RESUMO
This study presents the implementation of an evanescent field (EF)-based sensing platform employing a hybrid film composed of graphene oxide (GO) and poly(methyl methacrylate) (PMMA), integrated onto coreless D-shaped fibers (cDsFs). The operational framework of the hybrid film-coated cDsFs (GoP-cDsFs) was comprehensively elucidated through theoretical and experimental analyses. To establish a baseline for comparison, the performance of the cDsFs with the sole inclusion of the PMMA film was investigated. Our investigations underscore the substantive role of graphene oxide in augmenting the evanescent field, thereby generating a synergistic effect that contributes to the overall enhancement of the evanescent field in the device. Consequently, the fabricated GoP-cDsF sensor manifests an outstanding sensitivity of -4.936â nm/°C, rendering it particularly well-suited for applications demanding high-sensitivity temperature sensing. Moreover, the unique attributes of the GoP-cDsF position it as a promising candidate for the measurement of both magnetic and electric fields, presenting an effective strategy for multifunctional sensing applications.
RESUMO
The extent to which populations will successfully adapt to continued warming temperatures will be a crucial factor in determining future health burdens. Previous health impact assessments of future temperature-related mortality burdens mostly disregard adaptation or make simplistic assumptions. We apply a novel evidence-based approach to model adaptation that takes into account the fact that adaptation potential is likely to vary at different temperatures. Temporal changes in age-specific mortality risk associated with low and high temperatures were characterised for Scotland between 1974 and 2018 using temperature-specific RR ratios to reflect past changes in adaptive capacity. Three scenarios of future adaption were constructed consistent with the SSPs. These adaptation projections were combined with climate and population projections to estimate the mortality burdens attributable to high (above the 90th percentile of the historical temperature distribution) and low (below the 10th percentile) temperatures up to 2080 under five RCP-SSP scenarios. A decomposition analysis was conducted to attribute the change in the mortality burden into adaptation, climate and population. In 1980-2000, the heat burden (21 deaths/year) was smaller than the colder burden (312 deaths/year). In the 2060-2080 period, the heat burden was projected to be the highest under RCP8.5-SSP5 (1285 deaths/year), and the cold burden was the highest under RCP4.5-SSP4 (320 deaths/year). The net burden was lowest under RCP2.6-SSP1 and highest under RCP8.5-SSP5. Improvements in adaptation was the largest factor reducing the cold burden under RCP2.6-SSP1 whilst temperature increase was the biggest factor contributing to the high heat burdens under RCP8.5-SSP5. Ambient heat will become a more important health determinant than cold in Scotland under all climate change and socio-economic scenarios. Adaptive capacity will not fully counter projected increases in heat deaths, underscoring the need for more ambitious climate mitigation measures for Scotland and elsewhere.
Assuntos
Mudança Climática , Mortalidade , Humanos , Escócia/epidemiologia , Mortalidade/tendências , Idoso , Fatores Socioeconômicos , Adolescente , Adulto , Pessoa de Meia-Idade , Criança , Lactente , Pré-Escolar , Adulto Jovem , Idoso de 80 Anos ou mais , Temperatura , Recém-Nascido , Temperatura Alta/efeitos adversosRESUMO
INTRODUCTION: Deep brain stimulation (DBS) is a well-established surgical therapy for patients with Parkinsons' Disease (PD). Traditionally, DBS surgery for PD is performed under local anesthesia, whereby the patient is awake to facilitate intraoperative neurophysiological confirmation of the intended target using microelectrode recordings. General anesthesia allows for improved patient comfort without sacrificing anatomic precision and clinical outcomes. METHODS: We performed a systemic review and meta-analysis on patients undergoing DBS for PD. Published randomized controlled trials, prospective and retrospective studies, and case series which compared asleep and awake techniques for patients undergoing DBS for PD were included. A total of 19 studies and 1,900 patients were included in the analysis. RESULTS: We analyzed the (i) clinical effectiveness - postoperative UPDRS III score, levodopa equivalent daily doses and DBS stimulation requirements. (ii) Surgical and anesthesia related complications, number of lead insertions and operative time (iii) patient's quality of life, mood and cognitive measures using PDQ-39, MDRS, and MMSE scores. There was no significant difference in results between the awake and asleep groups, other than for operative time, for which there was significant heterogeneity. CONCLUSION: With the advent of newer technology, there is likely to have narrowing differences in outcomes between awake or asleep DBS. What would therefore be more important would be to consider the patient's comfort and clinical status as well as the operative team's familiarity with the procedure to ensure seamless transition and care.
Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Vigília , Estimulação Encefálica Profunda/métodos , Humanos , Doença de Parkinson/terapia , Doença de Parkinson/cirurgia , Anestesia Geral/métodos , Resultado do Tratamento , Anestesia/métodosRESUMO
OBJECTIVES: Repetitive transcranial magnetic stimulation (rTMS) has shown promising results in enhancing motor recovery after stroke, but nuances regarding its use, such as the impact of the type and site of stimulation, are not yet established. We aimed to perform a systematic review and meta-analysis of randomized controlled trials (RCTs) with low risk of bias to investigate the effect of rTMS on motor recovery after both ischemic and hemorrhagic stroke. MATERIALS AND METHODS: Three databases were searched systematically for all RCTs reporting comparisons between rTMS (including theta-burst stimulation) and either no stimulation or sham stimulation up to August 19, 2022. The primary outcome measure was the Fugl-Meyer Assessment for Upper Extremity (FMA-UE). Secondary outcome measures comprised the Action Research Arm Test, Box and Block Test, Modified Ashworth Scale for the wrist, and modified Rankin Scale (mRS). RESULTS: A total of 37 articles reporting 48 unique comparisons were included. Pooled mean FMA-UE scores were significantly higher in the experimental group than the control group after intervention (MD = 5.4 [MD = 10.7 after correction of potential publication bias], p < 0.001) and at the last follow-up (MD = 5.2, p = 0.031). On subgroup analysis, the improvements in FMA-UE scores, both after intervention and at the last follow-up, were significant in the acute/subacute stage of stroke (within six months) and for patients with more severe baseline motor impairment. Both contralesional and ipsilesional stimulation yielded significant improvements in FMA-UE at the first assessment after rTMS but not at the last follow-up, while the improvements from bilateral rTMS only achieved statistical significance at the last follow-up. Among the secondary outcome measures, only mRS was significantly improved in the rTMS group after intervention (MD = -0.5, p = 0.013) and at the last follow-up (MD = -0.9, p = 0.001). CONCLUSIONS: Current literature supports the use of rTMS for motor recovery after stroke, especially when done within six months and for patients with more severe stroke at baseline. Future studies with larger sample sizes may be helpful in clarifying the potential of rTMS in poststroke rehabilitation.
RESUMO
A novel Ir-Mn dual-atom electrocatalyst is synthesized by a facile ion-exchange method by incorporating Ir in SrMnO3, which yields an extremely high activity and stability for the oxygen evolution reaction (OER). The ion exchange process occurs in a self-limitation way, which favors the formation of Ir-Mn dual-atom in the IrMnO9 unit. The incorporation of Ir modulates the electronic structure of both Ir and Mn, thereby resulting in a shorter distance of the Ir-Mn dual-atom (2.41â Å) than the Mn-Mn dual-atom (2.49â Å). The modulated Ir-Mn dual-atom enables the same spin direction Oâ (↑) of the adsorbed *O intermediates, thus facilitating the direct coupling of the two adsorbed *O intermediates to release O2 via the oxygen-oxygen radical coupling mechanism. Electrochemical tests reveal that the Ir-SrMnO3 exhibits a superior OER's activity with a low overpotential of 207â mV at 10â mA cm-2 and achieves a mass specific activity of 1100â A gIr -1 at 1.5â V. The proton-exchange-membrane water electrolyzer with the Ir-SrMnO3 catalyst exhibits a low electrolysis voltage of 1.63â V at 1.0â A cm-2 and a stable 2000-h operation with a decay of only 15â µV h-1 at 0.5â A cm-2.
RESUMO
Micron-size spherical polystyrene colloidal particles are mechanically stretched to a prolate geometry with desirable aspect ratios. The particles in an aqueous medium with specific ionic concentration are then introduced into a microchannel and allowed to settle on a glass substrate. In the presence of unidirectional flow, the loosely adhered particles in the secondary minimum of surface interaction potential are easily washed off, but the remnant in the strong primary minimum preferentially aligns with the flow direction and exercises in-plane rotation. A rigorous theoretical model is constructed to account for filtration efficiency in terms of hydrodynamic drag, intersurface forces, reorientation of prolate particles, and their dependence on flowrate and ionic concentration.
RESUMO
To quantify colloidal filtration, a quartz crystal microbalance (QCM) with a silicon dioxide surface is embedded on the inner surface of a microfluidic channel to monitor the real-time particle deposition. Potassium chloride solution with micrometer-size polystyrene particles simulating bacterial strains flows down the channel. In the presence of intrinsic Derjaguin-Landau-Verwey-Overbeek (DLVO) intersurface forces, particles are trapped by the quartz surfaces, and the increased mass shifts the QCM resonance frequency. The method provides an alternative way to measure filtration efficiency in an optically opaque channel and its dependence on the ionic concentration.
RESUMO
Although Philadelphia chromosome-positive acute leukemia (Ph + -ALL) has been revolutionized with tyrosine kinase inhibitors (TKIs), resistance and mutation are universal events during treatment with first-generation and second-generation TKIs. The present third-generation TKI has a dose-dependent, increased risk of serious cardiovascular events and the sensitivity is poor for patients with ≥2 mutations accompanied by the T315I mutation. Thus, novel and well-tolerated TKIs should be explored. This study analyzes the efficacy and advert effects of olverembatinib, a novel third TKI, in the treatment of newly diagnosed adult Ph + -ALL in induction therapy. Four adult patients with newly diagnosed Ph + -ALL were treated with olverembatinib as the first-line treatment. For induction therapy, these patients received 40 mg of oral olverembatinib quaque omni die for 28 days, 1 mg/kg/d of prednisone for 14 days, then tapered and stopped at 28 days and vindesine 4 mg/d at days 1, 8 and 15. After induction therapy, these patients received median or high-dose of cytarabine and methotrexate combined with oral olverembatinib as consolidation therapy. Then the allogeneic hematopoietic stem cell transplantation (allo-HSCT) was performed. All patients reached complete remission with a complete cytogenetic response after induction therapy. Two patients reached major molecular remission and one with complete molecular remission. Before allo-HSCT, all the patients achieved complete molecular remission. All the patients have survived disease-free for 3-6 months. No severe advert effects were observed. It is well-tolerated and effective for olverembatinib in the treatment of newly diagnosed adult patients with Ph + -ALL. A prospective study should be performed to further testify the role.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Humanos , Cromossomo Filadélfia , Estudos Prospectivos , Inibidores de Proteínas Quinases/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genéticaRESUMO
The non-inferiority of one treatment/drug to another is a common and important issue in medical and pharmaceutical fields. This study explored a fiducial approach for testing the non-inferiority of proportion difference in matched-pairs design. Approximate tests constructed using fiducial quantities with a combination of different parameters were proposed. Four simulation studies were employed to compare the performance of fiducial tests by comparing their type I errors and powers. The results showed that fiducial quantities with parameter 0.6 ≤ w 1 ≤ 0.8 performed satisfactorily from small to large samples. Therefore, the fiducial tests could be recommended for practical applications. The recommended fiducial tests might be a competitive alternative to other available tests. Three real data sets were analyzed to illustrate the proposed methods were competitive or even better than other tests.
Assuntos
Projetos de Pesquisa , Humanos , Simulação por ComputadorRESUMO
OBJECTIVE: This study aimed to review the best evidence on the long-term efficacy of neurostimulation for chronic pain. MATERIALS AND METHODS: We systematically reviewed PubMed, CENTRAL, and WikiStim for studies published between the inception of the data bases and July 21, 2022. Randomized controlled trials (RCTs) with a minimum of one-year follow-up that were of high methodologic quality as ascertained using the Delphi list criteria were included in the evidence synthesis. The primary outcome was long-term reduction in pain intensity, and the secondary outcomes were all other reported outcomes. Level of recommendation was graded from I to III, with level I being the highest level of recommendation. RESULTS: Of the 7119 records screened, 24 RCTs were included in the evidence synthesis. Therapies with recommendations for their usage include pulsed radiofrequency (PRF) for postherpetic neuralgia, transcutaneous electrical nerve stimulation for trigeminal neuralgia, motor cortex stimulation for neuropathic pain and poststroke pain, deep brain stimulation for cluster headache, sphenopalatine ganglion stimulation for cluster headache, occipital nerve stimulation for migraine, peripheral nerve field stimulation for back pain, and spinal cord stimulation (SCS) for back and leg pain, nonsurgical back pain, persistent spinal pain syndrome, and painful diabetic neuropathy. Closed-loop SCS is recommended over open-loop SCS for back and leg pain. SCS is recommended over PRF for postherpetic neuralgia. Dorsal root ganglion stimulation is recommended over SCS for complex regional pain syndrome. CONCLUSIONS: Neurostimulation is generally effective in the long term as an adjunctive treatment for chronic pain. Future studies should evaluate whether the multidisciplinary management of the physical perception of pain, affect, and social stressors is superior to their management alone.
RESUMO
OBJECTIVE: Drug-resistant epilepsy (DRE) can have devastating consequences for patients and families. Vagal nerve stimulation (VNS) is used as a surgical adjunct for treating DRE not amenable to surgical resection. Although VNS is generally safe, it has its inherent complications. With the increasing number of implantations, adequate patient education with discussion of possible complications forms a critical aspect of informed consent and patient counseling. There is a lack of large-scale reviews of device malfunction, patient complaints, and surgically related complications available to date. MATERIALS AND METHODS: Complications associated with VNS implants performed between 2011 and 2021 were identified through a search of the United States Food and Drug Administration Manufacturer And User Facility Device Experience (MAUDE) data base. We found three models on the data base, CYBERONICS, INC pulse gen Demipulse 103, AspireSR 106, and SenTiva 1000. The reports were classified into three main groups, "Device malfunction," "Patient complaints," and "Surgically managed complications." RESULTS: A total of 5888 complications were reported over the ten-year period, of which 501 reports were inconclusive, 610 were unrelated, and 449 were deaths. In summary, there were 2272 reports for VNS 103, 1526 reports for VNS 106, and 530 reports for VNS 1000. Within VNS 103, 33% of reports were related to device malfunction, 33% to patient complaints, and 34% to surgically managed complications. For VNS 106, 35% were related to device malfunction, 24% to patient complaints, and 41% to surgically managed complications. Lastly, for VNS 1000, 8% were device malfunction, 45% patient complaints, and 47% surgically managed complications. CONCLUSION: We present an analysis of the MAUDE data base for adverse events and complications related to VNS. It is hoped that this description of complications and literature review will help promote further improvement in its safety profile, patient education, and management of both patient and clinician expectations.
RESUMO
UPLC-Q-Exactive-MS/MS and network pharmacology were employed to preliminarily study the active components and mechanism of Jinwugutong Capsules in the treatment of osteoporosis. Firstly, UPLC-Q-Exactive-MS/MS was employed to characterize the chemical components of Jinwugutong Capsules, and network pharmacology was employed to establish the "drug-component-target-pathway-disease" network. The key targets and main active components were thus obtained. Secondly, AutoDock was used for the molecular docking between the main active components and key targets. Finally, the animal model of osteoporosis was established, and the effect of Jinwugutong Capsules on the expression of key targets including RAC-alpha serine/threonine-protein kinase(AKT1), albumin(ALB), and tumor necrosis factor-alpha(TNF-α) was determined by enzyme-linked immunosorbent assay(ELISA). A total of 59 chemical components were identified from Jinwugutong Capsules, among which coryfolin, 8-prenylnaringenin, demethoxycurcumin, isobavachin, and genistein may be the main active components of Jinwugutong Capsules in treating osteoporosis. The topological analysis of the protein-protein interaction(PPI) network revealed 10 core targets such as AKT1, ALB, catenin beta 1(CTNNB1), TNF, and epidermal growth factor receptor(EGFR). The Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment showed that Jinwugutong Capsules mainly exerted the therapeutic effect by regulating the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT) signaling pathway, neuroactive ligand-receptor interaction, mitogen-activated protein kinase(MAPK) signaling pathway, Rap1 signaling pathway and so on. Molecular docking showed that the main active components of Jinwugutong Capsules well bound to the key targets. ELISA results showed that Jinwugutong Capsules down-regulated the protein levels of AKT1 and TNF-α and up-regulated the protein level of ALB, which preliminarily verified the reliability of network pharmacology. This study indicates that Jinwugutong Capsules may play a role in the treatment of osteoporosis through multiple components, targets, and pathways, which can provide reference for the further research.
Assuntos
Farmacologia em Rede , Fator de Necrose Tumoral alfa , Animais , Fator de Necrose Tumoral alfa/genética , Cápsulas , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Reprodutibilidade dos Testes , Espectrometria de Massas em TandemRESUMO
Molecule aggregation in solution is acknowledged to be universal and can regulate the molecule's physiochemical properties, which however has been rarely investigated in electrochemistry. Herein, an electrochemical method is developed to quantitatively study the aggregation behavior of the target molecule methyl viologen dichloride. It is found that the oxidation state dicationic ions stay discrete, while the singly-reduced state monoradicals yield a concentration-dependent aggregation behavior. As a result, the molecule's energy level and its redox potential can be effectively regulated. This work does not only provide a method to investigate the molecular aggregation, but also demonstrates the feasibility to tune redox flow battery's performance by regulating the aggregation behavior.
RESUMO
Cobalt phosphides electrocatalysts have great potential for water splitting, but the unclear active sides hinder the further development of cobalt phosphides. Wherein, three different cobalt phosphides with the same hollow structure morphology (CoP-HS, CoP2 -HS, CoP3 -HS) based on the same sacrificial template of ZIF-67 are prepared. Surprisingly, these cobalt phosphides exhibit similar OER performances but quite different HER performances. The identical OER performance of these CoPx -HS in alkaline solution is attributed to the similar surface reconstruction to CoOOH. CoP-HS exhibits the best catalytic activity for HER among these CoPx -HS in both acidic and alkaline media, originating from the adjusted electronic density of phosphorus to affect absorption-desorption process on H. Moreover, the calculated ΔGH* based on P-sites of CoP-HS follows a quite similar trend with the normalized overpotential and Tafel slope, indicating the important role of P-sites for the HER process. Moreover, CoP-HS displays good performance (cell voltage of 1.67 V at a current density of 50 mA cm-2 ) and high stability in 1 M KOH. For the first time, this work detailly presents the critical role of phosphorus in cobalt-based phosphides for water splitting, which provides the guidance for future investigations on transition metal phosphides from material design to mechanism understanding.
RESUMO
An acoustically levitated air-in-liquid compound drop is set into an out-of-phase azimuthal sloshing resonance by a modulated frequency with modes n = 4-9. Waveforms of the inner and outer liquid-air interfaces conform to the classical Saffren model. Resonance peaks and their harmonics in the frequency spectrum are found to be a function of drop dimension and resonance modes. Drops with multiple small air bubbles do not resonate in sync because of asymmetry. This work has significant implications in the dynamics of core-shell compound drops.
RESUMO
BACKGROUND: Adverse health impacts have been found under extreme temperatures in many parts of the world. The majority of such research to date for the UK has been conducted on populations in England, whilst the impacts of ambient temperature on health outcomes in Scottish populations remain largely unknown. METHODS: This study uses time-series regression analysis with distributed lag non-linear models to characterise acute relationships between daily mean ambient temperature and mortality in Scotland including the four largest cities (Aberdeen, Dundee, Edinburgh and Glasgow) and three regions during 1974-2018. Increases in mortality risk under extreme cold and heat in individual cities and regions were aggregated using multivariate meta-analysis. Cold results are summarised by comparing the relative risk (RR) of death at the 1st percentile of localised temperature distributions compared to the 10th percentile, and heat effects as the RR at the 99th compared to the 90th percentile. RESULTS: Adverse cold effects were observed in all cities and regions, and heat effects were apparent in all cities and regions except northern Scotland. Aggregate all-cause mortality risk in Scotland was estimated to increase by 10% (95% confidence interval, CI: 7%, 13%) under extreme cold and 4% (CI: 2%, 5%) under extreme heat. People in urban areas experienced higher mortality risk under extreme cold and heat than those in rural regions. The elderly had the highest RR under both extreme cold and heat. Males experienced greater cold effects than females, whereas the reverse was true with heat effects, particularly among the elderly. Those who were unmarried had higher RR than those married under extreme heat, and the effect remained after controlling for age. The younger population living in the most deprived areas experienced higher cold and heat effects than in less deprived areas. Deaths from respiratory diseases were most sensitive to both cold and heat exposures, although mortality risk for cardiovascular diseases was also heightened, particularly in the elderly. Cold effects were lower in the most recent 15 years, which may be linked to policies and actions in preventing the vulnerable population from cold impacts. No temporal trend was found with the heat effect. CONCLUSIONS: This study assesses mortality risk associated with extreme temperatures in Scotland and identifies those groups who would benefit most from targeted actions to reduce cold- and heat-related mortalities.
Assuntos
Temperatura Baixa , Calor Extremo , Masculino , Feminino , Humanos , Idoso , Temperatura , Temperatura Alta , Cidades/epidemiologia , MortalidadeRESUMO
INTRODUCTION: Deep brain stimulation (DBS) for the treatment of Parkinson disease is susceptible to complications, such as hardware extrusion, most commonly at the scalp and chest. The authors describe their experience with the management of hardware extrusion and reconstruction with one of the largest single-institution experience and suggest an evidence-based treatment algorithm for the management of such cases. METHODS: A retrospective review of hospital records was performed to identify patients who underwent DBS-related surgery and reconstruction from January 2015 to April 2020. Management of these patients involved culture-directed antibiotics, local wound debridement, various forms of reconstruction, and hardware removal when indicated. RESULTS: Ninety-four patients with 131 DBS-related procedures were included. Twelve patients (12.8%) had hardware extrusion, of which 6 occurred primarily at the scalp and 6 occurred primarily at the chest. Primary closure of scalp wounds (odds ratio, 0.05 [0.004-0.71], P = 0.035) was negatively associated with treatment success. The type of reconstruction of chest wounds did not affect its success ( P = 0.58); however, none of them involved a new surgical bed, such as contralateral or hypochondrial placement. CONCLUSIONS: Hardware extrusion is a significant complication of DBS-related surgery. Management of extrusion at the scalp should involve the use of tension-free, well-vascularized locoregional flaps as opposed to primary closure. Implantable pulse generator extrusions at the chest can be managed with both primary closure and repositioning in a new surgical bed. Extruded DBS implants may be salvaged with appropriate reconstructive considerations, and the authors suggest an evidence-based treatment algorithm.
Assuntos
Estimulação Encefálica Profunda , Retalhos de Tecido Biológico , Doença de Parkinson , Humanos , Estimulação Encefálica Profunda/efeitos adversos , Couro Cabeludo/cirurgia , Couro Cabeludo/lesões , Próteses e Implantes , Doença de Parkinson/cirurgiaRESUMO
A homemade instrument is designed to directly characterize the adhesion between two rigid polymeric microspheres in the presence of moist air. The tensile load is measured as a function of approach distance at designated relative humidity (RH). The measurement is consistent with our model from the first approximation. The model is further extended to include a rough surface. Capillary adhesion force is shown to be monotonically increasing with RH for smooth surfaces but becomes more pronounced at low RH for rough surfaces. Moisture has a profound influence on interparticle adhesion, which has significant impacts on a wide range of industrial applications.
RESUMO
A novel organic molecule, 2,4,6-tris[1-(trimethylamonium)propyl-4-pyridiniumyl]-1,3,5-triazine hexachloride, was developed as a reversible six-electron storage electrolyte for use in an aqueous redox flow battery (ARFB). Physicochemical characterization reveals that the molecule evolves from a radical to a biradical and finally to a quinoid structure upon accepting four electrons. Both the diffusion coefficient and the rate constant were sufficiently high to run a flow battery with low concentration and kinetics polarization losses. In a demonstration unit, the assembled flow battery affords a high specific capacity of 33.0â Ah L-1 and a peak power density of 273â mW cm-2 . This work highlights the rational design of electroactive organics that can manipulate multi-electron transfer in a reversible way, which will pave the way to development of energy-dense, manageable and low-cost ARFBs.
RESUMO
Metal-organic framework (MOF) films can be made by cathodic electrodeposition, where a Brønsted base is formed electrochemically which deprotonates the MOF linkers that are present in solution as undissociated/partially dissociated weak acids. However, the co-deposition of metal and the narrow range of possible metal nodes limit the scope of this method. In this work, we propose the use of hydrogen peroxide (hydrogen peroxide assisted cathodic deposition or HPACD), to overcome these limitations. Electrochemical measurements indicate that in DMF, hydrogen peroxide is reduced to superoxide anions that deprotonate the carboxylic ligands. This single-electron reduction happens at much higher potentials than all previous reported methods. This prevents the co-deposition of metal and extends the range of possible metal nodes. Various pure MOF films (HKUST-1, MIL-53(Fe) and MOF-5) were prepared via this approach. HPACD was also used for the preparation of patterned MOF films and of flexible Cu-BTC coated paper membranes which reject 99.1 % of Rose Bengal from water with a permeance of 8.4â L m-2 h-1 bar-1 .