Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Neuroinflammation ; 18(1): 290, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34895261

RESUMO

BACKGROUND: Major depressive disorder (MDD) represents a major public health concern, particularly due to its steadily rising prevalence and the poor responsiveness to standard antidepressants notably in patients afflicted with chronic inflammatory conditions, such as obesity. This highlights the need to improve current therapeutic strategies, including by targeting inflammation based on its role in the pathophysiology and treatment responsiveness of MDD. Nevertheless, dissecting the relative contribution of inflammation in the development and treatment of MDD remains a major issue, further complicated by the lack of preclinical depression models suitable to experimentally dissociate inflammation-related vs. inflammation-unrelated depression. METHODS: While current models usually focus on one particular MDD risk factor, we compared in male C57BL/6J mice the behavioral, inflammatory and neurobiological impact of chronic exposure to high-fat diet (HFD), a procedure known to induce inflammation-related depressive-like behaviors, and unpredictable chronic mild stress (UCMS), a stress-induced depression model notably renowned for its responsivity to antidepressants. RESULTS: While both paradigms induced neurovegetative, depressive-like and anxiety-like behaviors, inflammation and downstream neurobiological pathways contributing to inflammation-driven depression were specifically activated in HFD mice, as revealed by increased circulating levels of inflammatory factors, as well as brain expression of microglial activation markers and enzymes from the kynurenine and tetrahydrobiopterin (BH4) pathways. In addition, serotoninergic and dopaminergic systems were differentially impacted, depending on the experimental condition. CONCLUSIONS: These data validate an experimental design suitable to deeply study the mechanisms underlying inflammation-driven depression comparatively to non-inflammatory depression. This design could help to better understand the pathophysiology of treatment resistant depression.


Assuntos
Encéfalo/metabolismo , Transtorno Depressivo Maior/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Animais , Transtorno Depressivo Maior/etiologia , Transtorno Depressivo Maior/psicologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
J Neurochem ; 136(6): 1155-1167, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26709611

RESUMO

The many functions of astrocytes, such as glutamate recycling and morphological plasticity, enable them to stabilize synapses environment and protect neurons. Little is known about how they adapt to glucocorticoid-induced stress, and even less about the influence of dietary factors. We previously showed that omega-3 polyunsaturated fatty acids (ω3PUFA), dietary fats which alleviate stress responses, influence the way astroglia regulate glutamatergic synapses. We have explored the role of docosahexaenoic acid (DHA), the main ω3PUFA, in the astroglial responses to corticosterone, the main stress hormone in rodents to determine whether ω3PUFA help astrocytes resist stress. Cultured rat astrocytes were enriched in DHA or arachidonic acid (AA, the main ω6PUFA) and given 100 nM corticosterone for several days. Corticosterone stimulated astrocyte glutamate recycling by increasing glutamate uptake and glutamine synthetase (GS), and altered the astrocyte cytoskeleton. DHA-enriched astrocytes no longer responded to the action of corticosterone on glutamate uptake, had decreased GS, and the cytoskeletal effect of corticosterone was delayed, while AA-enriched cells were unaffected. The DHA-dependent anti-corticosterone effect was related to fewer glucocorticoid receptors, while corticosterone increased DHA incorporation into astrocyte membranes. Thus, DHA helps astrocytes resist the influence of corticosterone, so perhaps promoting a sustainable response by the stressed brain. We show that corticosterone increases the glutamate recycling capacity of rat cortical astrocytes in culture, and alters their morphology, which may be detrimental in the long term. Increasing the membrane incorporation of docosahexaenoic acid (DHA), the main omega-3 in brain, reduces the amount of glucocorticoid receptors (GR) and prevents the effects of corticosterone. This may help the astrocytes maintain a functional phenotype in chronic stress situations.

3.
Curr Opin Clin Nutr Metab Care ; 18(2): 139-46, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25501348

RESUMO

PURPOSE OF REVIEW: The literature on the influence of dietary omega-3 polyunsaturated fatty acid (ω-3 PUFA) on brain aging has grown exponentially during the last decade. Many avenues have been explored but no global picture or clear evidence has emerged. Experimental studies have shown that ω-3 PUFA is involved in many neurobiological processes that are involved in neurotransmission and neuroprotection, indicating that these PUFAs may prevent age-related brain damage. Human studies have revealed only a weak link between ω-3 PUFA status and cognitive aging, whereas interventional studies have yet to confirm it. The purpose of this review is to analyze the developments in the area during the last 2 years. RECENT FINDINGS: Human brain MRI studies have confirmed previous findings that ω-3 PUFA can protect the brain during aging; two intervention studies obtained clear evidence. We also analyzed the experimental data clarifying the involvement of ω-3 PUFA in neurotransmission, neuroprotection (including prevention of peroxidation, inflammation, and excitotoxicity), and neurogenesis, thereby helping the brain cope with aging. SUMMARY: These recent human and experimental studies provide support for and clarification of how ω-3 PUFA protect against brain aging and highlight the main lines for future research.


Assuntos
Envelhecimento/fisiologia , Encéfalo/fisiologia , Ácidos Graxos Ômega-3/administração & dosagem , Animais , Humanos , Neurogênese/fisiologia , Estudos Observacionais como Assunto , Ratos , Transmissão Sináptica/fisiologia
4.
Front Nutr ; 10: 1267839, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37867499

RESUMO

Background: Although activation of inflammatory processes is essential to fight infections, its prolonged impact on brain function is well known to contribute to the pathophysiology of many medical conditions, including neuropsychiatric disorders. Therefore, identifying novel strategies to selectively counter the harmful effects of neuroinflammation appears as a major health concern. In that context, this study aimed to test the relevance of a nutritional intervention with saffron, a spice known for centuries for its beneficial effect on health. Methods: For this purpose, the impact of an acute oral administration of a standardized saffron extract, which was previously shown to display neuromodulatory properties and reduce depressive-like behavior, was measured in mice challenged with lipopolysaccharide (LPS, 830 µg/kg, ip). Results: Pretreatment with saffron extract (6.5 mg/kg, per os) did not reduce LPS-induced sickness behavior, preserving therefore this adaptive behavioral response essential for host defense. However, it interfered with delayed changes of expression of cytokines, chemokines and markers of microglial activation measured 24 h post-LPS treatment in key brain areas for behavior and mood control (frontal cortex, hippocampus, striatum). Importantly, this pretreatment also counteracted by that time the impact of LPS on several neurobiological processes contributing to inflammation-induced emotional alterations, in particular the activation of the kynurenine pathway, assessed through the expression of its main enzymes, as well as concomitant impairment of serotonergic and dopaminergic neurotransmission. Conclusion: Altogether, this study provides important clues on how saffron extract interferes with brain function in conditions of immune stimulation and supports the relevance of saffron-based nutritional interventions to improve the management of inflammation-related comorbidities.

5.
Front Nutr ; 9: 811843, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35178422

RESUMO

BACKGROUND: The mechanisms leading to a loss of dopaminergic (DA) neurons from the substantia nigra pars compacta (SNc) in Parkinson's disease (PD) have multifactorial origins. In this context, nutrition is currently investigated as a modifiable environmental factor for the prevention of PD. In particular, initial studies revealed the deleterious consequences of vitamin A signaling failure on dopamine-related motor behaviors. However, the potential of vitamin A supplementation itself to prevent neurodegeneration has not been established yet. OBJECTIVE: The hypothesis tested in this study is that preventive vitamin A supplementation can protect DA neurons in a rat model of PD. METHODS: The impact of a 5-week preventive supplementation with vitamin A (20 IU/g of diet) was measured on motor and neurobiological alterations induced by 6-hydroxydopamine (6-OHDA) unilateral injections in the striatum of rats. Rotarod, step test and cylinder tests were performed up to 3 weeks after the lesion. Post-mortem analyses (retinol and monoamines dosages, western blots, immunofluorescence) were performed to investigate neurobiological processes. RESULTS: Vitamin A supplementation improved voluntary movements in the cylinder test. In 6-OHDA lesioned rats, a marked decrease of dopamine levels in striatum homogenates was measured. Tyrosine hydroxylase labeling in the SNc and in the striatum was significantly decreased by 6-OHDA injection, without effect of vitamin A. By contrast, vitamin A supplementation increased striatal expression of D2 and RXR receptors in the striatum of 6-OHDA lesioned rats. CONCLUSIONS: Vitamin A supplementation partially alleviates motor alterations and improved striatal function, revealing a possible beneficial preventive approach for PD.

6.
J Alzheimers Dis ; 79(2): 709-727, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33337360

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a multifactorial disease, implying that multi-target treatments may be necessary to effectively cure AD. Tetrahydrobiopterin (BH4) is an enzymatic cofactor required for the synthesis of monoamines and nitric oxide that also exerts antioxidant and anti-inflammatory effects. Despite its crucial role in the CNS, the potential of BH4 as a treatment in AD has never been scrutinized. OBJECTIVE: Here, we investigated whether BH4 peripheral administration improves cognitive symptoms and AD neuropathology in the triple-transgenic mouse model of AD (3xTg-AD), a model of age-related tau and amyloid-ß (Aß) neuropathologies associated with behavior impairment. METHODS: Non-transgenic (NonTg) and 3xTg-AD mice were subjected to a control diet (5% fat - CD) or to a high-fat diet (35% fat - HFD) from 6 to 13 months to exacerbate metabolic disorders. Then, mice received either BH4 (15 mg/kg/day, i.p.) or vehicle for ten consecutive days. RESULTS: This sub-chronic administration of BH4 rescued memory impairment in 13-month-old 3xTg-AD mice, as determined using the novel object recognition test. Moreover, the HFD-induced glucose intolerance was completely reversed by the BH4 treatment in 3xTg-AD mice. However, the HFD or BH4 treatment had no significant impact on Aß and tau neuropathologies. CONCLUSION: Overall, our data suggest a potential benefit from BH4 administration against AD cognitive and metabolic deficits accentuated by HFD consumption in 3xTg-AD mice, without altering classical neuropathology. Therefore, BH4 should be considered as a candidate for drug repurposing, at least in subtypes of cognitively impaired patients experiencing metabolic disorders.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Biopterinas/análogos & derivados , Encéfalo/patologia , Nootrópicos/uso terapêutico , Reconhecimento Psicológico/efeitos dos fármacos , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Antirreumáticos , Biopterinas/uso terapêutico , Encéfalo/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
7.
Nutrients ; 13(3)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799507

RESUMO

Depressive disorders represent a major public health concern and display a continuously rising prevalence. Importantly, a large proportion of patients develops aversive side effects and/or does not respond properly to conventional antidepressants. These issues highlight the need to identify further therapeutic strategies, including nutritional approaches using natural plant extracts with known beneficial impacts on health. In that context, growing evidence suggests that saffron could be a particularly promising candidate. This preclinical study aimed therefore to test its antidepressant-like properties in mice and to decipher the underlying mechanisms by focusing on monoaminergic neurotransmission, due to its strong implication in mood disorders. For this purpose, the behavioral and neurobiochemical impact of a saffron extract, Safr'Inside™ (6.5 mg/kg per os) was measured in naïve mice. Saffron extract reduced depressive-like behavior in the forced swim test. This behavioral improvement was associated with neurobiological modifications, particularly changes in serotonergic and dopaminergic neurotransmission, suggesting that Safr'Inside™ may share common targets with conventional pharmacological antidepressants. This study provides useful information on the therapeutic relevance of nutritional interventions with saffron extracts to improve management of mood disorders.


Assuntos
Antidepressivos/uso terapêutico , Monoaminas Biogênicas/metabolismo , Crocus , Depressão/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Transmissão Sináptica/efeitos dos fármacos , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Administração Oral , Animais , Antidepressivos/administração & dosagem , Ansiedade/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Dopamina/metabolismo , Ácido Homovanílico/metabolismo , Ácido Hidroxi-Indolacético/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fitoterapia , Extratos Vegetais/administração & dosagem , Serotonina/metabolismo
8.
Pharmaceutics ; 13(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34959434

RESUMO

Depressive disorders are a major public health concern. Despite currently available treatment options, their prevalence steadily increases, and a high rate of therapeutic failure is often reported, together with important antidepressant-related side effects. This highlights the need to improve existing therapeutic strategies, including by using nutritional interventions. In that context, saffron recently received particular attention for its beneficial effects on mood, although the underlying mechanisms are poorly understood. This study investigated in mice the impact of a saffron extract (Safr'Inside™; 6.25 mg/kg, per os) on acute restraint stress (ARS)-induced depressive-like behavior and related neurobiological alterations, by focusing on hypothalamic-pituitary-adrenal axis, inflammation-related metabolic pathways, and monoaminergic systems, all known to be altered by stress and involved in depressive disorder pathophysiology. When given before stress onset, Safr'Inside administration attenuated ARS-induced depressive-like behavior in the forced swim test. Importantly, it concomitantly reversed several stress-induced monoamine dysregulations and modulated the expression of key enzymes of the kynurenine pathway, likely reducing kynurenine-related neurotoxicity. These results show that saffron pretreatment prevents the development of stress-induced depressive symptoms and improves our understanding about the underlying mechanisms, which is a central issue to validate the therapeutic relevance of nutritional interventions with saffron in depressed patients.

9.
Psychoneuroendocrinology ; 119: 104750, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32569990

RESUMO

BACKGROUND AND AIMS: The gut microbiota produces metabolites that are an integral part of the metabolome and, as such, of the host physiology. Changes in gut microbiota metabolism could therefore contribute to pathophysiological processes. We showed previously that a chronic and moderate overproduction of indole from tryptophan in male individuals of the highly stress-sensitive F344 rat strain induced anxiety-like and helplessness behaviors. The aim of the present study was to extend the scope of these findings by investigating whether emotional behaviors of male mice that are moderately stress-sensitive but chronically exposed to environmental stressors would also be affected by indole. METHODS: We colonized germ-free male C3H/HeN mice with a wild-type indole-producing Escherichia coli strain, or with the non-indole producing mutant. Gnotobiotic mice were subjected to an unpredictable chronic mild stress procedure, then to a set of tests aimed at assessing anxiety-like (novelty and elevated plus maze tests) and depression-like behaviors (coat state, splash, nesting, tail suspension and sucrose tests). Results of the individual tests were aggregated into a common z-score to estimate the overall emotional response to chronic mild stress and chronic indole production. We also carried out biochemical and molecular analyses in gut mucosa, plasma, brain hippocampus and striatum, and adrenal glands, to examine biological correlates that are usually associated with stress, anxiety and depression. RESULTS: Chronic mild stress caused coat state degradation and anhedonia in both indole-producing and non-indole producing mice, but it did not influence behaviors in the other tests. Chronic indole production did not influence mice behavior when tests were considered individually, but it increased the overall emotionality z-score, specifically in mice under chronic mild stress. Interestingly, in the same mice, indole induced a dramatic increase of the expression of the adrenomedullary Pnmt gene, which is involved in catecholamine biosynthesis. By contrast, systemic tryptophan bioavailability, brain serotonin and dopamine levels and turnover, as well as expression of gut and brain genes involved in cytokine production and tryptophan metabolism along the serotonin and kynurenine pathways, remained similar in all mice. CONCLUSIONS: Chronic indole production by the gut microbiota increased the vulnerability of male mice to the adverse effects of chronic mild stress on emotional behaviors. It also targeted catecholamine biosynthetic pathway of the adrenal medulla, which plays a pivotal role in body's physiological adaptation to stressful events. Future studies will aim to investigate the action mechanisms responsible for these effects.


Assuntos
Medula Suprarrenal/efeitos dos fármacos , Emoções/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Indóis/farmacologia , Estresse Psicológico , Medula Suprarrenal/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Doença Crônica , Indóis/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Estresse Psicológico/metabolismo , Estresse Psicológico/microbiologia , Estresse Psicológico/patologia , Estresse Psicológico/psicologia , Fatores de Tempo
10.
Cell Metab ; 31(4): 755-772.e7, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32142670

RESUMO

Reward-processing impairment is a common symptomatic dimension of several psychiatric disorders. However, whether the underlying pathological mechanisms are common is unknown. Herein, we asked if the decrease in the n-3 polyunsaturated fatty acid (PUFA) lipid species, consistently described in these pathologies, could underlie reward-processing deficits. We show that reduced n-3 PUFA biostatus in mice leads to selective motivational impairments. Electrophysiological recordings revealed increased collateral inhibition of dopamine D2 receptor-expressing medium spiny neurons (D2-MSNs) onto dopamine D1 receptor-expressing MSNs in the nucleus accumbens, a main brain region for the modulation of motivation. Strikingly, transgenically preventing n-3 PUFA deficiency selectively in D2-expressing neurons normalizes MSN collateral inhibition and enhances motivation. These results constitute the first demonstration of a causal link between a behavioral deficit and n-3 PUFA decrease in a discrete neuronal population and suggest that lower n-3 PUFA biostatus in psychopathologies could participate in the etiology of reward-related symptoms.


Assuntos
Ácidos Graxos Ômega-3/deficiência , Motivação , Neurônios , Núcleo Accumbens , Receptores de Dopamina D2/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patologia
11.
Obesity (Silver Spring) ; 27(2): 255-263, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30597761

RESUMO

OBJECTIVE: A growing body of evidence suggests that obesity could result from alterations in reward processing. In rodent models, chronic exposure to an obesogenic diet leads to blunted dopamine signaling and related incentive responding. This study aimed to determine which reward-related behavioral dimensions are actually impacted by obesogenic diet exposure. METHODS: Mice were chronically exposed to an obesogenic diet. Incentive and hedonic processes were tested through operant conditioning and licking microstructures, respectively. In parallel, mesolimbic dopamine transmission was assessed using microdialysis. RESULTS: Prolonged high-fat (HF) diet exposure led to blunted mesolimbic dopamine release, paralleled by a decrease in operant responding in all schedules tested. HF-fed and control animals similarly decreased their operant responding in an effort-based choice task, and HF-fed animals displayed an overall lower calorie intake in this task. Analysis of the licking microstructures during consumption of a freely accessible reward suggested a decrease in basal hunger and a potentiation of gastrointestinal inhibition in HF-fed animals, without changes in hedonic reactivity. CONCLUSIONS: These results suggest that the decrease in operant responding under prolonged HF diet exposure is mainly driven by decrease in hunger as well as stronger postingestive negative feedback mechanisms, rather than by a decrease in incentive or hedonic responses.


Assuntos
Condicionamento Operante/fisiologia , Dieta Hiperlipídica/métodos , Animais , Masculino , Camundongos
12.
J Nutr ; 138(9): 1719-24, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18716175

RESUMO

Several studies suggest that (n-3) PUFA may play a role in the regulation of cognitive functions, locomotor and exploratory activity, and affective disorders. Additionally, (n-3) PUFA affect pineal function, which is implicated in the sleep-wake rhythm. However, no studies to our knowledge have explored the role of PUFA on the circadian system. We investigated the effect of an (n-3) PUFA-deficient diet on locomotor and pineal melatonin rhythms in Syrian hamsters used as model species in circadian rhythm research. To assess the possible relationship between voluntary wheel running activity and dopaminergic neurotransmission, we also measured endogenous monoamine concentrations in the striatum. Two-month-old male hamsters, fed either an (n-3) PUFA-deficient or an (n-3) PUFA-adequate diet, were housed individually in cages equipped with run wheels. At 3 mo, cerebral structures were extracted for biochemical and cellular analysis. In (n-3) PUFA-deficient hamsters, the induced changes in the pineal PUFA membrane phospholipid composition were associated with a reduction in the nocturnal peak level of melatonin that was 52% lower than in control hamsters (P < 0.001). The (n-3) PUFA-deficient hamsters also had higher diurnal (P < 0.01) and nocturnal (P = 0.001) locomotor activity than the control hamsters, in parallel with activation of striatal dopaminergic function (P < 0.05). The (n-3) PUFA-deficient hamsters exhibited several symptoms: chronic locomotor hyperactivity, disturbance in melatonin rhythm, and striatal hyperdopaminergia. We suggest that an (n-3) PUFA-deficient diet lessens the melatonin rhythm, weakens endogenous functioning of the circadian clock, and plays a role in nocturnal sleep disturbances as described in attention deficit/hyperactivity disorder.


Assuntos
Ritmo Circadiano/efeitos dos fármacos , Dopamina/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Melatonina/metabolismo , Atividade Motora/efeitos dos fármacos , Animais , Corpo Estriado/metabolismo , Cricetinae , Dieta , Gorduras Insaturadas na Dieta/farmacologia , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Insaturados/metabolismo , Feminino , Masculino , Mesocricetus , Glândula Pineal/metabolismo
13.
Front Neurosci ; 12: 499, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30140200

RESUMO

The prevalence of depressive disorders is growing worldwide, notably due to stagnation in the development of drugs with greater antidepressant efficacy, the continuous large proportion of patients who do not respond to conventional antidepressants, and the increasing rate of chronic medical conditions associated with an increased vulnerability to depressive comorbidities. Accordingly, better knowledge on the pathophysiology of depression and mechanisms underlying depressive comorbidities in chronic medical conditions appears urgently needed, in order to help in the development of targeted therapeutic strategies. In this review, we present evidence pointing to inflammatory processes as key players in the pathophysiology and treatment of depressive symptoms. In particular, we report preclinical and clinical findings showing that inflammation-driven alterations in specific metabolic pathways, namely kynurenine and tetrahydrobiopterin (BH4) pathways, leads to substantial alterations in the metabolism of serotonin, glutamate and dopamine that are likely to contribute to the development of key depressive symptom dimensions. Accordingly, anti-inflammatory interventions targeting kynurenine and BH4 pathways may be effective as novel treatment or as adjuvants of conventional medications rather directed to monoamines, notably when depressive symptomatology and inflammation are comorbid in treated patients. This notion is discussed in the light of recent findings illustrating the tight interactions between known antidepressant drugs and inflammatory processes, as well as their therapeutic implications. Altogether, this review provides valuable findings for moving toward more adapted and personalized therapeutic strategies to treat inflammation-related depressive symptoms.

14.
Alzheimers Dement (N Y) ; 4: 677-687, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30560200

RESUMO

INTRODUCTION: High levels of plasmatic branched-chain amino acids (BCAA), commonly used as dietary supplements, are linked to metabolic risk factors for Alzheimer's disease (AD). BCAA directly influence amino acid transport to the brain and, therefore, neurotransmitter levels. We thus investigated the impact of BCAA on AD neuropathology in a mouse model. METHODS: 3xTg-AD mice were fed either a control diet or a high-fat diet from 6 to 18 months of age. For the last 2 months, dietary BCAA content was adjusted to high (+50%), normal (+0%), or low (-50%). RESULTS: Mice fed a BCAA-supplemented high-fat diet displayed higher tau neuropathology and only four out of 13 survived. Mice on the low-BCAA diet showed higher threonine and tryptophan cortical levels while performing better on the novel object recognition task. DISCUSSION: These preclinical data underscore a potential risk of combining high-fat and high BCAA consumption, and possible benefits from BCAA restriction in AD.

15.
Psychoneuroendocrinology ; 93: 72-81, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29702445

RESUMO

The diagnosis of Type 1 Diabetes (T1D) in ever younger children led us to question the impact of insulin deficiency or chronic hyperglycemia on cerebral development and memory performances. Here, we sought abnormalities in these traits in a model of streptozotocin-induced diabetes in juvenile rats treated or not by insulin. We made the assumption that such alterations would be related, at least in part, to excessive glucocorticoid exposition in hippocampal neurons. We have compared 3 groups of juvenile rats: controls, untreated diabetics and insulin-treated diabetics. Diabetes was induced by streptozotocin (65 mg/kg IP/day, 2 consecutive days), at postnatal days 21 and 22 and a subcutaneous pellet delivering 2 U of insulin/day was implanted in treated diabetic rats 3 days later. Three weeks after diabetes induction, cognitive performances (Y maze, object location and recognition tests), in vivo brain structure (brain volume and water diffusion by structural magnetic resonance imaging), and hippocampal neurogenesis (immunohistochemical labeling) measurements were undertaken. Corticosterone levels were evaluated in plasma under basal and stress conditions, and within hippocampus together with 11ß-dehydrocorticosterone to assess 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) activity. The comparison of the three experimental groups revealed that, compared to controls, untreated diabetic rats showed decreased cognitive performances in Y-maze and object location test (p < 0.05), decreased brain and hippocampal microstructure (p < 0.05), and decreased maturation and survival of hippocampal newborn neurons (p < 0.05). These alterations were associated with increased plasma corticosterone at the baseline nadir of its secretion (p < 0.001) and during the recovery phase following a restraint stress (p < 0.001), as well as increased hippocampal corticosterone levels (p < 0.01) and 11ß-HSD1 activity (p < 0.05). As untreated diabetic rats, insulin-treated diabetic rats displayed decreased brain volume and water diffusion (p < 0.05 compared to controls) and intermediate memory performances and hippocampal neurogenesis (p value not significant compared to either controls or untreated diabetics). Moreover, they were similar to controls for basal plasma and hippocampal corticosterone and 11ß-HSD1 activity but show increased plasma corticosterone during the recovery phase following a restraint stress similar to untreated diabetics (p < 0.001 compared to controls). Thus, insulin did not completely prevent several hippocampal-dependent behavioral and structural alterations induced by diabetes in juvenile rats which may relate to the higher cognitive difficulties encountered in T1D children compared to non-diabetic controls. Although insulin restored basal corticosterone and 11ß-HSD1 activity (in hippocampus and plasma), the negative feedback regulation of corticosterone secretion after stress was still impaired in insulin-treated diabetic rats. Further characterization of insulin control on glucocorticoid regulation and availability within hippocampus is awaited.


Assuntos
Disfunção Cognitiva/fisiopatologia , Diabetes Mellitus Experimental/complicações , Insulina/uso terapêutico , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Animais , Cognição/fisiologia , Corticosterona/análise , Corticosterona/sangue , Modelos Animais de Doenças , Glucocorticoides/metabolismo , Hipocampo/metabolismo , Insulina/metabolismo , Masculino , Memória/fisiologia , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Lobo Temporal/metabolismo
16.
Biol Psychiatry ; 58(10): 805-11, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16040005

RESUMO

BACKGROUND: Anatomic and functional brain lateralization underlies hemisphere specialization for cognitive and motor control, and deviations from the normal patterns of asymmetry appear to be related to behavioral deficits. Studies on n-3 polyunsaturated fatty acid (PUFA) deficiency and behavioral impairments led us to postulate that a chronic lack of n-3 PUFA can lead to changes in lateralized behavior by affecting structural or neurochemical patterns of asymmetry in motor-related brain structures. METHODS: We compared the effects of a chronic n-3 PUFA deficient diet with a balanced diet on membrane phospholipid fatty acids composition and immunolabeling of choline acetyltransferase (ChAt), as a marker of cholinergic neurons, in left and right striatum of rats. Lateral motor behavior was assessed by rotation and paw preference. RESULTS: Control rats had an asymmetric PUFA distribution with a right behavioral preference, whereas ChAt density was symmetrical. In deficient rats, the cholinergic neuron density was 30% lower on the right side, associated with a loss of PUFA asymmetry and behavior laterality. They present higher rotation behavior, and significantly more of them failed the handedness test. CONCLUSION: These results indicate that a lack of n-3 PUFA is linked with a lateral behavior deficit, possibly leading to cognitive disturbances.


Assuntos
Comportamento Animal/fisiologia , Corpo Estriado/fisiologia , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/fisiologia , Ácidos Graxos Insaturados/deficiência , Lateralidade Funcional/fisiologia , Acetilcolina/metabolismo , Acetilcolina/fisiologia , Animais , Colina O-Acetiltransferase/metabolismo , Transtornos Cognitivos/etiologia , Corpo Estriado/enzimologia , Corpo Estriado/metabolismo , Gorduras na Dieta/metabolismo , Modelos Animais de Doenças , Ácidos Graxos Insaturados/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Proteínas de Membrana Transportadoras/metabolismo , Atividade Motora/fisiologia , Córtex Motor/enzimologia , Córtex Motor/metabolismo , Córtex Motor/fisiologia , Neurônios/enzimologia , Neurônios/metabolismo , Neurônios/fisiologia , Ratos , Ratos Wistar
17.
Am J Clin Nutr ; 75(4): 662-7, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11916751

RESUMO

BACKGROUND: Several findings in humans support the hypothesis of links between n-3 polyunsaturated fatty acid (PUFA) status and psychiatric diseases. OBJECTIVE: The involvement of PUFAs in central nervous system function can be assessed with the use of dietary manipulation in animal models. We studied the effects of chronic dietary n-3 PUFA deficiency on mesocorticolimbic dopamine neurotransmission in rats. DESIGN: Using dual-probe microdialysis, we analyzed dopamine release under amphetamine stimulation simultaneously in the frontal cortex and the nucleus accumbens. The messenger RNA (mRNA) expression of vesicular monoamine transporter(2) and dopamine D(2) receptor was studied with the use of in situ hybridization. The protein expression of the synthesis-limiting enzyme tyrosine 3-monooxygenase (tyrosine 3-hydroxylase) was studied with the use of immunocytochemistry. RESULTS: Dopamine release was significantly lower in both cerebral areas in n-3 PUFA-deficient rats than in control rats, but this effect was abolished in the frontal cortex and reversed in the nucleus accumbens by reserpine pretreatment, which depletes the dopamine vesicular storage pool. The mRNA expression of vesicular monoamine transporter(2) was lower in both cerebral areas in n-3 PUFA-deficient rats than in control rats, whereas the mRNA expression of D(2) receptor was lower in the frontal cortex and higher in the nucleus accumbens in n-3 PUFA-deficient rats than in control rats. Finally, tyrosine 3-monooxygenase immunoreactivity was higher in the ventral tegmental area in n-3 PUFA-deficient rats than in control rats. CONCLUSIONS: Our results suggest that the mesolimbic dopamine pathway is more active whereas the mesocortical pathway is less active in n-3 PUFA-deficient rats than in control rats. This provides new neurochemical evidence supporting the effects of n-3 PUFA deficiency on behavior.


Assuntos
Encéfalo/metabolismo , Dopamina/metabolismo , Ácidos Graxos Insaturados/deficiência , Proteínas de Membrana Transportadoras , Neuropeptídeos , Anfetamina/farmacologia , Análise de Variância , Animais , Transporte Biológico , Encéfalo/efeitos dos fármacos , Dieta , Dopaminérgicos/farmacologia , Ácidos Graxos Insaturados/administração & dosagem , Feminino , Hibridização In Situ , Masculino , Glicoproteínas de Membrana/farmacologia , Microdiálise , Neurotransmissores/farmacologia , Ratos , Ratos Wistar , Proteínas Vesiculares de Transporte de Aminas Biogênicas , Proteínas Vesiculares de Transporte de Monoamina
18.
Neurosci Lett ; 321(1-2): 95-9, 2002 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-11872265

RESUMO

We hypothesized that the chronic dietary deficiency of n-3 polyunsaturated fatty acids (n-3 PUFAs) might affect the density and/or function of dopamine transporters (DAT), which have a major role in regulating the synaptic level of dopamine. This hypothesis was tested by investigating DAT in the striatum using three complementary methods in control and deficient rats. The density of DAT was determined by quantitative autoradiography using [(125)I]PE2I, a specific ligand of this transporter. Functional investigations were performed (i) in vitro by measuring [(3)H]dopamine uptake on synaptosomes, and (ii) in vivo using intracerebral microdialysis. The results demonstrated that neither the density nor the function of DAT were influenced by n-3 PUFA deficiency in the striatum. This suggests lower sensitivity to n-3 PUFA deficiency in the striatum than that previously observed in the frontal cortex.


Assuntos
Gorduras na Dieta/metabolismo , Dopamina/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Alimentos Formulados/efeitos adversos , Lipídeos/deficiência , Glicoproteínas de Membrana , Proteínas de Membrana Transportadoras/metabolismo , Neostriado/metabolismo , Proteínas do Tecido Nervoso , Terminações Pré-Sinápticas/metabolismo , Animais , Dopamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina , Feminino , Radioisótopos do Iodo/metabolismo , Radioisótopos do Iodo/farmacologia , Ensaio Radioligante , Ratos , Ratos Wistar , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Trítio/metabolismo
19.
Nutr Rev ; 72(2): 99-112, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24417620

RESUMO

Chronic stress causes the release of glucocorticoids, which greatly influence cerebral function, especially glutamatergic transmission. These stress-induced changes in neurotransmission could be counteracted by increasing the dietary intake of omega-3 polyunsaturated fatty acids (n-3 PUFAs). Numerous studies have described the capacity of n-3 PUFAs to help protect glutamatergic neurotransmission from damage induced by stress and glucocorticoids, possibly preventing the development of stress-related disorders such as depression or anxiety. The hippocampus contains glucocorticoid receptors and is involved in learning and memory. This makes it particularly sensitive to stress, which alters certain aspects of hippocampal function. In this review, the various ways in which n-3 PUFAs may prevent the harmful effects of chronic stress, particularly the alteration of glutamatergic synapses in the hippocampus, are summarized.


Assuntos
Ácidos Graxos Ômega-3/fisiologia , Glucocorticoides/metabolismo , Hipocampo/fisiologia , Fenômenos Fisiológicos do Sistema Nervoso/efeitos dos fármacos , Estresse Psicológico/dietoterapia , Depressão/prevenção & controle , Ácidos Graxos Ômega-3/farmacologia , Hipocampo/efeitos dos fármacos , Humanos , Modelos Neurológicos , Estresse Psicológico/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
20.
Psychoneuroendocrinology ; 42: 207-17, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24636517

RESUMO

BACKGROUND AND AIMS: Establishment of the gut microbiota is one of the most important events in early life and emerging evidence indicates that the gut microbiota influences several aspects of brain functioning, including reactivity to stress. To better understand how the gut microbiota contributes to a vulnerability to the stress-related psychiatric disorders, we investigated the relationship between the gut microbiota, anxiety-like behavior and HPA axis activity in stress-sensitive rodents. We also analyzed the monoamine neurotransmitters in the brain upper structures involved in the regulation of stress and anxiety. METHODS: Germfree (GF) and specific pathogen free (SPF) F344 male rats were first subjected to neurological tests to rule out sensorimotor impairments as confounding factors. Then, we examined the behavior responses of rats to social interaction and open-field tests. Serum corticosterone concentrations, CRF mRNA expression levels in the hypothalamus, glucocorticoid receptor (GR) mRNA expression levels in the hippocampus, and monoamine concentrations in the frontal cortex, hippocampus and striatum were compared in rats that were either exposed to the open-field stress or not. RESULTS: GF rats spent less time sniffing an unknown partner than SPF rats in the social interaction test, and displayed a lower number of visits to the aversive central area, and an increase in latency time, time spent in the corners and number of defecations in the open-field test. In response to the open-field stress, serum corticosterone concentrations were 2.8-fold higher in GF than in SPF rats. Compared to that of SPF rats, GF rats showed elevated CRF mRNA expression in the hypothalamus and reduced GR mRNA expression in the hippocampus. GF rats also had a lower dopaminergic turnover rate in the frontal cortex, hippocampus and striatum than SPF rats. CONCLUSIONS: In stress-sensitive F344 rats, absence of the gut microbiota exacerbates the neuroendocrine and behavioral responses to acute stress and the results coexist with alterations of the dopaminergic turnover rate in brain upper structures that are known to regulate reactivity to stress and anxiety-like behavior.


Assuntos
Ansiedade/microbiologia , Comportamento Animal/fisiologia , Intestinos/microbiologia , Estresse Psicológico/microbiologia , Animais , Ansiedade/etiologia , Ansiedade/metabolismo , Encéfalo/metabolismo , Corticosterona/sangue , Hormônio Liberador da Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Microbiota , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Ratos Endogâmicos F344 , Receptores de Glucocorticoides/metabolismo , Comportamento Social , Estresse Psicológico/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA