Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell ; 165(6): 1454-1466, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27212239

RESUMO

Maintaining homeostasis of Ca(2+) stores in the endoplasmic reticulum (ER) is crucial for proper Ca(2+) signaling and key cellular functions. The Ca(2+)-release-activated Ca(2+) (CRAC) channel is responsible for Ca(2+) influx and refilling after store depletion, but how cells cope with excess Ca(2+) when ER stores are overloaded is unclear. We show that TMCO1 is an ER transmembrane protein that actively prevents Ca(2+) stores from overfilling, acting as what we term a "Ca(2+) load-activated Ca(2+) channel" or "CLAC" channel. TMCO1 undergoes reversible homotetramerization in response to ER Ca(2+) overloading and disassembly upon Ca(2+) depletion and forms a Ca(2+)-selective ion channel on giant liposomes. TMCO1 knockout mice reproduce the main clinical features of human cerebrofaciothoracic (CFT) dysplasia spectrum, a developmental disorder linked to TMCO1 dysfunction, and exhibit severe mishandling of ER Ca(2+) in cells. Our findings indicate that TMCO1 provides a protective mechanism to prevent overfilling of ER stores with Ca(2+) ions.


Assuntos
Canais de Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Sequência de Aminoácidos , Animais , Ataxia/genética , Células COS , Cálcio/metabolismo , Canais de Cálcio/genética , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Deficiência Intelectual/genética , Membranas Intracelulares/metabolismo , Camundongos , Camundongos Knockout , Osteogênese/genética , Alinhamento de Sequência
2.
Proteomics ; 24(1-2): e2300185, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37847886

RESUMO

Lactylation, as a novel posttranslational modification, is essential for studying the functions and regulation of proteins in physiological and pathological processes, as well as for gaining in-depth knowledge on the occurrence and development of many diseases, including tumors. However, few studies have examined the protein lactylation of one whole organism. Thus, we studied the lactylation of global proteins in Caenorhabditis elegans to obtain an in vivo lactylome. Using an MS-based platform, we identified 1836 Class I (localization probabilities > 0.75) lactylated sites in 487 proteins. Bioinformatics analysis showed that lactylated proteins were mainly located in the cytoplasm and involved in the tricarboxylic acid cycle (TCA cycle) and other metabolic pathways. Then, we evaluated the conservation of lactylation in different organisms. In total, 41 C. elegans proteins were lactylated and homologous to lactylated proteins in humans and rats. Moreover, lactylation on H4K80 was conserved in three species. An additional 238 lactylated proteins were identified in C. elegans for the first time. This study establishes the first lactylome database in C. elegans and provides a basis for studying the role of lactylation.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Humanos , Animais , Ratos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Ciclo do Ácido Cítrico , Redes e Vias Metabólicas , Proteoma/metabolismo
3.
J Proteome Res ; 23(10): 4658-4673, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39298182

RESUMO

The dormancy of cancer stem cells is a major factor leading to drug resistance and a high rate of late recurrence and mortality in estrogen receptor-positive (ER+) breast cancer. Previously, we demonstrated that a stiffer matrix induces tumor cell dormancy and drug resistance, whereas a softened matrix promotes tumor cells to exhibit a stem cell state with high proliferation and migration. In this study, we present a comprehensive analysis of the proteome and phosphoproteome in response to gradient changes in matrix stiffness, elucidating the mechanisms behind cell dormancy-induced drug resistance. Overall, we found that antiapoptotic and membrane transport processes may be involved in the mechanical force-induced dormancy resistance of ER+ breast cancer cells. Our research provides new insights from a holistic proteomic and phosphoproteomic perspective, underscoring the significant role of mechanical forces stemming from the stiffness of the surrounding extracellular matrix as a critical regulatory factor in the tumor microenvironment.


Assuntos
Neoplasias da Mama , Matriz Extracelular , Células-Tronco Neoplásicas , Fosfoproteínas , Proteômica , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Matriz Extracelular/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Feminino , Proteômica/métodos , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteoma/análise , Proteoma/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Células MCF-7
4.
Proteomics ; 23(15): e2200437, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37170646

RESUMO

Lactate is closely related to various cellular processes, such as angiogenesis, responses to hypoxia, and macrophage polarization, while regulating natural immune signaling pathways and promoting neurogenesis and cognitive function. Lysine lactylation (Kla) is a novel posttranslational modification, the examination of which may lead to new understanding of the nonmetabolic functions of lactate and the various physiological and pathological processes in which lactate is involved, such as infection, tumorigenesis and tumor development. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), researchers have identified lactylation in human gastric cancer cells and some other species, but no research on lactylation in human lungs has been reported. In this study, we performed global profiling of lactylation in human lungs under normal physiological conditions, and 724 Kla sites in 451 proteins were identified. After comparing the identified proteins with those reported in human lactylation datasets, 141 proteins that undergo lactylation were identified for the first time in this study. Our work expands the database on human lactylation and helps advance the study on lactylation function and regulation under physiological and pathological conditions.


Assuntos
Lisina , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Ácido Láctico , Pulmão
5.
Environ Sci Technol ; 54(22): 14686-14693, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-32985873

RESUMO

Europium (Eu) is often regarded as a critical mineral due to its byproduct nature, importance to lighting technologies, and global supply concentration. However, the existing indicator-based criticality assessments have limitations to capture Eu's supply chain information and thus fall short of reflecting its true criticality. This study quantified the flows and stocks of Eu in mainland China from 1990 to 2018. Results show that: (1) China's Eu demand decreased by 75% from 2011 to 2018, as a result of the lighting technology transition from fluorescent lamps to light-emitting diodes, which significantly reduced Eu's importance; (2) the supply of Eu mined as a byproduct kept increasing together with the growing rare earth production, which caused a substantial supply surplus being ≈1900 t by 2018; (3) despite the leading role of China in global Eu production, Eu mined in China was exported mainly in the form of intermediate and final products, and ≈90% Eu embedded in domestically produced final products was used for export recently. This study indicates that Eu's criticality is not as severe as previously assessed and highlights the necessity of material flow analysis for a holistic and dynamic view on the entire supply chain of critical minerals.


Assuntos
Utensílios Domésticos , Iluminação , China , Európio , Tecnologia
6.
Biochem Biophys Res Commun ; 512(4): 914-920, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-30929916

RESUMO

In eukaryotic cells, Endoplasmic Reticulum (ER) is an interconnected membranous organelle and plays important roles in protein synthesis and lipid metabolism. We have previously demonstrated that TMCO1 is an ER Ca2+ channel actively preventing ER Ca2+ overloading. Recently, we also found that TMCO1 deficiency in mouse granulosa cells (GCs) caused abnormal Ca2+ signaling, ER stress and enhanced reactive oxygen species (ROS). In this study, we further examined the roles of TMCO1 in lipid metabolism and mitochondrial functions. Intriguingly, we found that TMCO1 deletion reduced the number of lipid droplets (LDs) and the content of triglyceride (TG), which was due to ER stress associated degradation (ERAD) of the important enzyme in catalyzing TG synthesis, diacylglycerol acyltransferase 2 (DGAT2). Hypofunction in transforming non-esterification fatty acid (NEFA) to TG caused NEFA deposit, a potential risk of mitochondrial dysfunction. Furthermore, in TMCO1 deficient cells, mitochondria volume decreased and inefficient oxidative phosphorylation was detected, which underlined enhanced mitophagy and impaired mitochondrial functions. Taken these data together, we for the first time revealed the role of TMCO1 in regulating lipid-metabolism and mitochondrial function. This study may provide new insights into understanding TMCO1 defect syndrome.


Assuntos
Canais de Cálcio/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Mitocôndrias/metabolismo , Animais , Canais de Cálcio/genética , Ácidos Graxos/metabolismo , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Gotículas Lipídicas/metabolismo , Camundongos Knockout , Mitocôndrias/patologia , Mitofagia/genética , Consumo de Oxigênio , Triglicerídeos/metabolismo
7.
Yi Chuan ; 41(7): 653-661, 2019 Jul 20.
Artigo em Chinês | MEDLINE | ID: mdl-31307974

RESUMO

RNA interference is a gene silencing phenomenon mediated by short double-stranded RNAs, which has become a widely used research technology for reverse genetics. In order to make students understand the technology better, the students were required to select target genes, to design small interfering RNAs (siRNAs) and primers, and then to test the effect of gene silencing mediated by siRNAs. Taking the fifth group in 2018 as an example, Mus musculus acyl-CoA synthetase long-chain family member 1 (Acsl1) was selected as the target gene, two pairs of siRNAs targeting Acsl1 mRNA were designed and transfected into 3T3-L1 by electroporation, then the total RNAs were extracted and synthesized to cDNA, and the expression levels of mRNAs were finally tested by relative quantitative PCR. The results showed that both pairs of siRNAs had more than 60% silencing effects. In the past three years, about 83% of the students completed all the experiments successfully and screened out at least a pair of effective siRNA. This teaching practice for undergraduates enhances students' understanding of RNA interference principle and technology, and exercises students' lab experience and scientific research ability.


Assuntos
Genética/educação , Interferência de RNA , Estudantes , Ensino , Animais , Coenzima A Ligases , Expressão Gênica , Humanos , Camundongos , RNA Interferente Pequeno
8.
Reprod Fertil Dev ; 30(5): 752-758, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29096761

RESUMO

Mammalian oocytes undergo several crucial processes during meiosis maturation, including spindle formation and migration and polar body extrusion, which rely on the regulation of actin. As a small actin-binding protein, profilin 1 plays a central role in the regulation of actin assembly. However, the functions of profilin 1 in mammalian oocytes are uncertain. To investigate the function of profilin 1 in oocytes, immunofluorescent staining was first used to examine profilin 1 localisation. The results showed that profilin 1 was localised around the meiotic spindles and was colocalised with cytoplasmic actin. Knockdown (KD) of profilin 1 with specific morpholino microinjection resulted in failure of polar body extrusion. This failure resulted from an increase of actin polymerisation both at membranes and in the cytoplasm. Furthermore, western blot analysis revealed that the expression of Rho-associated kinase (ROCK) and phosphorylation levels of myosin light chain (MLC) were significantly altered after KD of profilin 1. Thus, the results indicate that a feedback mechanism between profilin, actin and ROCK-MLC2 regulates actin assembly during mouse oocyte maturation.


Assuntos
Actinas/metabolismo , Oócitos/metabolismo , Corpos Polares/metabolismo , Profilinas/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Citocinese/fisiologia , Feminino , Técnicas de Silenciamento de Genes , Meiose/fisiologia , Camundongos , Fosforilação , Profilinas/genética , Fuso Acromático/metabolismo , Quinases Associadas a rho/metabolismo
9.
J Reprod Dev ; 63(5): 505-510, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28781348

RESUMO

The mammalian oocyte undergoes an asymmetric division during meiotic maturation, producing a small polar body and a haploid gamete. This process involves the dynamics of actin filaments, and the guanosine triphosphatase (GTPase) protein superfamily is a major regulator of actin assembly. In the present study, the small GTPase CDC42 was shown to participate in the meiotic maturation of porcine oocytes. Immunofluorescent staining showed that CDC42 was mainly localized at the periphery of the oocytes, and accumulated with microtubules. Deactivation of CDC42 protein activity with the effective inhibitor ML141 caused a decrease in actin distribution in the cortex, which resulted in a failure of polar body extrusion. Moreover, western blot analysis revealed that besides the Cdc42-N-WASP pathway previously reported in mouse oocytes, the expression of ROCK and p-cofilin, two molecules involved in actin dynamics, was also decreased after CDC42 inhibition during porcine oocyte maturation. Thus, our study demonstrates that CDC42 is an indispensable protein during porcine oocyte meiosis, and CDC42 may interact with N-WASP, ROCK, and cofilin in the assembly of actin filaments during porcine oocyte maturation.


Assuntos
Actinas/metabolismo , Oócitos/fisiologia , Oogênese , Proteína cdc42 de Ligação ao GTP/fisiologia , Citoesqueleto de Actina/metabolismo , Animais , Células Cultivadas , Citocinese/fisiologia , Feminino , Técnicas de Maturação in Vitro de Oócitos , Oócitos/metabolismo , Ligação Proteica , Fuso Acromático/fisiologia , Suínos , Proteína cdc42 de Ligação ao GTP/metabolismo
10.
Toxicol Appl Pharmacol ; 300: 70-76, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26988607

RESUMO

Deoxynivalenol (DON) is a widespread trichothecene mycotoxin which contaminates agricultural staples and elicits a complex spectrum of toxic effects on humans and animals. It has been shown that DON impairs oocyte maturation, reproductive function and causes abnormal fetal development in mammals; however, the mechanisms remain unclear. In the present study, we investigate the possible reasons of the toxic effects of DON on porcine oocytes. Our results showed that DON significantly inhibited porcine oocyte maturation and disrupted meiotic spindle by reducing p-MAPK protein level, which caused retardation of cell cycle progression. In addition, up-regulated LC3 protein expression and aberrant Lamp2, LC3 and mTOR mRNA levels were observed with DON exposure, together with Annexin V-FITC staining assay analysis, these results indicated that DON treatment induced autophagy/apoptosis in porcine oocytes. We also showed that DON exposure increased DNA methylation level in porcine oocytes through altering DNMT3A mRNA levels. Histone methylation levels were also changed showing with increased H3K27me3 and H3K4me2 protein levels, and mRNA levels of their relative methyltransferase genes, indicating that epigenetic modifications were affected. Taken together, our results suggested that DON exposure reduced porcine oocytes maturation capability through affecting cytoskeletal dynamics, cell cycle, autophagy/apoptosis and epigenetic modifications.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Tricotecenos/farmacologia , Animais , Ciclo Celular , Metilação de DNA/efeitos dos fármacos , Epigênese Genética , Feminino , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Suínos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA