Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Glob Chang Biol ; 30(1): e17118, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273573

RESUMO

Climate change has had a significant impact on the seasonal transition dates of Arctic tundra ecosystems, causing diverse variations between distinct land surface classes. However, the combined effect of multiple controls as well as their individual effects on these dates remains unclear at various scales and across diverse land surface classes. Here we quantified spatiotemporal variations of three seasonal transition dates (start of spring, maximum normalized difference vegetation index (NDVImax ) day, end of fall) for five dominating land surface classes in the ice-free Greenland. Using a distributed snow model, structural equation modeling, and a random forest model, based on ground observations and remote sensing data, we assessed the indirect and direct effects of climate, snow, and terrain on seasonal transition dates. We then presented new projections of likely changes in seasonal transition dates under six future climate scenarios. The coupled climate, snow cover, and terrain conditions explained up to 61% of seasonal transition dates across different land surface classes. Snow ending day played a crucial role in the start of spring and timing of NDVImax . A warmer June and a decline in wind could advance the NDVImax day. Increased precipitation and temperature during July-August are the most important for delaying the end of fall. We projected that a 1-4.5°C increase in temperature and a 5%-20% increase in precipitation would lengthen the spring-to-fall period for all five land surface classes by 2050, thus the current order of spring-to-fall lengths for the five land surface classes could undergo notable changes. Tall shrubs and fens would have a longer spring-to-fall period under the warmest and wettest scenario, suggesting a competitive advantage for these vegetation communities. This study's results illustrate controls on seasonal transition dates and portend potential changes in vegetation composition in the Arctic under climate change.


Assuntos
Ecossistema , Tundra , Groenlândia , Estações do Ano , Regiões Árticas , Neve , Mudança Climática
2.
Cell Mol Biol Lett ; 29(1): 3, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172650

RESUMO

BACKGROUND: Circular RNAs are enriched in cardiac tissue and play important roles in the pathogenesis of heart diseases. In this study, we aimed to investigate the regulatory mechanism of a conserved heart-enriched circRNA, circPan3, in cardiac hypertrophy. METHODS: Cardiac hypertrophy was induced by isoproterenol. The progression of cardiomyocyte hypertrophy was assessed by sarcomere organization staining, cell surface area measurement, and expression levels of cardiac hypertrophy markers. RNA interactions were detected by RNA pull-down assays, and methylated RNA immunoprecipitation was used to detect m6A level. RESULTS: The expression of circPan3 was downregulated in an isoproterenol-induced cardiac hypertrophy model. Forced expression of circPan3 attenuated cardiomyocyte hypertrophy, while inhibition of circPan3 aggravated cardiomyocyte hypertrophy. Mechanistically, circPan3 was an endogenous sponge of miR-320-3p without affecting miR-320-3p levels. It elevated the expression of HSP20 by endogenously interacting with miR-320-3p. In addition, circPan3 was N6-methylated. Stimulation by isoproterenol downregulated the m6A eraser ALKBH5, resulting in N6-methylation and destabilization of circPan3. CONCLUSIONS: Our research is the first to report that circPan3 has an antihypertrophic effect in cardiomyocytes and revealed a novel circPan3-modulated signalling pathway involved in cardiac hypertrophy. CircPan3 inhibits cardiac hypertrophy by targeting the miR-320-3p/HSP20 axis and is regulated by ALKBH5-mediated N6-methylation. This pathway could provide potential therapeutic targets for cardiac hypertrophy.


Assuntos
MicroRNAs , RNA Circular , Humanos , RNA Circular/genética , RNA Circular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Isoproterenol , Cardiomegalia/genética , Cardiomegalia/patologia , Miócitos Cardíacos/metabolismo
3.
Fish Shellfish Immunol ; 143: 109215, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951320

RESUMO

Marine lectins are a group of proteins that possess specific carbohydrate recognition and binding domains. They exhibit various activities, including antimicrobial, antitumor, antiviral, and immunomodulatory effects. In this study, a novel galectin-binding lectin gene named PFL-96 (GenBank: OQ561753.1) was cloned from Pinctada fucata. The PFL-96 gene has an open reading frame of 324 base pairs (bp) and encodes a protein comprising 107 amino acids. The protein has a molecular weight of 11.95 kDa and an isoelectric point of 9.27. It contains an N-terminal signal peptide and a galactose-binding lectin domain. The sequence identity to lectin proteins from fish, echinoderms, coelenterates, and shellfish ranges from 31.90 to 40.00 %. In the phylogenetic analysis, it was found that the PFL-96 protein is closely related to the lectin from Pteria penguin. The PFL-96 recombinant protein exhibited coagulation activity on 2 % rabbit red blood cells at a concentration of ≥8 µg/mL. Additionally, it showed significant hemolytic activity at a concentration of ≥32 µg/mL. The PFL-96 recombinant protein exhibited significant antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Candida albicans, and Vibrio alginolyticus, with minimum inhibitory concentrations (MIC) of 4, 8, 16, and 16 µg/mL, respectively. The minimum bactericidal concentrations (MBC) were determined to be 8, 16, 32, and 32 µg/mL, respectively. Furthermore, the PFL-96 recombinant protein exhibited inhibitory effects on the proliferation of Hela tumor cells, HepG2 tumor cells, and C666-1 tumor cells, with IC50 values of 7.962, 8.007, and 9.502 µg/mL, respectively. These findings suggest that the recombinant protein PFL-96 exhibits significant bioactivity in vitro, contributing to a better understanding of the active compounds found in P. fucata. The present study establishes a fundamental basis for further investigation into the mechanism of action and structural optimization of the recombinant protein PFL-96. The aim is to develop potential candidates for antibacterial and anti-tumor agents.


Assuntos
Pinctada , Animais , Coelhos , Pinctada/metabolismo , Sequência de Aminoácidos , Filogenia , Clonagem Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/metabolismo , Galectinas/genética , Galectinas/metabolismo , Antibacterianos/metabolismo
4.
Genes Dev ; 29(6): 672-85, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25792601

RESUMO

Loss of function/dysregulation of inhibitor of growth 4 (ING4) and hyperactivation of NF-κB are frequent events in many types of human malignancies. However, the molecular mechanisms underlying these remarkable aberrations are not understood. Here, we report that ING4 is physically associated with JFK. We demonstrated that JFK targets ING4 for ubiquitination and degradation through assembly of an Skp1-Cul1-F-box (SCF) complex. We showed that JFK-mediated ING4 destabilization leads to the hyperactivation of the canonical NF-κB pathway and promotes angiogenesis and metastasis of breast cancer. Significantly, the expression of JFK is markedly up-regulated in breast cancer, and the level of JFK is negatively correlated with that of ING4 and positively correlated with an aggressive clinical behavior of breast carcinomas. Our study identified SCF(JFK) as a bona fide E3 ligase for ING4 and unraveled the JFK-ING4-NF-κB axis as an important player in the development and progression of breast cancer, supporting the pursuit of JFK as a potential target for breast cancer intervention.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/fisiopatologia , Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/metabolismo , Proteínas de Homeodomínio/metabolismo , Neovascularização Patológica/enzimologia , Proteínas Supressoras de Tumor/metabolismo , Neoplasias da Mama/irrigação sanguínea , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Complexos Multiproteicos , NF-kappa B/metabolismo , Metástase Neoplásica , Neovascularização Patológica/genética , Proteólise , Transdução de Sinais , Ubiquitinação
5.
Glob Chang Biol ; 28(10): 3246-3259, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35122381

RESUMO

Pronounced nongrowing season warming and changes in soil freeze-thaw (F-T) cycles can dramatically alter net methane (CH4 ) exchange rates between soils and the atmosphere. However, the magnitudes and drivers of warming impacts on CH4 uptake in different stages of the F-T cycle are poorly understood in cold alpine ecosystems, which have been found to be a net sink of atmospheric CH4 . Here, we reported a year-round ecosystem daily CH4 uptake in an alpine meadow on the Qinghai-Tibetan Plateau after a 5-year warming experiment that included a control, a low-level warming treatment (+2.4℃ at 5 cm soil depth), and a high-level warming treatment (+4.5℃ at 5 cm soil depth). We found that warming shortened the F-T cycle under the low-level warming and soils did not freeze under the high-level warming. Although both warming treatments increased the mean CH4 uptake rate, only the high-level warming significantly increased annual CH4 uptake compared to the control. The warming-induced stimulation of CH4 uptake mainly occurred in the cold season, which was mostly during spring thaw under low-level warming and during the frozen winter under high-level warming due to a longer period with thawed soil. We also found that warming significantly stimulated daily CH4 uptake mainly by reducing near-surface soil water content in the warm season, whereas both soil water content and temperature controlled daily CH4 uptake in different ways during the autumn freeze, frozen winter, and spring thaw periods of the control. Our study revealed a strong warming effect on CH4 uptake during the entire F-T cycle in the alpine meadow, especially the unfrozen winter. Our results also suggested the important roles of soil pH, available phosphorus, and methanotroph abundance in regulating annual CH4 uptake in response to warming, which should be incorporated into biogeochemical models for accurately forecasting CH4  fluxes under future climate scenarios.


Assuntos
Pradaria , Metano , Ecossistema , Estações do Ano , Solo/química , Água
6.
J Immunol ; 204(7): 1904-1918, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32075857

RESUMO

IFN regulatory factor 3 (IRF3) is critical for the transcription of type I IFNs in defensing virus and promoting inflammatory responses. Although several kinds of posttranslational modifications have been identified to modulate the activity of IRF3, whether atypical ubiquitination participates in the function regulation, especially the DNA binding capacity of IRF3, is unknown. In this study, we found that the ovarian tumor domain containing deubiquitinase OTUD1 deubiquitinated IRF3 and attenuated its function. An atypical ubiquitination, K6-linked ubiquitination, was essential for the DNA binding capacity of IRF3 and subsequent induction of target genes. Mechanistically, OTUD1 cleaves the viral infection-induced K6-linked ubiquitination of IRF3, resulting in the disassociation of IRF3 from the promoter region of target genes, without affecting the protein stability, dimerization, and nuclear translocation of IRF3 after a viral infection. Otud1 -/- cells as well as Otud1 -/- mice produced more type I IFNs and proinflammatory cytokines after viral infection. Otud1 -/- mice were more resistant to lethal HSV-1 and VSV infection. Consistent with the former investigations that IRF3 promoted inflammatory responses in LPS-induced sepsis, Otud1 -/- mice were more susceptible to LPS stimulation. Taken together, our findings revealed that the DNA binding capacity of IRF3 in the innate immune signaling pathway was modulated by atypical K6-linked ubiquitination and deubiquitination process, which was regulated by the deubiquitinase OTUD1.


Assuntos
Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Animais , Linhagem Celular , Células HEK293 , Herpes Simples/metabolismo , Herpesvirus Humano 1/patogenicidade , Humanos , Imunidade Inata/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/fisiologia , Estabilidade Proteica , Transdução de Sinais/fisiologia
7.
BMC Psychiatry ; 22(1): 28, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012502

RESUMO

BACKGROUND: In recent years, there have been frequent reports of gaming disorder in China, with more focus on young people. We developed and psychometrically tested a Gaming Disorder screening scale (i.e., Gaming Disorder Screening Scale - GDSS) for Chinese adolescents and young adults, based on the existing scales and diagnostic criteria, but also considering the development status of China. METHODS: For testing content and criterion validity, 1747 participants competed the GDSS and the Internet Addiction Test (IAT). After 15 days, 400 participants were retested with the scales for to assess test-retest reliability. Besides, 200 game players were interviewed for a diagnosis of gaming disorder. RESULTS: The Cronbach's alpha coefficient on the GDSS was 0.93. The test-retest coefficient of 0.79. Principal components analysis identified three factors accounting for 62.4% of the variance; behavior, functioning, cognition and emotion. Confirmatory factor analysis showed a good model fit to the data (χ2 /df = 5.581; RMSEA =0.074; TLI = 0.916, CFI = 0.928). The overall model fit was significantly good in the measurement invariance tested across genders and different age groups. Based on the clinical interview, the screening cut-off point was determined to be ≥47 (sensitivity 41.4%, specificity 82.3%). CONCLUSIONS: The GDSS demonstrated good reliability and validity aspects for screening online gaming disorder among Chinese adolescents and young adults.


Assuntos
Comportamento Aditivo , Jogos de Vídeo , Adolescente , Comportamento Aditivo/diagnóstico , Comportamento Aditivo/epidemiologia , Comportamento Aditivo/psicologia , China , Análise Fatorial , Feminino , Humanos , Masculino , Psicometria , Reprodutibilidade dos Testes , Inquéritos e Questionários , Jogos de Vídeo/psicologia , Adulto Jovem
8.
Chem Biodivers ; 19(3): e202100876, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35098641

RESUMO

Although the effect of pearl powder has been recognized for more than a thousand years from healthcare to beauty care, there has yet to be an in-depth understanding of its anti-photoaging effect. In the present study, the protective effect of pearl extract (PE) on UV-induced photoaging in mice was evaluated. First, the amino acid analysis of PE was carried out. Then, different dosages of pearl extract gel (PEG) were applied topically on the shaved dorsal skins regions of mice before UV irradiation. Skin physiological and histological analysis, antioxidant enzymes and inflammatory factor test were used to evaluate the anti-photoaging effect of PEG. The results showed that PEG contained 14 amino acids, and could inhibit UV-irritated skin wrinkles, laxity, thickness, and dryness. Moreover, PEG upregulated the activities of CAT, GSH-Px, SOD and decreased MDA level, and suppressed the production of IL-1ß, IL-6, PGE2 , TNF-α, and COX-2 in UV-irradiated mice. The therapeutic effect in high dose PEG group was superior to those of positive control (Vitamin E). This study demonstrated the underlying mechanisms of PEG against UV-irritated photoaging. And PEG possesses a potential use in photoprotective medicines and cosmetics.


Assuntos
Pinctada , Envelhecimento da Pele , Animais , Carbonato de Cálcio , Camundongos , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Pele , Raios Ultravioleta/efeitos adversos
9.
Apoptosis ; 26(1-2): 24-37, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33604728

RESUMO

Apoptosis repressor with caspase recruitment domain (ARC) is a highly effective and multifunctional inhibitor of apoptosis that is mainly expressed in postmitotic cells such as cardiomyocytes and skeletal muscle cells. ARC contains a C-terminal region rich in proline and glutamic acid residues and an N-terminal caspase recruitment domain (CARD). The CARD is originally described as a protein-binding motif that interacts with caspase through a CARD-CARD interaction. Initially, the inhibitory effect of ARC was only found in apoptosis, however, it was later found that ARC also played a regulatory role in other types of cell death. As a powerful cardioprotective factor, ARC can protect the heart by inhibiting the death of cardiomyocytes in various ways. ARC can reduce the cardiomyocyte apoptotic response to various stresses and injuries, including extrinsic apoptosis induced by death receptor ligands, cellular Ca2+ homeostasis and the dysregulation of endoplasmic reticulum (ER) stress, oxidative stress and hypoxia. In addition, changes in ARC transcription and translation levels in the heart can cause a series of physiological and pathological changes, and ARC can also perform corresponding functions through interactions with other molecules. Although there has been much research on ARC, the functional redundancy among proteins shows that ARC still has much research value. This review summarizes the molecular characteristics of ARC, its roles in the various death modes in cardiomyocytes and the roles of ARC in cardiac pathophysiology. This article also describes the potential therapeutic effect and research prospects of ARC.


Assuntos
Apoptose , Doenças Cardiovasculares/fisiopatologia , Domínio de Ativação e Recrutamento de Caspases , Animais , Cálcio/metabolismo , Doenças Cardiovasculares/enzimologia , Doenças Cardiovasculares/genética , Caspases/genética , Caspases/metabolismo , Morte Celular , Estresse do Retículo Endoplasmático , Humanos , Estresse Oxidativo
10.
J Biol Chem ; 294(45): 16494-16508, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31416833

RESUMO

Toxoplasma gondii is an important neurotropic pathogen that establishes latent infections in humans that can cause toxoplasmosis in immunocompromised individuals. It replicates inside host cells and has developed several strategies to manipulate host immune responses. However, the cytoplasmic pathogen-sensing pathway that detects T. gondii is not well-characterized. Here, we found that cyclic GMP-AMP synthase (cGAS), a sensor of foreign dsDNA, is required for activation of anti-T. gondii immune signaling in a mouse model. We also found that mice deficient in STING (Stinggt/gt mice) are much more susceptible to T. gondii infection than WT mice. Of note, the induction of inflammatory cytokines, type I IFNs, and interferon-stimulated genes in the spleen from Stinggt/gt mice was significantly impaired. Stinggt/gt mice exhibited more severe symptoms than cGAS-deficient mice after T. gondii infection. Interestingly, we found that the dense granule protein GRA15 from T. gondii is secreted into the host cell cytoplasm and then localizes to the endoplasmic reticulum, mediated by the second transmembrane motif in GRA15, which is essential for activating STING and innate immune responses. Mechanistically, GRA15 promoted STING polyubiquitination at Lys-337 and STING oligomerization in a TRAF protein-dependent manner. Accordingly, GRA15-deficient T. gondii failed to elicit robust innate immune responses compared with WT T. gondii. Consequently, GRA15-/-T. gondii was more virulent and caused higher mortality of WT mice but not Stinggt/gt mice upon infection. Together, T. gondii infection triggers cGAS/STING signaling, which is enhanced by GRA15 in a STING- and TRAF-dependent manner.


Assuntos
Imunidade Inata , Proteínas de Membrana/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Animais , Modelos Animais de Doenças , Células HEK293 , Humanos , Interferon gama/metabolismo , Subunidade p35 da Interleucina-12/genética , Subunidade p35 da Interleucina-12/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nucleotidiltransferases/deficiência , Nucleotidiltransferases/genética , Multimerização Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Baço/metabolismo , Taxa de Sobrevida , Toxoplasma/patogenicidade , Toxoplasmose/mortalidade , Toxoplasmose/parasitologia , Toxoplasmose/patologia , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Ubiquitinação
11.
Ecotoxicol Environ Saf ; 173: 131-141, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30771656

RESUMO

The present study aimed to investigate whether melatonin (MT) treatment can attenuate immunotoxicity induced by aluminum chloride (AlCl3) in rat spleen. Forty-eight healthy male Wistar rats were randomly allocated and treated with AlCl3 and/or MT. Rats were orally administered with AlCl3 for 90 days, from 61st days, rats were injected intraperitoneally with MT for 30 days. Firstly, we found that MT relieved the AlCl3-induced immunosuppression by improving spleen structural damage, CD3+ and CD4+ T lymphocyte subsets, IL-2 and TNF-α mRNA expressions and decreasing CD8+ T lymphocyte subsets. Secondly, MT attenuated the AlCl3-induced oxidative stress in rat spleen by decreasing the levels of ROS and MDA, while increasing the activities of SOD and CAT. Thirdly, MT relieved the AlCl3-induced apoptosis in rat spleen by increasing the MMP and Bcl-2 mRNA and protein expressions, while decreasing apoptosis rates, activity of Caspase-3 and pro-apoptotic gene expression. Finally, MT increased Nrf2 nuclear translocation, and Nrf2 target genes (HO-1, NQO1, SOD1 and CAT) mRNA expressions in the spleen of AlCl3-exposed rat. These results suggest that MT may alleviate AlCl3-induced immunotoxicity by inhibiting oxidative stress and apoptosis associated with the activation of Nrf2 signaling pathway, which could lay the foundation for the treatment of AlCl3 immunotoxicity.


Assuntos
Cloreto de Alumínio/toxicidade , Apoptose/efeitos dos fármacos , Melatonina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Masculino , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Baço/efeitos dos fármacos , Baço/imunologia , Baço/patologia
12.
Shanghai Kou Qiang Yi Xue ; 33(2): 141-147, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-39005089

RESUMO

PURPOSE: To study the stability of physicochemical properties and sterilizing effect about two commercially available hypochlorous acid (HClO) products under simulated clinical conditions, and to evaluate the compatibility of HClO on soft and hard tissues and cells in oral cavity. METHODS: Samples of HClO solution with different production processes were prepared, to detect the changes of physicochemical indexes of each sample over time under simulated clinical conditions (shielded from light at 20-25 ℃, open the cover for 5 minutes every day), including free available chlorine, oxidation-reduction potential and pH. Through suspension quantitative germicidal test, the antibiosis-concentration curve of HClO solution was made, so as to calibrate the change of antibacterial ability of disinfectant with the decrease of available chlorine content during storage. Pulp, tongue and dentine were immersed in PBS, 100 ppm HClO, 200 ppm HClO and 3% NaClO. The influence on soft and hard tissues was evaluated by weighing method and microhardness test. The toxic effects of HClO, NaClO and their 10-fold diluent on human gingival fibroblasts were determined by CCK-8 cytotoxicity assay. GraphPad PRIS 8.0 software was used to analyze the data. RESULTS: Under simulated conditions, the free available chlorine (FAC) of HClO solution decayed with time, and the attenuation degree was less than 20 ppm within 1 month. The bactericidal effect of each HClO sample was still higher than 5log after concentration decay. There was no obvious dissolution and destruction to soft and hard tissues for HClO(P>0.05). The cell viability of HClO to human gingival fibroblast cells (HGFC) was greater than 80%, which was much higher than 3% NaClO (P<0.001). CONCLUSIONS: The bactericidal effect and stability of HClO solution can meet clinical needs, which has low cytotoxicity and good histocompatibility. It is expected to become a safe and efficient disinfection product in the field of living pulp preservation and dental pulp regeneration.


Assuntos
Fibroblastos , Ácido Hipocloroso , Boca , Ácido Hipocloroso/química , Humanos , Boca/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Gengiva/citologia , Gengiva/efeitos dos fármacos , Irritantes , Desinfetantes/farmacologia , Desinfetantes/química , Antibacterianos/farmacologia , Antibacterianos/química
13.
Colloids Surf B Biointerfaces ; 223: 113143, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682297

RESUMO

Nanofibers are one of the attractive biomaterials that can provide unique environments to direct cell behaviors. However, how nanofiber structure affects the global gene expression of laden cells remains unclear. Herein, high-throughput mRNA sequencing (RNA-seq) is applied to analyze the transcriptome of the MC3T3-E1 cells (a model osteoblast cell line) cultured on electrospun nanofibers. The cell-adhesive poly(L-lactide) nanofibers and membranes are developed by the mussel-inspired coating of gelatin-dopamine conjugate under H2O2-mediated oxidation. The MC3T3-E1 cells cultured on nanofibers exhibit elongated morphology and increased proliferation compared with those on membranes. The differences in global gene expression profiles are determined by RNA-seq, in which 905 differentially expressed genes (DEGs) are identified. Significantly, the DEGs related to cytoskeleton, promotion of cell cycle progression, cell adhesion, and cell proliferation, are higher expressed in the cells on nanofibers, while the DEGs involved in cell-cycle arrest and osteoblast mineralization are up-regulated in the cells on membranes. This study elucidates the roles of nanofiber structure in affecting gene expression of laden cells at the whole transcriptome level, and it will lay the foundation for understanding nanofiber-guided cell behaviors.


Assuntos
Nanofibras , Transcriptoma , Nanofibras/química , RNA-Seq , Peróxido de Hidrogênio/metabolismo , Materiais Biocompatíveis/química , Osteoblastos , Proliferação de Células
14.
Chem Commun (Camb) ; 59(34): 5106-5109, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37039083

RESUMO

A labeling chemistry-based methodology, APSC-8-oxoGua-seq, is developed to sequence 8-oxoGua in the microRNA transcriptome. N-(3-Azidopropyl)-spermine-5-carboxamide (APSC) is designed for the selective labeling of 8-oxoGua, where its azide facilitates the conjugation of a cleavable linker via the click reaction, achieving 8-oxoGua pull-down and sequencing. Using APSC-8-oxoGua-seq, 8-oxoGua can be identified at single-base resolution.


Assuntos
MicroRNAs , Transcriptoma , Guanina
15.
Chem Biol Interact ; 369: 110266, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36402210

RESUMO

Mycotoxins are most frequent contaminants in environment and agricultural production globally. The T-2 toxin of Fusarium species is the most toxic type of A trichothecene mycotoxins. T-2 toxin can accumulate in bone and cause bone development disorders. Osteoblast is the functional cell responsible for bone formation. Whereas, the mechanism of T-2 toxin toxicity on osteoblast remains unknown. In present study, MC3T3-E1 cells were treated with 0, 2, 4, and 8 nM T-2 toxin for 24h to explore the effect of T-2 toxin on the differentiation and mineralization of osteoblasts. Subsequently, autophagy and Wnt intervention agents were used to explore the roles of autophagy and Wnt signaling pathway in T-2 toxin-induced osteoblastic differentiation and mineralization disorders, respectively. The results showed that 2 nM of T-2 toxin had no significant effect on cell vitality, but 4 and 8 nM of T-2 significantly inhibited cell viability. All doses of T-2 toxin inhibited both osteoblastic differentiation and mineralization, as assessed by alkaline phosphatase staining, Alizarin red S staining, and protein expressions of osteogenic proteins. In addition, the activation of Wnt signaling pathway mitigated T-2 toxin-induced osteoblast impairment, while the inhibition of autophagy exacerbated it. Our results also indicated that there was a positive feedback loop between the Wnt signaling pathway and autophagy.


Assuntos
Toxina T-2 , Via de Sinalização Wnt , Linhagem Celular , Toxina T-2/metabolismo , Diferenciação Celular , Osteogênese , Osteoblastos , Autofagia
16.
Diagnostics (Basel) ; 13(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958246

RESUMO

Prostate cancer (PCa) is a widespread malignancy with global significance, which substantially affects cancer-related mortality. Its spectrum varies widely, from slow-progressing cases to aggressive or even lethal forms. Effective patient stratification into risk groups is crucial to therapeutic decisions and clinical trials. This review examines a wide range of diagnostic and prognostic biomarkers, several of which are integrated into clinical guidelines, such as the PHI, the 4K score, PCA3, Decipher, and Prolaris. It also explores the emergence of novel biomarkers supported by robust preclinical evidence, including urinary miRNAs and isoprostanes. Genetic alterations frequently identified in PCa, including BRCA1/BRCA2, ETS gene fusions, and AR changes, are also discussed, offering insights into risk assessment and precision treatment strategies. By evaluating the latest developments and applications of PCa biomarkers, this review contributes to an enhanced understanding of their role in disease management.

17.
Biomed Mater ; 17(4)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35609582

RESUMO

The macro-porous hydrogel scaffolds can not only enhance the proliferation of laden chondrocytes but also favor the deposition of hyaline cartilaginous extracellular matrix, however, the underlying molecular mechanism is still unclear. Herein, the global gene expression of human cartilage chondrocytes (HCCs) encapsulated in traditional hydrogel (Gel) constructs and micro-cavitary gel (MCG) constructs are investigated by using high-throughput RNA sequencing (RNA-seq). The differentially expressed genes (DEGs) between the HCCs cultured in Gel and MCG constructs have been identified via bioinformatics analysis. Significantly, the DEGs that promote cell proliferation (e.g. POSTN, MKI67, KIF20A) or neo-cartilage formation (e.g. COL2, ASPN, COMP, FMOD, FN1), are more highly expressed in MCG constructs than in Gel constructs, while the expressions of the DEGs associated with chondrocyte hypertrophy (e.g. EGR1, IBSP) are upregulated in Gel constructs. The expression of representative DEGs is verified at both mRNA and protein levels. Besides, cellular viability and morphology as well as the enriched signaling pathway of DEGs are studied in detail. These results of this work may provide data for functional tissue engineering of cartilage.


Assuntos
Condrócitos , Hidrogéis , Cartilagem/metabolismo , Células Cultivadas , Humanos , Engenharia Tecidual/métodos , Alicerces Teciduais , Transcriptoma
18.
Biomaterials ; 291: 121908, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36384085

RESUMO

Uncontrolled hemorrhage caused by trauma to internal organs or major arteries poses critical threats to lives. However, rapid hemostasis followed by tissue repair remains an intractable challenge in surgery owing to the lack of ideal internal-use adhesives that can achieve fast and robust wet adhesion and accelerate wound healing. Herein, we develop a robust hemostatic bioadhesive (CAGA) from novel highly-branched aminoethyl gelatin with end-grafted abundant catechol (Gel-AE-Ca). The unique chemical structure of Gel-AE-Ca makes CAGA capable of gelling on wet tissues via synergetic cross-linking of catechol-Fe3+ chelation and horseradish peroxidase (HRP)/H2O2-triggered covalent bonds using a dual-channel needle, meeting the key demands of internal medical applications (e.g., instant and strong wet adhesion, injectability, biocompatibility, self-healing, stretching flexibility, infection resistance, and proper biodegradability). It exhibits rapid gelation within 10 s and robust wet tissue adhesion up to 115.0 ± 13.1 kPa of shear strength and 245.0 ± 33.8 mm Hg of sealing strength. In vivo trials demonstrate that CAGA can not only effectively seal anastomosis of the carotid artery, but achieve rapid hemostasis on the sites of liver incisions and penetrating cardiac wounds within 10 s. The wound closure by CAGA and its timely biodegradation promote wound healing of the vital organs.


Assuntos
Peróxido de Hidrogênio , Cicatrização , Catecóis , Artérias , Hemostasia
19.
Polymers (Basel) ; 15(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36616515

RESUMO

To develop the full application potential of composite materials, research on the post-buckling behavior of composite stiffened panels is of great significance. In this paper, the impact and compression after impact (CAI) behaviors of four different types of composite stiffened panels were studied by numerical simulation and experimental methods. The low-velocity impact damage simulated dynamically was introduced as the initial state in the compression simulation, and a two-dimensional shell model with Hashin failure criteria and stiffness degradation was adopted to estimate the failure load of composite stiffened panels under impact and CAI. The error between simulation results and test results was less than 10%, showing that the method used in this study achieved considerable accuracy in experimental results. Analysis of the impact test results revealed that the extent of damage is related to many factors, including the cross-sectional size of stiffeners, the spacing of stiffeners, and the material and thickness of the skin. In addition, the influence of fatigue damage on residual strength after impact was also studied experimentally, with results showing that the buckling and failure loads decreased by about 5% under 106 flight fatigue loads. However, there were obvious fluctuations in the load-displacement curves, which may have been caused by debonding between the stiffeners and the skin. Experimental results and the simulation matrix show that the post-buckling ratio increased with the increase of the stiffness ratio, then was stable after 2.0. Furthermore, the thinner the skin, the greater the post-buckling ratio. The experimental and simulation results provide an important reference for the structural design and failure-mechanism analysis of composite stiffened panels.

20.
Adv Healthc Mater ; 11(13): e2102818, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35306762

RESUMO

Various scaffolding systems have been attempted to facilitate vascularization in tissue engineering by optimizing biophysical properties (e.g., vascular-like structures, porous architectures, surface topographies) or loading biochemical factors (e.g., growth factors, hormones). However, vascularization during ossification remains an unmet challenge that hampers the repair of large bone defects. In this study, reconstructing vascularized bones in situ against critical-sized bone defects is endeavored using newly developed scaffolds made of chemically cross-linked gelatin microsphere aggregates (C-GMSs). The rationale of this design lies in the creation and optimization of cell-material interfaces to enhance focal adhesion, proliferation, and function of anchorage-dependent functional cells. In vitro trials are carried out by coculturing human aortic endothelial cells (HAECs) and murine osteoblast precursor cells (MC3T3-E1) within C-GMS scaffolds, in which endothelialized bone-like constructs are yielded. Angiogenesis and osteogenesis induced by C-GMSs scaffold are further confirmed via subcutaneous-embedding trials in nude mice. In situ trials for the repair of critical-sized femoral defects are subsequently performed in rats. The acellular C-GMSs with interconnected macropores, exhibit the capability to recruit the endogenous cells (e.g., bone-forming cells, vascular forming cells, immunocytes) and then promote vascularized bone regeneration as well as integration with host bone.


Assuntos
Materiais Biocompatíveis , Gelatina , Animais , Regeneração Óssea , Células Endoteliais , Gelatina/química , Camundongos , Camundongos Nus , Microesferas , Osteogênese , Ratos , Engenharia Tecidual , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA