Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Am J Hum Genet ; 108(12): 2238-2247, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34798051

RESUMO

Chromosome imbalance (aneuploidy) is the major cause of pregnancy loss and congenital disorders in humans. Analyses of small biopsies from human embryos suggest that aneuploidy commonly originates during early divisions, resulting in mosaicism. However, the developmental potential of mosaic embryos remains unclear. We followed the distribution of aneuploid chromosomes across 73 unselected preimplantation embryos and 365 biopsies, sampled from four multifocal trophectoderm (TE) samples and the inner cell mass (ICM). When mosaicism impacted fewer than 50% of cells in one TE biopsy (low-medium mosaicism), only 1% of aneuploidies affected other portions of the embryo. A double-blinded prospective non-selection trial (NCT03673592) showed equivalent live-birth rates and miscarriage rates across 484 euploid, 282 low-grade mosaic, and 131 medium-grade mosaic embryos. No instances of mosaicism or uniparental disomy were detected in the ensuing pregnancies or newborns, and obstetrical and neonatal outcomes were similar between the study groups. Thus, low-medium mosaicism in the trophectoderm mostly arises after TE and ICM differentiation, and such embryos have equivalent developmental potential as fully euploid ones.


Assuntos
Aneuploidia , Blastocisto , Desenvolvimento Embrionário/genética , Fertilização in vitro , Testes Genéticos , Mosaicismo/embriologia , Blastocisto/patologia , Método Duplo-Cego , Transferência Embrionária , Feminino , Fertilização in vitro/métodos , Humanos , Incidência , Recém-Nascido , Masculino , Gravidez , Resultado da Gravidez , Estudos Prospectivos
2.
Bioinformatics ; 35(23): 5055-5062, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31116387

RESUMO

MOTIVATION: Accurate genotyping of DNA from a single cell is required for applications such as de novo mutation detection, linkage analysis and lineage tracing. However, achieving high precision genotyping in the single-cell environment is challenging due to the errors caused by whole-genome amplification. Two factors make genotyping from single cells using single nucleotide polymorphism (SNP) arrays challenging. The lack of a comprehensive single-cell dataset with a reference genotype and the absence of genotyping tools specifically designed to detect noise from the whole-genome amplification step. Algorithms designed for bulk DNA genotyping cause significant data loss when used for single-cell applications. RESULTS: In this study, we have created a resource of 28.7 million SNPs, typed at high confidence from whole-genome amplified DNA from single cells using the Illumina SNP bead array technology. The resource is generated from 104 single cells from two cell lines that are available from the Coriell repository. We used mother-father-proband (trio) information from multiple technical replicates of bulk DNA to establish a high quality reference genotype for the two cell lines on the SNP array. This enabled us to develop SureTypeSC-a two-stage machine learning algorithm that filters a substantial part of the noise, thereby retaining the majority of the high quality SNPs. SureTypeSC also provides a simple statistical output to show the confidence of a particular single-cell genotype using Bayesian statistics. AVAILABILITY AND IMPLEMENTATION: The implementation of SureTypeSC in Python and sample data are available in the GitHub repository: https://github.com/puko818/SureTypeSC. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Polimorfismo de Nucleotídeo Único , Teorema de Bayes , Genótipo , Distribuição Normal , Sequenciamento Completo do Genoma
3.
Proc Natl Acad Sci U S A ; 114(36): 9665-9670, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28827358

RESUMO

Proliferating cells acquire genome alterations during the act of DNA replication. This leads to mutation accumulation and somatic cell mosaicism in multicellular organisms, and is also implicated as an underlying cause of aging and tumorigenesis. The molecular mechanisms of DNA replication-associated genome rearrangements are poorly understood, largely due to methodological difficulties in analyzing specific replication forks in vivo. To provide an insight into this process, we analyzed the mutagenic consequences of replication fork stalling at a single, site-specific replication barrier (the Escherichia coli Tus/Ter complex) engineered into the yeast genome. We demonstrate that transient stalling at this barrier induces a distinct pattern of genome rearrangements in the newly replicated region behind the stalled fork, which primarily consist of localized losses and duplications of DNA sequences. These genetic alterations arise through the aberrant repair of a single-stranded DNA gap, in a process that is dependent on Exo1- and Shu1-dependent homologous recombination repair (HRR). Furthermore, aberrant processing of HRR intermediates, and elevated HRR-associated mutagenesis, is detectable in a yeast model of the human cancer predisposition disorder, Bloom's syndrome. Our data reveal a mechanism by which cellular responses to stalled replication forks can actively generate genomic alterations and genetic diversity in normal proliferating cells.


Assuntos
Replicação do DNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Genes Reporter , Engenharia Genética , Humanos , Modelos Biológicos , Mutagênese , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RecQ Helicases/genética , RecQ Helicases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reparo de DNA por Recombinação , Origem de Replicação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Cytogenet Genome Res ; 143(1-3): 96-103, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24993893

RESUMO

Silene latifolia (or white campion) possesses a well-established sex determination system with a dominant Y chromosome in males (the mammalian type). The heteromorphic sex chromosomes X and Y in S. latifolia largely stopped recombination; thus, we can expect a gradual genetic degeneration of the Y chromosome. It is well proven that neither diploid nor polyploid S. latifolia sporophytes can survive without at least one X, so the only life stage possessing the Y as the sole sex chromosome is the male gametophyte (pollen tube), while the female gametophyte seems to be X-dependent. Previous studies on anther-derived plants of this species showed that the obtained plants (largely haploid or dihaploid) were phenotypically and cytologically female. In this paper, we provide molecular evidence for the inviability of plants lacking the X chromosome. Using sex-specific PCR primers, we show that all plantlets and plants derived from anther cultures are female. In studying anther-derived diploid females by sequencing of X-linked markers, we demonstrate that these plants are really homozygous dihaploids. A haploid regenerant plant was sequenced (8× genome coverage) using Illumina technology. Genome data are disposable in the EMBL database as a standard for full genome and X chromosome assembly in this model species. Homozygous dihaploids were back-crossed with males to yield a progeny useful for the study of the evolution of the Y chromosome.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta/genética , Cromossomos Sexuais/genética , Silene/genética , Citogenética/métodos , Haploidia , Processos de Determinação Sexual/genética
5.
Cytogenet Genome Res ; 143(1-3): 87-95, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24751661

RESUMO

Silene latifolia is a dioecious plant species with chromosomal sex determination. Although the evolution of sex chromosomes in S. latifolia has been the subject of numerous studies, a global view of X chromosome structure in this species is still missing. Here, we combine X chromosome microdissection and BAC library screening to isolate new X chromosome-linked sequences. Out of 8 identified BAC clones, only BAC 86M14 showed an X-preferential signal after FISH experiments. Further analysis revealed the existence of the Athila retroelement which is enriched in the X chromosome and nearly absent in the Y chromosome. Based on previous data, the Athila retroelement belongs to the CL3 group of most repetitive sequences in the S. latifolia genome. Structural, transcriptomics and phylogenetic analyses revealed that Athila CL3 represents an old clade in the Athila lineage. We propose a mechanism responsible for Athila CL3 distribution in the S. latifolia genome.


Assuntos
Cromossomos de Plantas/genética , Retroelementos/genética , Cromossomos Sexuais/genética , Silene/genética , Filogenia , Transcriptoma/genética
6.
New Phytol ; 202(2): 662-678, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24456522

RESUMO

Some transposable elements (TEs) show extraordinary variance in abundance along sex chromosomes but the mechanisms responsible for this variance are unknown. Here, we studied Ogre long terminal repeat (LTR) retrotransposons in Silene latifolia, a dioecious plant with evolutionarily young heteromorphic sex chromosomes. Ogre elements are ubiquitous in the S. latifolia genome but surprisingly absent on the Y chromosome. Bacterial artificial chromosome (BAC) library analysis and fluorescence in situ hybridization (FISH) were used to determine Ogre structure and chromosomal localization. Next generation sequencing (NGS) data were analysed to assess the transcription level and abundance of small RNAs. Methylation of Ogres was determined by bisulphite sequencing. Phylogenetic analysis was used to determine mobilization time and selection forces acting on Ogre elements. We characterized three Ogre families ubiquitous in the S. latifolia genome. One family is nearly absent on the Y chromosome despite all the families having similar structures and spreading mechanisms. We showed that Ogre retrotransposons evolved before sex chromosomes appeared but were mobilized after formation of the Y chromosome. Our data suggest that the absence of one Ogre family on the Y chromosome may be caused by 24-nucleotide (24-nt) small RNA-mediated silencing leading to female-specific spreading. Our findings highlight epigenetic silencing mechanisms as potentially crucial factors in sex-specific spreading of some TEs, but other possible mechanisms are also discussed.


Assuntos
Cromossomos de Plantas , DNA de Plantas , Evolução Molecular , Genoma de Planta , Retroelementos , Silene/genética , Sequências Repetidas Terminais , Sequência de Bases , Epigênese Genética , Inativação Gênica , Dados de Sequência Molecular , Filogenia , RNA de Plantas
7.
Front Genet ; 12: 695124, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276797

RESUMO

Folate deficiency is associated with a broad range of human disorders, including anemia, fetal neural tube defects, age-associated dementia and several types of cancer. It is well established that a subgroup of rare fragile sites (RFSs) containing expanded CGG trinucleotide repeat (TNR) sequences display instability when cells are deprived of folate. However, given that folate sensitive RFSs exist in a very small percentage of the population, they are unlikely to be the cause of the widespread health problems associated with folate deficiency. We hypothesized that folate deficiency could specifically affect DNA replication at regions containing CG-rich repeat sequences. For this, we identified a region on human chromosome 2 (Chr2) comprising more than 300 CG-rich TNRs (termed "FOLD1") by examining the human genome database. Via the analysis of chromosome shape and segregation in mitosis, we demonstrate that, when human cells are cultured under folate stress conditions, Chr2 is prone to display a "kink" or "bending" at FOLD1 in metaphase and nondisjunction in anaphase. Furthermore, long-term folate deprivation causes Chr2 aneuploidy. Our results provide new evidence on the abnormalities folate deficiency could cause in human cells. This could facilitate future studies on the deleterious health conditions associated with folate deficiency.

8.
Nat Struct Mol Biol ; 27(5): 424-437, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32398827

RESUMO

Oncogene activation during tumorigenesis generates DNA replication stress, a known driver of genome rearrangements. In response to replication stress, certain loci, such as common fragile sites and telomeres, remain under-replicated during interphase and subsequently complete locus duplication in mitosis in a process known as 'MiDAS'. Here, we demonstrate that RTEL1 (regulator of telomere elongation helicase 1) has a genome-wide role in MiDAS at loci prone to form G-quadruplex-associated R-loops, in a process that is dependent on its helicase function. We reveal that SLX4 is required for the timely recruitment of RTEL1 to the affected loci, which in turn facilitates recruitment of other proteins required for MiDAS, including RAD52 and POLD3. Our findings demonstrate that RTEL1 is required for MiDAS and suggest that RTEL1 maintains genome stability by resolving conflicts that can arise between the replication and transcription machineries.


Assuntos
DNA Helicases/genética , DNA Helicases/metabolismo , Quadruplex G , Genoma Humano/genética , Mitose , Animais , Linhagem Celular , DNA Helicases/química , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Instabilidade Genômica , Humanos , Imunoprecipitação , Camundongos , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Conformação de Ácido Nucleico , RNA Helicases/genética , RNA Helicases/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Recombinases/genética , Recombinases/metabolismo , Ribonuclease H/genética , Ribonuclease H/metabolismo
9.
Science ; 365(6460): 1466-1469, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31604276

RESUMO

Chromosome errors, or aneuploidy, affect an exceptionally high number of human conceptions, causing pregnancy loss and congenital disorders. Here, we have followed chromosome segregation in human oocytes from females aged 9 to 43 years and report that aneuploidy follows a U-curve. Specific segregation error types show different age dependencies, providing a quantitative explanation for the U-curve. Whole-chromosome nondisjunction events are preferentially associated with increased aneuploidy in young girls, whereas centromeric and more extensive cohesion loss limit fertility as women age. Our findings suggest that chromosomal errors originating in oocytes determine the curve of natural fertility in humans.


Assuntos
Envelhecimento , Aneuploidia , Segregação de Cromossomos , Fertilidade , Oócitos/citologia , Adolescente , Adulto , Criança , Feminino , Humanos , Meiose , Não Disjunção Genética , Adulto Jovem
10.
Oncotarget ; 8(23): 36996-37008, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28445142

RESUMO

Oncogene activation is an established driver of tumorigenesis. An apparently inevitable consequence of oncogene activation is the generation of DNA replication stress (RS), a feature common to most cancer cells. RS, in turn, is a causal factor in the development of chromosome instability (CIN), a near universal feature of solid tumors. It is likely that CIN and RS are mutually reinforcing drivers that not only accelerate tumorigenesis, but also permit cancer cells to adapt to diverse and hostile environments. This article reviews the genetic changes present in cancer cells that influence oncogene-induced RS and CIN, with a particular emphasis on regions of the human genome that show enhanced sensitivity to the destabilizing effects of RS, such as common fragile sites. Because RS exists in a wide range of cancer types, we propose that the proteins involved counteracting this stress are potential biomarkers for indicating the degree of RS in cancer specimens. To test this hypothesis, we conducted a pilot study to validate whether some of proteins that are known from in vitro studies to play an essential role in the RS pathway could be suitable as a biomarker. Our results indicated that this is possible. With this review and pilot study, we aim to accelerate the development of a biomarker for analysis of RS in tumor biopsy specimens, which could ultimately help to stratify patients for different forms of therapy such as the RS inhibitors already undergoing clinical trials.


Assuntos
Biomarcadores Tumorais/genética , Instabilidade Cromossômica , Replicação do DNA , Neoplasias/genética , Carcinogênese/genética , Genoma Humano/genética , Humanos , Mutação , Neoplasias/patologia , Projetos Piloto
11.
Genome Biol Evol ; 5(4): 769-82, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23542206

RESUMO

Rumex acetosa is a dioecious plant with the XY1Y2 sex chromosome system. Both Y chromosomes are heterochromatic and are thought to be degenerated. We performed low-pass 454 sequencing and similarity-based clustering of male and female genomic 454 reads to identify and characterize major groups of R. acetosa repetitive DNA. We found that Copia and Gypsy retrotransposons dominated, followed by DNA transposons and nonlong terminal repeat retrotransposons. CRM and Tat/Ogre retrotransposons dominated the Gypsy superfamily, whereas Maximus/Sireviruses were most abundant among Copia retrotransposons. Only one Gypsy subfamily had accumulated on Y1 and Y2 chromosomes, whereas many retrotransposons were ubiquitous on autosomes and the X chromosome, but absent on Y1 and Y2 chromosomes, and others were depleted from the X chromosome. One group of CRM Gypsy was specifically localized to centromeres. We also found that majority of previously described satellites (RAYSI, RAYSII, RAYSIII, and RAE180) are accumulated on the Y chromosomes where we identified Y chromosome-specific variant of RAE180. We discovered two novel satellites-RA160 satellite dominating on the X chromosome and RA690 localized mostly on the Y1 chromosome. The expression pattern obtained from Illumina RNA sequencing showed that the expression of transposable elements is similar in leaves of both sexes and that satellites are also expressed. Contrasting patterns of transposable elements (TEs) and satellite localization on sex chromosomes in R. acetosa, where not only accumulation but also depletion of repetitive DNA was observed, suggest that a plethora of evolutionary processes can shape sex chromosomes.


Assuntos
Cromossomos de Plantas/genética , DNA Satélite , Retroelementos , Rumex/genética , Cromossomos Sexuais/genética , Sequência de Bases , Evolução Molecular , Dados de Sequência Molecular , Filogenia , Rumex/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA