1 Y184F, and pfcrt K76T compared to SP (64.6% vs 27.4%, P < .001; 93.9% vs 59.2%, P < .001; and 87.7% vs 75.4%, P = .03, respectively). Increasing plasma piperaquine concentration at the time of parasitemia was associated with increasing pfmdr1 86Y prevalence; no infections with the N86 genotype occurred with piperaquine >2.75 ng/mL. pfkelch13 propeller domain polymorphisms previously associated with artemisinin resistance were not identified. Recently identified markers of piperaquine resistance were uncommon and not associated with DP. Considering antifolate resistance, SP was associated with increased prevalence of a 5-mutation haplotype (pfdhfr 51I, 59R, and 108N; pfdhps 437G and 581G) compared to DP (90.8% vs 60.0%, P = .001). Conclusions: IPTp selected for genotypes associated with decreased sensitivity to treatment regimens, but genotypes associated with clinically relevant DP resistance in Asia have not emerged in Uganda.


Assuntos
Antimaláricos/uso terapêutico , Resistência a Medicamentos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/genética , Polimorfismo Genético/genética , Artemisininas/uso terapêutico , Combinação de Medicamentos , Feminino , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Gravidez , Pirimetamina/uso terapêutico , Quinolinas , Sulfadoxina/uso terapêutico
12.
J Infect Dis ; 215(4): 631-635, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28039354

RESUMO

We assessed Plasmodium falciparum drug resistance markers in parasites collected in 2012, 2013, and 2015 at 3 sites in Uganda. The prevalence and frequency of parasites with mutations in putative transporters previously associated with resistance to aminoquinolines, but increased sensitivity to lumefantrine (pfcrt 76T; pfmdr1 86Y and 1246Y), decreased markedly at all sites. Antifolate resistance mutations were common, with apparent emergence of mutations (pfdhfr 164L; pfdhps 581G) associated with high-level resistance. K13 mutations linked to artemisinin resistance were uncommon and did not increase over time. Changing malaria treatment practices have been accompanied by profound changes in markers of resistance.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Genes de Protozoários , Plasmodium falciparum/efeitos dos fármacos , Adolescente , Aminoquinolinas/farmacologia , Artemisininas/farmacologia , Estudos Transversais , DNA de Protozoário/isolamento & purificação , Etanolaminas/farmacologia , Feminino , Fluorenos/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Humanos , Lumefantrina , Malária Falciparum/tratamento farmacológico , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Mutação , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Análise de Sequência de DNA , Uganda
13.
Artigo em Inglês | MEDLINE | ID: mdl-28923866

RESUMO

Dihydroartemisinin-piperaquine (DP) has demonstrated excellent efficacy for the treatment and prevention of malaria in Uganda. However, resistance to both components of this regimen has emerged in Southeast Asia. The efficacy of artemether-lumefantrine, the first-line regimen to treat malaria in Uganda, has also been excellent, but continued pressure may select for parasites with decreased sensitivity to lumefantrine. To gain insight into current drug sensitivity patterns, ex vivo sensitivities were assessed and genotypes previously associated with altered drug sensitivity were characterized for 58 isolates collected in Tororo, Uganda, from subjects presenting in 2016 with malaria from the community or as part of a clinical trial comparing DP chemoprevention regimens. Compared to community isolates, those from trial subjects had lower sensitivities to the aminoquinolines chloroquine, monodesethyl amodiaquine, and piperaquine and greater sensitivities to lumefantrine and mefloquine, an observation consistent with DP selection pressure. Compared to results for isolates from 2010 to 2013, the sensitivities of 2016 community isolates to chloroquine, amodiaquine, and piperaquine improved (geometric mean 50% inhibitory concentrations [IC50] = 248, 76.9, and 19.1 nM in 2010 to 2013 and 33.4, 14.9, and 7.5 nM in 2016, respectively [P < 0.001 for all comparisons]), the sensitivity to lumefantrine decreased (IC50 = 3.0 nM in 2010 to 2013 and 5.4 nM in 2016 [P < 0.001]), and the sensitivity to dihydroartemisinin was unchanged (IC50 = 1.4 nM). These changes were accompanied by decreased prevalence of transporter mutations associated with aminoquinoline resistance and low prevalence of polymorphisms recently associated with resistance to artemisinins or piperaquine. Antimalarial drug sensitivities are changing in Uganda, but novel genotypes associated with DP treatment failure in Asia are not prevalent.


Assuntos
Antimaláricos/uso terapêutico , Resistência a Medicamentos/genética , Malária Falciparum/tratamento farmacológico , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/genética , Adolescente , Amodiaquina/análogos & derivados , Amodiaquina/uso terapêutico , Artemisininas/uso terapêutico , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Criança , Pré-Escolar , Cloroquina/uso terapêutico , Etanolaminas/uso terapêutico , Feminino , Fluorenos/uso terapêutico , Expressão Gênica , Humanos , Lactente , Concentração Inibidora 50 , Lumefantrina , Malária Falciparum/parasitologia , Masculino , Mefloquina/uso terapêutico , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Mutação , Testes de Sensibilidade Parasitária , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Quinolinas/uso terapêutico , Uganda , Adulto Jovem
14.
Malar J ; 16(1): 125, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28327148

RESUMO

BACKGROUND: Plasmodium falciparum genetic polymorphisms that mediate altered drug sensitivity may impact upon virulence. In a cross-sectional study, Ugandan children with infections mutant at pfcrt K76T, pfmdr1 N86Y, or pfmdr1 D1246Y had about one-fourth the odds of symptomatic malaria compared to those with infections with wild type (WT) sequences. However, results may have been confounded by greater likelihood in those with symptomatic disease of higher density mixed infections and/or recent prior treatment that selected for WT alleles. METHODS: Polymorphisms in samples from paired episodes of asymptomatic and symptomatic parasitaemia in 114 subjects aged 4-11 years were followed longitudinally in Tororo District, Uganda. Paired episodes occurred within 3-12 months of each other and had no treatment for malaria in the prior 60 days. The prevalence of WT, mixed, and mutant alleles was determined using multiplex ligase detection reaction-fluorescent microsphere assays. RESULTS: Considering paired episodes in the same subject, the odds of symptomatic malaria were lower for infections with mutant compared to WT or mixed sequence at N86Y (OR 0.26, 95% CI 0.09-0.79, p = 0.018), but not K76T or D1246Y. However, symptomatic episodes (which had higher densities) were more likely than asymptomatic to be mixed (for N86Y OR 2.0, 95% CI 1.04-4.0, p = 0.036). Excluding mixed infections, the odds of symptomatic malaria were lower for infections with mutant compared to WT sequence at N86Y (OR 0.33, 95% CI 0.11-0.98, p = 0.046), but not the other alleles. However, if mixed genotypes were grouped with mutants in this analysis or assuming that mixed infections consisted of 50% WT and 50% mutant genotypes, the odds of symptomatic infection did not differ between infections that were mutant or WT at the studied alleles. CONCLUSIONS: Although infections with only the mutant pfmdr1 86Y genotype were associated with symptomatic infection, this association could primarily be explained by greater parasite densities and therefore greater prevalence of mixed infections in symptomatic children. These results indicate limited association between the tested polymorphisms and risk of symptomatic disease and highlight the value of longitudinal studies for assessing associations between parasite factors and clinical outcomes.


Assuntos
Doenças Assintomáticas , Resistência a Medicamentos , Malária Falciparum/patologia , Parasitemia/patologia , Plasmodium falciparum/classificação , Plasmodium falciparum/efeitos dos fármacos , Polimorfismo Genético , Adulto , Criança , Pré-Escolar , Feminino , Frequência do Gene , Genótipo , Humanos , Lactente , Estudos Longitudinais , Malária Falciparum/parasitologia , Masculino , Mutação de Sentido Incorreto , Parasitemia/parasitologia , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Uganda
15.
Antimicrob Agents Chemother ; 60(10): 5649-54, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27401569

RESUMO

Dihydroartemisinin-piperaquine (DP) offers prolonged protection against malaria, but its impact on Plasmodium falciparum drug sensitivity is uncertain. In a trial of intermittent preventive treatment in schoolchildren in Tororo, Uganda, in 2011 to 2012, monthly DP for 1 year decreased the incidence of malaria by 96% compared to placebo; DP once per school term offered protection primarily during the first month after therapy. To assess the impact of DP on selection of drug resistance, we compared the prevalence of key polymorphisms in isolates that emerged at different intervals after treatment with DP. Blood obtained monthly and at each episode of fever was assessed for P. falciparum parasitemia by microscopy. Samples from 160 symptomatic and 650 asymptomatic episodes of parasitemia were assessed at 4 loci (N86Y, Y184F, and D1246Y in pfmdr1 and K76T in pfcrt) that modulate sensitivity to aminoquinoline antimalarials, utilizing a ligase detection reaction-fluorescent microsphere assay. For pfmdr1 N86Y and pfcrt K76T, but not the other studied polymorphisms, the prevalences of mutant genotypes were significantly greater in children who had received DP within the past 30 days than in those not treated within 60 days (86Y, 18.0% versus 8.3% [P = 0.03]; 76T, 96.0% versus 86.1% [P = 0.05]), suggesting selective pressure of DP. Full sequencing of pfcrt in a subset of samples did not identify additional polymorphisms selected by DP. In summary, parasites that emerged soon after treatment with DP were more likely than parasites not under drug pressure to harbor pfmdr1 and pfcrt polymorphisms associated with decreased sensitivity to aminoquinoline antimalarials. (This study has been registered at ClinicalTrials.gov under no. NCT01231880.).


Assuntos
Artemisininas/farmacologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Polimorfismo Genético , Quinolinas/farmacologia , Adolescente , Antimaláricos/farmacologia , Criança , Feminino , Humanos , Malária Falciparum/parasitologia , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/genética , Profilaxia Pré-Exposição , Proteínas de Protozoários/genética , Uganda
16.
Antimicrob Agents Chemother ; 59(8): 5061-4, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26033725

RESUMO

We evaluated markers of artemisinin resistance in Plasmodium falciparum isolated in Kampala in 2014. By standard in vitro assays, all isolates were highly sensitive to dihydroartemisinin (DHA). By the ring-stage survival assay, after a 6-h DHA pulse, parasitemia was undetectable in 40 of 43 cultures at 72 h. Two of 53 isolates had nonsynonymous K13-propeller gene polymorphisms but did not have the mutations associated with resistance in Asia. Thus, we did not see evidence for artemisinin resistance in Uganda.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Malária Falciparum/tratamento farmacológico , Parasitemia/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Resistência a Medicamentos , Humanos , Malária Falciparum/parasitologia , Dados de Sequência Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas de Protozoários/genética , Uganda
17.
Antimicrob Agents Chemother ; 59(6): 3018-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25753626

RESUMO

Changing treatment practices may be selecting for changes in the drug sensitivity of malaria parasites. We characterized ex vivo drug sensitivity and parasite polymorphisms associated with sensitivity in 459 Plasmodium falciparum samples obtained from subjects enrolled in two clinical trials in Tororo, Uganda, from 2010 to 2013. Sensitivities to chloroquine and monodesethylamodiaquine varied widely; sensitivities to quinine, dihydroartemisinin, lumefantrine, and piperaquine were generally good. Associations between ex vivo drug sensitivity and parasite polymorphisms included decreased chloroquine and monodesethylamodiaquine sensitivity and increased lumefantrine and piperaquine sensitivity with pfcrt 76T, as well as increased lumefantrine sensitivity with pfmdr1 86Y, Y184, and 1246Y. Over time, ex vivo sensitivity decreased for lumefantrine and piperaquine and increased for chloroquine, the prevalences of pfcrt K76 and pfmdr1 N86 and D1246 increased, and the prevalences of pfdhfr and pfdhps polymorphisms associated with antifolate resistance were unchanged. In recurrent infections, recent prior treatment with artemether-lumefantrine was associated with decreased ex vivo lumefantrine sensitivity and increased prevalence of pfcrt K76 and pfmdr1 N86, 184F, and D1246. In children assigned chemoprevention with monthly dihydroartemisinin-piperaquine with documented circulating piperaquine, breakthrough infections had increased the prevalence of pfmdr1 86Y and 1246Y compared to untreated controls. The noted impacts of therapy and chemoprevention on parasite polymorphisms remained significant in multivariate analysis correcting for calendar time. Overall, changes in parasite sensitivity were consistent with altered selective pressures due to changing treatment practices in Uganda. These changes may threaten the antimalarial treatment and preventive efficacies of artemether-lumefantrine and dihydroartemisinin-piperaquine, respectively.


Assuntos
Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Amodiaquina/análogos & derivados , Amodiaquina/farmacologia , Antimaláricos , Artemisininas/farmacologia , Pré-Escolar , Cloroquina/farmacologia , Ensaios Clínicos como Assunto , Etanolaminas/farmacologia , Fluorenos/farmacologia , Humanos , Lactente , Lumefantrina , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Testes de Sensibilidade Parasitária , Polimorfismo Genético/genética , Proteínas de Protozoários/genética , Quinina/farmacologia , Quinolinas/farmacologia , Uganda
18.
Malar J ; 13: 95, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24629020

RESUMO

BACKGROUND: Malaria remains a major public health problem, and its control has been hampered by drug resistance. For a number of drugs, Plasmodium falciparum single nucleotide polymorphisms (SNPs) are associated with altered drug sensitivity and can be used as markers of drug resistance. Several techniques have been studied to assess resistance markers. The most widely used methodology is restriction fragment length polymorphism (RFLP) analysis. The ligase detection reaction fluorescent microsphere (LDR-FM) assay was recently shown to provide high throughput assessment of P. falciparum SNPs associated with drug resistance. The aim of this study was to validate the reliability and accuracy of the LDR-FM assay in a field setting. METHODS: For 223 samples from a clinical trial in Tororo, Uganda in which P. falciparum was identified by blood smear, DNA was extracted from dried blood spots, genes of interest were amplified by PCR, amplicons were analysed by both RFLP and LDR-FM assays, and results were compared. RESULTS: SNP prevalence (wild type/mixed/mutant) with RFLP analysis was 8/5/87% for pfcrt K76T, 34/37/29% for pfmdr1 N86Y, 64/17/19% for pfmdr1 Y184F, and 42/21/37% for pfmdr1 D1246Y. These prevalences with the LDR-FM assay were 7/5/88%, 31/24/45%, 62/20/18%, and 48/19/33% for the four SNPs, respectively. Combining mixed and mutant outcomes for analysis, agreement between the assays was 97% (K=0.77) for pfcrt K76T, 79% (K=0.55) for pfmdr1 N86Y, 83% (K=0.65) for pfmdr1 Y184F, and 91% (K=0.82) for pfmdr1 D1246Y, with most disagreements due to discrepant readings of mixed genotypes. CONCLUSION: The LDR-FM assay provides a high throughput, relatively inexpensive and accurate assay for the surveillance of P. falciparum SNPs associated with drug resistance in resource-limited countries.


Assuntos
Resistência a Medicamentos , Técnicas de Diagnóstico Molecular/métodos , Testes de Sensibilidade Parasitária/métodos , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Pré-Escolar , DNA de Protozoário/genética , DNA de Protozoário/isolamento & purificação , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Lactente , Ligases/metabolismo , Estudos Longitudinais , Malária Falciparum/parasitologia , Masculino , Microesferas , Plasmodium falciparum/efeitos dos fármacos , Reação em Cadeia da Polimerase , Uganda
19.
J Med Chem ; 67(2): 1460-1480, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38214254

RESUMO

While progress has been made in the effort to eradicate malaria, the disease remains a significant threat to global health. Acquired resistance to frontline treatments is emerging in Africa, urging a need for the development of novel antimalarial agents. Repurposing human kinase inhibitors provides a potential expedited route given the availability of a diverse array of kinase-targeting drugs that are approved or in clinical trials. Phenotypic screening of a library of type II human kinase inhibitors identified compound 1 as a lead antimalarial, which was initially developed to target human ephrin type A receptor 2 (EphA2). Here, we report a structure-activity relationship study and lead optimization of compound 1, which led to compound 33, with improved antimalarial activity and selectivity.


Assuntos
Antimaláricos , Malária , Receptor EphA2 , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Relação Estrutura-Atividade , África , Plasmodium falciparum
20.
Antimicrob Agents Chemother ; 57(9): 4245-4251, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23796921

RESUMO

Polymorphisms in the Plasmodium falciparum multidrug resistance 1 (pfmdr1) gene impact sensitivity to multiple antimalarials. In Africa, polymorphisms at N86Y and D1246Y are common and have various impacts on sensitivity to different drugs. To gain insight into the fitness consequences of these polymorphisms, we cultured parasites isolated from children with malaria in Tororo, Uganda, where the multiplicity of infection is high, and used pyrosequencing to follow polymorphism prevalences in culture over time. Of 71 cultures, parasites in 69 were successfully analyzed at N86Y and parasites in 68 were successfully analyzed at D1246Y over 3 to 36 days of culture. For position 86, the sequences of 39/69 (56.5%) parasites remained stable (>90% prevalence over 2 to 17 time points), with 82.1% of these being stable for the 86Y mutation. For position 1246, the sequences of 31/68 (45.6%) parasites remained stable, with 64.5% of these being stable for the wild-type D1246 sequence (P = 0.0002 for comparison of stable mutant genotypes for the two alleles). Defining allele selection as a ≥15% change in prevalence between the first and last samples assessed, for position 86, 11 samples showed selection, with selection toward 86Y occurring in 72.7% of alleles; for position 1246, 14 samples showed selection, with selection toward D1246 occurring in 64.3% of alleles (P = 0.11 for comparison of selection of mutations at the two alleles). Among the 7 samples with selection at both alleles, 5 showed selection for both 86Y and D1246. Overall, consistent trends in the direction of selection were seen, although differences were not statistically significant. Our results suggest fitness advantages for parasites with the pfmdr1 86Y mutation and wild-type D1246, highlighting the complex interplay between drug resistance and fitness in malaria parasites. (This study has been registered at ClinicalTrials.gov under registration no. NCT00948896 and NCT00993031.).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA